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Universal Density of States for Carbon Nanotubes
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The density of states in the vicinity of the Fermi level of single-wall carbon nanotubes ca
expressed in terms of a universal relationship that depends only on whether the nanotube is met
semiconducting. We compare the predictions of this approximate relationship with densities of
calculated using first-principles band structure results. These comparisons show that this approxi
works well for energies within about 1 eV of the Fermi level. [S0031-9007(98)07132-4]

PACS numbers: 71.20.Tx, 71.15.Fv, 71.15.Mb, 73.61.Wp
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Scanning tunneling microscopy (STM) and spe
troscopy experiments have been recently reported
individual single-wall carbon nanotubes (SWNT) [1,2
confirming the strongly one-dimensional nature expect
for the electron states in these materials [3,4]. The ST
experiments give a direct experimental probe of th
electron density of states (DOS) near the Fermi lev
We have recently shown that semiconducting SWNT
with similar diameters will have similar DOS near th
Fermi level, and established an analogous corresponde
for metallic nanotubes [5]. We also gave expressions
the positions of the peaks near the Fermi level. Here
derive a universal relationship for the DOS in the vicinit
of the Fermi level for SWNTs. This relationship, base
on the graphene sheet model, scales out the depende
on the nanotube diameter and otherwise only depends
whether the SWNT belongs to the semiconducting
metallic groups of nanotubes. We compare the pred
tions of this relationship with the DOS results calculate
using first-principles band structure results for SWNT
with diameters ranging from 1.3 to 2.8 nm.

A SWNT can be constructed by rolling up a singl
graphene sheet (depicted in Fig. 1) along one of its 2
lattice vectors R ­ n1R1 1 n2R2 to form a sn1, n2d
nanotube with radiusr ­ jRjy2p. Perhaps the simplest
model for the electronic structure of SWNTs is a Slate
Koster or Hückel tight-binding model of the graphen
sheet with periodic boundary conditions imposed ov
the rollup vectorR. The Brillouin zone of graphene is
hexagonal as depicted in Fig. 2, with reciprocal la
tice vectorsK1 and K2 defined in terms of the real
lattice vectors by the relationshipKi ? Rj ­ 2pdij.
The Fermi level for graphene occurs at the vertices
the hexagons at the pointskF located by the vectors
KF ; 6sK1 2 K2dy3, 6s2K1 1 K2dy3, and 6sK1 1

2K2dy3. Allowed electron states for the nanotube a
then restricted to pointsk, located by the two-dimensiona
wave vector k, which satisfy the boundary condition
k ? R ­ 2pm, corresponding to the parallel lines in
Fig. 2. This approach has been used to group the SWN
into metallic and semiconducting nanotubes depending
whethern1 2 n2 is an integer multiple of 3 (metallic) or
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not (semiconducting) [6–11]. With curvature effects in
cluded, group symmetry can be used to show that only
armchair SWNTs (n1 ­ n2 and the symmetry equivalen
SWNTs n1 ­ 22n2 and n2 ­ 22n1) are truly metallic
[6]; all other SWNTs satisfying the metallic condition ar
only quasimetallic with small band gaps varying as th
inverse square of the SWNT radius [12,13].

In general, the contribution of a single, doubly de
generate 1D band́skd to the density of states,nsEd ­
≠NsEdy≠E, can be expressed as

nsEd ­
2
,

X
i

Z
dk dsk 2 kid

Ç
≠´

≠k

Ç
21

, (1)

where ki are the roots of the equationE 2 ´skid ­ 0,
, is the length of the 1D Brillouin zone, ­

R
dk, and

NsEd is the total number of electron states per un
cell below a given energyE. Because the hexagona
Brillouin zone depicted in Fig. 2 tiles the entire two
dimensional plane, the total area of the graphene cen
Brillouin zone must equal the product of the total leng
of the allowed state lines in the Brillouin zone times th

(6,0)

(6,5)

R2

1R(0,0)

(n,n)

(n,0)

FIG. 1. Two-dimensional graphene lattice structure. Prim
tive lattice vectorsR1 and R2 are depicted in origin unit
cell. Rollup vectorR is shown for (6, 5) SWNT. Armchair
nanotubes are defined by rollup vectors along the (n, n) direc-
tion, zigzag nanotubes are defined by rollup vectors along
(n, 0) direction. Armchair and zigzag nanotubes will posse
reflection planes and be achiral, all other SWNTs will be chira
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FIG. 2. (a) Hexagonal central Brillouin zone of graphen
Parallel lines depict allowed states for (13, 6) SWNT. Circ
at bottom right encloses the region of states near´F . Lines
with arrows denote reciprocal lattice vectorsK1 and K2.
(b) Expanded depiction of allowed states near´F , with dotted
line parallel toR and thekF corner of hexagon with energýF .
k denotes the arbitrary point on the allowed state line nearkF ,
with Dk'

m and Dkk the components perpendicular and paralle
respectively, to the allowed state lines.

spacing between lines. For the nanotube states defi
by the graphene sheet model, this total length, will thus
equal the total area of the Brillouin zone,VBZ ­
8p2ysa2

p
3 d, wherea is the graphene lattice spacinga ­

jR1j ­ jR2j divided by the interline spacing2pyjRj,
or , ­ s4py

p
3 djRjya2. This corresponds to a normal-

ization over the graphene sheet unit cell, or the DOS p
every two carbons.

