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Universality in Chiral Random Matrix Theory at b 5 1 and b 5 4
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In this paper the kernel for the spectral correlation functions of invariant chiral random ma
ensembles with real (b ­ 1) and quaternion real (b ­ 4) matrix elements is expressed in terms of the
kernel of the corresponding complex Hermitian random matrix ensembles (b ­ 2). Such identities are
exact in case of a Gaussian probability distribution and, under certain smoothness assumptions, th
shown to be valid asymptotically for an arbitrary finite polynomial potential. They are proved by me
of a construction proposed by Brézin and Neuberger. Universal behavior of the eigenvalues clo
zero for all three chiral ensembles then follows from microscopic universality forb ­ 2 as shown by
Akemann, Damgaard, Magnea, and Nishigaki. [S0031-9007(98)06547-8]

PACS numbers: 05.45.+b, 11.30.Rd, 12.38.Aw, 64.60.Cn
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Since its introduction in nuclear physics [1], random
matrix theory (RMT) has been applied successfully
many different branches of physics ranging from atom
physics to quantum gravity (for a recent comprehensi
review, we refer to [2]). One important common ingred
ent is that eigenvalue correlations appear to be insensit
to the details of the underlying Hamiltonian. The suc
cess of RMT is based on this type of universality, and
is no surprise that it has received a great deal of atte
tion in recent literature [3–27]. What has been shown
that spectral correlators on the scale of the average eig
value spacing are insensitive to the details of the prob
bility distribution of the matrix elements. Because of it
mathematical simplicity most studies were performed f
complex (b ­ 2) Hermitian RMT’s. However, in the
case of the classical RMT’s it was shown that universa
ity extends to real (b ­ 1) and quaternion real (b ­ 4)
matrix ensembles [4,6,7]. This suggests that relatio
between correlation functions for different values ofb

which can be derived for a Gaussian probability distrib
tion [28,29] might be valid for a wide class of probability
distributions. The main goal of this paper is to establis
such general relations. As a consequence, universality
the much simpler complex ensembles implies universal
for the real and quaternion real ensembles.

In this Letter we address the question of microscop
universality for the chiral ensembles. These ensemb
are relevant for the description of spectral correlations
the QCD Dirac operator. They also appear in theory
universal conductance fluctuations in mesoscopic syste
[30,31]. They are characterized by a spectrum th
is symmetric aboutl ­ 0 and have been applied to
correlations of eigenvalues close to zero. According
the Banks-Casher formula [32], this part of the spectru
is directly related to the order parameterS of the
chiral phase transition [S ­ lim prs0dyV , where V is
the volume of space time andrsld ­

P
k dsl 2 lkd].

It is therefore natural to introduce the microscopic lim
where the variableu ­ lVS is kept fixed forV ! `.
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For example, the microscopic spectral density is defin
by [33]

rSsud ­ lim
V!`

1
VS

ø
r

µ
u

VS

∂¿
, (1)

where the average is over the distribution of the matr
elements of the Dirac operator. Successful applications
the chiral ensembles to lattice QCD spectra can be fou
in [29,34–36].

The chiral random matrix ensembles forNf massless
quarks in the sector of topological chargen are defined
by the partition function [33,37]

Z
b
Nf ,n ­

Z
DW detNf

µ
0 iW

iWy 0

∂
e2nbTrV sWyWd, (2)

where W is a 2n 3 s2n 1 nd matrix. As is the case
in QCD, we assume thatn does not exceed

p
2n . The

parameter2n is identified as the dimensionless volum
of space time. The matrix elements ofW are real
[ b ­ 1, chiral orthogonal ensemble (chOE)], comple
[ b ­ 2, chiral unitary ensemble (chUE)], or quaternio
real [b ­ 4, chiral symplectic ensemble (chSE)]. Fo
technical reasons we consider only finite polynomi
potentialsV sxd. The simplest case is the Gaussian ca
with V sxd ­ S2x (also known as the Laguerre ensemble