The DOS near the Fermi level will be directly relate
to the energy levels of the states near the corners of
Brillouin zone,kF . Near´F , the 2D dispersion relations
of the occupied and unoccupiedp bands of graphene
using a nearest-neighbor interactionVppp are given to
good approximation [forj´skdyVppp j ø 1] by [11]

j´skdj ø s
p

3y2dajVppp j jk 2 kF j , (2)

and are radially symmetric around the pointkF . Using
this approximation, we can construct the DOS of th
carbon nanotube in the vicinity of́F . Over the region
where Eq. (2) is valid, the point of closest approach tokF

in any line nearkF (but not intersecting) will represent
a local maximum (minimum) in the 1D band structure
leading to a van Hove singularity and a divergence in t
occupied (unoccupied) DOS near´F [5]. The length of
the vectork 2 kF , betweenkF and one of the allowed
states atk satisfying k ? R ­ 2pm, will be given by
jk 2 kF j2 ­ Dk'2

m 1 Dk2
k , whereDk'

m andDkk denote
the perpendicular and parallel (with respect to the allow
state lines) components, respectively, ofk 2 kF as
depicted in Fig. 2a. The perpendicular componentDk'

m
is quantized and given by [5]

Dk'
m ­

Ç
sk 2 kFd ?

R
jRj

Ç
­

2p

3jRj
j3m 2 n1 1 n2j .

(3)

The contribution of the state atk to the DOS [at energy
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´skd in the graphene Brillouin zone] using Eq. (1) will be
given by É

≠´

≠kk

É
21

­
2

p
3 jVppp ja

j´jp
´2 2 ´2

m

, (4)

where, from Eqs. (2) and (3),

j´mj ­

p
3

2
jVppp jaDk'

m ­
j3m 2 n1 1 n2j

2
jVppp j

d
r

,

(5)

with d the carbon-carbon bond distance (a ­ d
p

3 ) and
r is the nanotube radius (jRj ­ 2pr).

Before applying Eq. (4) to Eq. (1), each line in th
vicinity of kF at kF will have two points at any given
energý skd, and, in addition to these two points two mor
equivalent points in the vicinity of the point located b
2kF will contribute to the DOS at this energy. In all
we can then write the DOS per carbon atom,rsEd ­
nsEdy2, as

rsEd ­
4
,

X̀
m­2`

2
p

3 jVppp ja
gsE, ´md

­

p
3

p2

1
jVppp j

d
r

X̀
m­2`

gsE, ´md , (6)

where

gsE, ´md ­

Ω
jEjy

p
E2 2 ´2

m , jEj . j´mj ;
0, jEj , j´mj .

(7)

We note thatgsE, ´md exhibits a divergent van Hove
singularity at jEj ­ j´mj for j´mj fi 0, and that
gsE, 0d ­ 1.

The DOS in the vicinity of the Fermi level of all carbon
nanotubes can then be expressed in terms of a unive
functionUsE0d:

rsEd ­
1

LjVppp j
U

µ
LE

jVppp j

∂
, (8)

where L is the dimensionless ratio of the nanotube d
ameter to the carbon-carbon bond distance,L ­ 2ryd ­p

3sn2
1 1 n2

2 1 n1n2dy2p, andUsE0d is given by

UsE0d ­
2
p

3
p2

X̀
m0­2`

gsE0, ´0
m0d , (9)

with j´
0
m0 j2 ­ s3m0 1 1d2 for semiconducting (n1 2

n2 fi 3q) and j´
0
m0 j2 ­ s3m0d2 for metallic (n1 2

n2 ­ 3q) tubes withq an integer. In terms of the scaled
energyE0 ­ LEyjVppp j, Eq. (2) used to derive Eq. (9)
will be valid for jE0 j ø L. Recent experimental STM
results have been reported for SWNTs with diamete
of roughly 1.4 nm compared to a carbon-carbon bo
distance in graphite of 0.14 nm, and a corresponding ra
of L ø 10 [1,2].