It was shown by Akemannet al. [23] that, for b ­ 2,
the microscopic spectral density and the microscop
spectral correlators do not depend on the potent
V sxd and are given by the result [38] for the Laguerr
ensemble. Forb ­ 2 all spectral correlators can be
obtained from an orthogonal polynomial kernel corre
sponding to the probability distribution. In their proof th
Christoffel-Darboux formula is used to express this kern
in terms of large order polynomials. Microscopic un
versality then follows from the asymptotics of orthogona
polynomials. As a remarkable achievement, they we
able to generalize the relation for Laguerre polynomials

lim
n!`

n2aLa
n

µ
x
n

∂
­ x2ay2Jas2

p
x d , (3)
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polynomial potential. However, their work cannot easil
be generalized tob ­ 1 and b ­ 4. The main result
of the present work is a relation between the kerne
for the correlation functions of the chOE and chSE an
the kernel of the chUE. This relation is exact for th
Gaussian ensembles and is valid asymptotically for
arbitrary polynomial potential. Forb ­ 4, this relation
shows universality of the microscopic spectral density an
correlators (forb ­ 1 only a partial proof was obtained).

The partition function (2) is invariant underW !

UyWV where the matricesU and V with dimensions
determined byW are orthogonal forb ­ 1, unitary for
b ­ 2, and symplectic forb ­ 4. This invariance makes
it possible to express the partition function (2) in terms o
the eigenvaluesxk of WWy as

Z
b
Nf ,n ­

Z Y
k

dxk x2a
k jDsxidjbe2nb

P
k
Vsxk d, (4)

where the Vandermonde determinant is defined
Dsxid ­

Q
k,lsxk 2 xld and 2a ­ Nf 2 1 1 bny2 1

by2.
For b ­ 2, the spectral correlation functions can b

evaluated [39] by expressing the Vandermonde determ
nant in terms of the orthogonal polynomials defined byZ `

0
dx e22fasxdq2a

k sxdq2a
l sxd ­ dkl , (5)

where we have introduced the potentialfasxd ­
nV sxd 2 a logx. By using orthogonality relations it can
be shown that all spectral correlation functions can b
expressed in terms of the kernel

K2a
2n sx, yd ­

2n21X
k­0

q2a
k sxdq2a

k s yd . (6)

The spectral density is given byK2a
2n sx, xd expf22fasxdg.

Microscopic universality then follows from the following
generalization of (3) [23]:

lim
n!`

q
h2a

k q2a
k

√
x2

n2
, n

! É
k­tn

­ Gs2a 1 1d
J2afustdxg

fustdxy2g2a
,

(7)

in the normalizationq2a
k s0d

q
h2a

k ­ 1. The functionustd
follows from the asymptotic properties of the leadin
order coefficients of theq2a

k sxd and the normalizations
h2a

k . Its value att ­ 1 is given byus1d ­ 2prs0d.
In order to perform the integrations by means o

orthogonality relations forb ­ 1 and b ­ 4, one has
to introduce the skew-orthogonal polynomials [39,40
Below, we first discuss the caseb ­ 1 and then give
general outlines for the caseb ­ 4.

For b ­ 1, the skew orthogonal polynomials of the
second kind are defined by

kRi , RjlR ­ Jij . (8)

with the skew orthogonal scalar product
ry
y

ls
d

e
an

d

f

by

e
i-

e

g

f

].

k f, glR ­
Z `

0
dx e22fasxdfsxdẐgsxd , (9)

and nonzero matrix elements ofJij given by J2k,2k11 ­
2J2k11,2k ­ 21. The operator̂Z is defined by

Ẑgsxd ­
Z `

0
dy efasxdesx 2 yde2fasydgs yd , (10)

Here,esxd ­ xy2jxj. It can be shown that all correlation
functions can be expressed in terms of the kernel [39,40

K1sx, yd ­
Z x

0
dz e2faszdk1s y, zde2fas yd, (11)

where we have introduced the prekernel

k1s y, zd ­
2n21X
i,j­0

Ris ydJijRjszd . (12)

In particular, the spectral density is given by

rsxd ­ K1sx, xd 2
1
2

K1s`, xd . (13)

A general scheme for the construction of skew
orthogonal polynomials was introduced by Brézin an
Neuberger [41]. The idea is to express them in term
of orthogonal polynomials defined by (5). For technica
reasons we expand in the polynomialsq2a11

k (with weight
function x2a11 expf22nV sxdg). The skew-orthogonal
polynomials of degreei can thus be expressed as

Risxd ­
iX

j­0

Tijq2a11
j sxd , (14)

where T is a lower triangular matrix with nonvanishing
diagonal elements. An essential role is played by th
inverseL̂ of the operatorX̂21Ẑ with Ẑ defined in (10)
andX̂gsxd ­ xgsxd. It can be easily verified that

L̂ ­ X̂f≠̂ 2 f0
asX̂dg 1 1̂ . (15)

The matrix representations of the operatorsX̂, X̂≠̂, X̂21Ẑ,
andL̂ in the basisq2a11

k will be denoted byXkl, Dkl , Ykl,
and Lkl , respectively (with the convention̂Xqk ­ Xklql ,
etc.). In the remainder of this derivation the index2a 1 1
will be suppressed.

In matrix notation (8) can be rewritten as

TYTT ­ 2J . (16)

By using thatLY ­ 1, this relation can be expressed as

L ­ TT JT . (17)

It can be shown that the matrixLkl is a band matrix with
width determined by the order of the polynomial potentia
V sxd. It then follows thatT is a band matrix as well
[41]. For example, for a Gaussian potential we have th
T2m,k ­ a0d2m,k and T2m11,k ­ b0d2m11,k 1 b1d2m,k 1

b2d2m21,k with coefficients derived in [42,28].
249
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It turns out that we do not need explicit expressions fo
theTij . The prekernel (12) can be expressed as

k1sx, yd ­
2n21X
i,j­0

X
k#i

X
l#j

qksxdTT
kiJijTjlqls yd . (18)

In this relation the indicesi and j run up to 2n 2 1
in contradistinction to the relations (17) where they ru
up to `. However, it follows from the band structure
of L that the number of terms outside the range in (18
is of the same order as the degree of the polynom
potential which is finite. These terms are negligible i
the continuum limit of the type (7) where theq2a11

k sxd
andLkl depend smoothly onk andl (notice thatLkl is not
smooth injk 2 lj). However, forx around zero andy
near the largest zero ofqls yd we expect potentially non-
negligible contributions. We thus have that

k1sx, yd .
2n21X
k,l­0

qksxdLklqls yd . (19)

By means of a partial integration the matrix elements o
1̂ 2 X̂f0

asX̂d in L can be expressed in terms of the matri
elements ofX̂≠̂. This results in

Lkl ­
1
2

Z `

0
z dz e22faszdfqlszdz≠qkszd 2 qkszdz≠qlszdg

­
1
2

sDkl 2 Dlkd . (20)

The matrix elements ofD can be reexpressed asx≠x or
y≠y . We finally arrive at a remarkably simple expressio
for k1sx, yd,

k1sx, yd .
1
2

s y≠y 2 x≠xdK2a11
2n sx, yd . (21)

With the help of the asymptotic properties of theq2a
k

(which are the same as for the Laguerre polynomial
this relation can be further simplified to (up to an overa
factor determined by the average spectral density)

k1sx, yd ,
1
2

s≠y 2 ≠xdK2a
2n sx, yd . (22)

This is the central result of this paper. It is valid
asymptotically both forx and y close to zero (the hard
edge of the spectrum) and forx andy in the neighborhood
of the largest eigenvalue (the soft edge of the spectru
where a continuum limit of the orthogonal polynomials
q2a11

k exists. However, as will be argued below, the resu
(22) is not valid forx near the hard edge andy at the soft
edge of the spectrum. This result relates the orthogon
prekernel to the unitary kernelK2a

2n sx, yd which has been
studied elaborately in the literature [43–45]. The relatio
(22) is exact for a Gaussian potential in which case
coincides with the result obtained in [10,28,31,46,47].