To test the applicability and universality of Eq. (9)—
obtained by approximating´skFd by Eq. (2) and
negelecting the effects of curvature—we have carri
2507
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out first-principles local-density functional band structur
calculations for several SWNTs with diameters rangin
from 1.28 to 2.82 nm. All calculations were performe
on SWNTs using a carbon-carbon bond distance
d ­ 0.144 nm that was found to optimize the geometr
of the (5, 5) SWNT [14], using methods that have bee
described in detail elsewhere [15,16]. For the firs
principles results, we started by numerically calculatin
the DOS from the one-electron bands per carbon ato
and scaled these results by the appropriate value ofL and
an effective value ofjVppp j of 2.5 eV.

In Fig. 3 we depict our calculated first-principles DO
for the (16, 0), (13, 6), and (21, 20) SWNTs (with di
ameters of 1.28, 1.34, and 2.82 nm, respectively) vers
the universal functionUsE0d. These first-principles re-
sults are both in good agreement with the universal r
lationship and with each other for a range of rough
jE0 j , 3 ø L. A theoretical DOS of a (16, 0) nanotube
was used by Wildöer,et al. [1] in a comparison with ex-
perimental STM measurements of the DOS of a 1.3 n
diameter SWNT. The low-energy DOS of the simila
diameter chiral (13, 6) SWNT is essentially the same
that of the achiral (16, 0) SWNT, consistent with our ea
lier analysis [5]. Figure 3 demonstrates that the scal
low-energy DOS for these 1.3 nm diameter nanotubes w
also be similar to the scaled DOS for the 2.8 nm (21, 2
nanotube and other semiconducting SWNTs over a ran
of diameters.

Similarly, in Fig. 4 we compare our first-principles re
sults for the (10, 10), (14, 5), and (22, 19) SWNTs (with d
ameters of 1.38, 1.36, and 2.82 nm, respectively) with t
universal relationship. Our sample set of metallic SWNT

FIG. 3. Comparison of scaled first-principles DOS re
sults with universal relationship from Eq. (9). Solid line
depicts results for the universal relationship for semiconducti
nanotubes (n1 2 n2 fi 3q), dotted line depicts scaled first-
principles band structure results for (16, 0) SWNT, dashed li
depicts results for (13, 6) SWNT, and dot-dashed line depic
results for (21, 20) SWNT.
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thus represents the (10, 10) SWNT observed by The
et al. [17], a similar diameter chiral (14, 5) SWNT, and
a (22, 19) chiral SWNT with twice the diameter of the pre
vious two nanotubes. The (10, 10) nanotube is an ach
armchair nanotube, which exhibits a metallic band stru
ture even at the first-principles level [6]. The (14, 5) an
(22, 19) nanotubes will only be quasimetallic, with a ban
gap introduced at the Fermi level by curvature effects, w
calculated band gaps of 0.03 and 0.001 eV, respective
This gap shows up as the two relatively small peaks imm
diately around the Fermi level, which might be observab
as weak broadened features in experiments. The ini
principal peaks near the Fermi level will occur at an ener
three times that in the semiconducting SWNTs [5], and th
peak essentially represents the limit of agreement betw
the first-principles results and the universal relationship
tubes with diameters of about 1.4 nm. The occupied DO
in the first-principles results are all better described by t
universal relationship than are the unoccupied DOS resu
For the armchair nanotubes the DOS will have two iden
cal contributions, one from each sign of the pair of valu
6´m fi 0. For other quasimetallic nanotubes this dege
eracy is broken because of deviations of the true dispers
energy´skd from radial symmetry at aboutkF . In the
first-principles results, the DOS atE0 ø 63 have two in-
equivalent van Hove singularities for the quasimetal
(15, 0) and (13, 7) nanotubes, which might allow armcha
nanotubes to be differentiated from other quasimeta
nanotubes with sufficiently resolved experiments.

In summary, we have derived a universal relationsh
for the low-energy DOS for carbon nanotubes. We ha
shown that for energiesj´ 2 ´F j ø jVppp j the DOS line

FIG. 4. Comparison of scaled first-principles DOS resu
with universal relationship from Eq. (9). The solid line depic
results for a universal relationship for metallic nanotub
(n1 2 n2 ­ 3q), dotted line depicts scaled first-principles ban
structure results for (10, 10) SWNT, dashed line depicts resu
for (14, 5) SWNT, and dot-dashed line depicts results f
(22, 19) SWNT.
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shapes for all semiconducting nanotubes can be redu
by appropriate scaling to the same function, and a
metallic nanotubes can be reduced to a related functio
Comparison with first-principles DOS suggest that th
model should be valid over a region several eV’s wid
In addition to the obvious implications of this work on
experimental measurements of the DOS of SWNTs
differing diameters, this universal relationship should b
important in understanding a range of spectroscopic a
other experimental measurements which are dependen
the DOS near the Fermi level.
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