Universality of the unitary kernelK2a
2n sx, yd at the

hard edge has been well established [23] for the chir
ensembles, whereas universality at the soft edge w
250
r

n

)
ial
n

f
x

n

s)
ll

m)

lt

al

n
it

al
as

shown in [16,17]. We therefore expect universal behavi
of k1sx, yd in these domains.

Let us finally focus on the spectral density. Using (13
and (22), for a Gaussian potential it can be expressed a

rsxd . e2fasxd
Z `

0
dy e2fasydesx 2 yd

1
2

s≠y 2 ≠xd

3 K2a
2n sx, yd . (23)

In the microscopic limit wheren ! ` at fixed z ; xn2

the factor expf22nV sxdg ! 1 andK2a
2n approaches its uni-

versal limit. However, in one of the terms contributing to
the integral the microscopic limit and the integration can
not be interchanged. It can be shown that there is an a
ditional contribution withx near zero andy near the edge
of the spectrum. Naively taking into account this contri
bution for non-Gaussian potentials leads to a microscop
spectral density that differs from the universal expre
sion. Alternatively, we have established universality o
the microscopic spectral density by means of Monte Car
simulations. Apparently, the assumptions in the deriv
tion of (21) are violated in this case [Eq. (13)]. In the firs
term contributing to spectral density,K1sx, xd, the micro-
scopic limit and the integral can be interchanged. Th
establishes universality ofK1sx, xd.

In the case of a Gaussian potential the edge contributi
can be obtained from the asymptotic expansion of th
Laguerre polynomials in this region (an expression i
terms of Airy functions). In a future publication, we hope
to establish a possible relation with the universal behavi
of theq2a

k near the edge of the spectrum [16,17].
The above analysis carries through for the symplect

ensemble. In this case there are no contributions fro
the soft edge and universality of the microscopic spectr
density can be shown rigorously. Forb ­ 4 [with
an additional factor1y2 in the exponent of (4)], the
correlation functions can be expressed in terms of th
kernel

k4sx, yd ­
2n21X
i,j­0

QisxdJijQjs yd , (24)

where theQisxd are skew orthogonal polynomials of the
first kind which are defined by the skew-scalar product

k f, gl ­
Z `

0

dx
x

e22fasxdfsxd sL̂ 2 1̂dgsxd , (25)

with the operatorL̂ defined in (15). In this case we
express theQisxd in terms of the polynomialsq2a21

k sxd,

Qisxd ­
iX

k­0

Sikq2a21
k sxd . (26)

The matrix elements of the operators are also in this bas
From the orthogonality relationkQi , QjlQ ­ Jij it can
be shown thatSsL 2 1dST ­ 2J from which we derive
ST JS ­ ZX21. Again, due to the band structure ofLkl ,
the range of the summations in this relation and in (24
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s.

.

t.
differs by a finite number of terms which can be neglecte
in the continuum limit. We thus find

k4sx, yd .
2n21X
k,l­0

q2a21
k sxd sẐX̂21dklq

2a21
l s yd

­ efas yd
Z `

0

dz
z

e2faszdes y 2 zdK2a21
2n sx, zd .

(27)
Universality of k4sx, yd thus follows from universality
of K2a21

2n sx, zd. This relation is exact for a Gaussian
potential and reproduces the result found in [29].

In conclusion, we have shown that relations betwee
the kernels for the chOE and chSE and the kernel f
chUE are not accidental but follow from an intriguing un
derlying mathematical structure. Under certain smoot
ness assumptions these relations are valid asymptotica
for an arbitrary polynomial potential. Microscopic uni-
versality for b ­ 4 and in part forb ­ 1 thus follows
from universality atb ­ 2 at hard edge of the spectrum.

This work was supported by the US DOE Gran
No. DE-FG-88ER40388. P. Damgaard, B. Klein, S
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discussions.

Note added.—In a recent development (H. Widom,
solv-int /9804005) explicit expressions for the terms th
were neglected in (19) have been obtained.
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