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Universality in Chiral Random Matrix Theoryat g =1and g =4
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In this paper the kernel for the spectral correlation functions of invariant chiral random matrix
ensembles with reald = 1) and quaternion real§ = 4) matrix elements is expressed in terms of the
kernel of the corresponding complex Hermitian random matrix ensemples @). Such identities are
exact in case of a Gaussian probability distribution and, under certain smoothness assumptions, they are
shown to be valid asymptotically for an arbitrary finite polynomial potential. They are proved by means
of a construction proposed by Brézin and Neuberger. Universal behavior of the eigenvalues close to
zero for all three chiral ensembles then follows from microscopic universalitygfer 2 as shown by
Akemann, Damgaard, Magnea, and Nishigaki. [S0031-9007(98)06547-8]

PACS numbers: 05.45.+b, 11.30.Rd, 12.38.Aw, 64.60.Cn

Since its introduction in nuclear physics [1], random For example, the microscopic spectral density is defined
matrix theory (RMT) has been applied successfully toby [33]
many different branches of physics ranging from atomic 1 u
physics to quantum gravity (for a recent comprehensive ps(u) = lim %3 <p<ﬁ>> 1)
review, we refer to [2]). One important common ingredi- =
ent is that eigenvalue correlations appear to be insensitiv¢here the average is over the distribution of the matrix
to the details of the underlying Hamiltonian. The suc-€lements of the Dirac operator. Successful applications of
cess of RMT is based on this type of universality, and itthe chiral ensembles to lattice QCD spectra can be found
is no surprise that it has received a great deal of attern [29,34—36].
tion in recent literature [3—27]. What has been shown is The chiral random matrix ensembles f8F; massless
that spectral correlators on the scale of the average eigefiuarks in the sector of topological chargeare defined
value spacing are insensitive to the details of the probaPy the partition function [33,37]
bility distribution of the matrix elements. Because of its i B
mathematical simplicity most studies were performed for Zﬁ/,v = [ DW defv’/<,~v?/f lg/ )e nFTVVT), (2)
complex (B8 = 2) Hermitian RMT’s. However, in the ] ) )
case of the classical RMT’s it was shown that universalhere W is a 2n X (2n + v) matrix. As is the case
ity extends to real 8 = 1) and quaternion reald = 4)  in QCD, we assume that does not exceed/2n. The
matrix ensembles [4,6,7]. This suggests that re|ationg)arameterzf_z is identified as the dimensionless volume
between correlation functions for different values @f ©Of space time. The matrix elements oF are real
which can be derived for a Gaussian probability distribu-l8 = 1, chiral orthogonal ensemble (chOE)], complex
tion [28,29] might be valid for a wide class of probability [8 = 2, chiral unitary ensemble (chUE)], or quaternion
distributions. The main goal of this paper is to establiste@ [8 =4, chiral symplectic ensemble (chSE)]. For
such general relations. As a consequence, universality fégchnical reasons we consider only finite polynomial
the much simpler complex ensembles implies universalitpotentialsV(x). The simplest case is the Gaussian case
for the real and quaternion real ensembles. with V(x) = 22x (also known as the Laguerre ensemble).

In this Letter we address the question of microscopic |t was shown by Akemanet al.[23] that, forg =2,
universality for the chiral ensembles. These ensemble§ie microscopic spectral density and the microscopic
are relevant for the description of spectral correlations ofPectral correlators do not depend on the potential
the QCD Dirac operator. They also appear in theory of’ (x) and are given by the result [38] for the Laguerre
universal conductance fluctuations in mesoscopic systenff)semble. Forg =2 all spectral correlators can be
[30,31]. They are characterized by a spectrum thapbtaln_ed from an orth_o_gon_al _pol)_/nom|a| ke_rnel corre-
is symmetric abouth = 0 and have been applied to qundmg to the probability d!StI’IbUtIOﬂ. In their prpof the
correlations of eigenvalues close to zero. According td=hristoffel-Darboux formula is used to express this kernel
the Banks-Casher formula [32], this part of the spectrunin terms of large order polynomials. Microscopic uni-
is directly related to the order parametdr of the Versality then follows from the asymptotics of orthogonal
chiral phase transition] = lim 7p(0)/V, whereV is  Polynomials. As a remarkable achievement, they were
the volume of space time ang(A) = 3, (A — A)].  able to generalize the relation for Laguerre polynomials,
It is therefore natural to introduce the microscopic limit el X —a)2
where the variable: = AV is kept fixed forV — oo. ,Il'_,"lo” Ln(ﬁ) = x"Ja(2Vx), 3)
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to orthogonal polynomials corresponding to an arbitrary _ fxd —2¢,(x) 5
: . : : , = “ V4 , 9
polynomial potential. However, their work cannot easily {f-8 0 re F)Zg(x) ©

be generalized tg8 = 1 and 8 = 4. The main result ) ,

of the present work is a relation between the kernel@nd nonzero matrix elements f; given by Joox+1 =

for the correlation functions of the chOE and chSE and J2+12« = —1. The operato is defined by

the kernel of the chUE. This relation is exact for the ) o

Gaussian ensembles and is valid asymptotically for an  Zg(x) = [ dy e?We(x — y)e *We(y),  (10)

arbitrary polynomial potential. FoB = 4, this relation 0

shows universality of the microscopic spectral density andHere,e(x) = x/2|x|. It can be shown that all correlation

correlators (for8 = 1 only a partial proof was obtained). functions can be expressed in terms of the kernel [39,40]
The partition function (2) is invariant undeW — .

UtWV where the matriced/ and V with dimensions Ki(x,y) :/ dz e %@k (y,z)e ¢, (11)

determined byW are orthogonal for8 = 1, unitary for 0

B = 2, and symplectic fog = 4. This invariance makes |, oo we have introduced the prekernel
it possible to express the partition function (2) in terms of

the eigenvalues; of WW1 as ki(y.2) — 2§1R-(y)J»~R~(z) (12)
> i iy j\&J -
Z8., = f [T dxe 2 IAG)Be P2V (a) | SR
k In particular, the spectral density is given by

where the Vandermonde determinant is defined by 1
A(/x,-) = [lic;(k — x;) and 2a = Ny — 1 + Br/2 + p(x) = Ki(x,x) — 3K1(00,x). (13)
B/2.

For g = 2, the spectral correlation functions can be A general scheme for the construction of skew-
evaluated [39] by expressing the Vandermonde determiorthogonal polynomials was introduced by Brézin and
nant in terms of the orthogonal polynomials defined by Neuberger [41]. The idea is to express them in terms

) —2¢,(x) 2a .\ 2a of orthogonal polynomials defined by (5). For technical
j; dxe qi" (x)gi“(x) = b, (5)  reasons we expand in the polynomiafé ™" (with weight
function x?**!'exd—2nV(x)]). The skew-orthogonal

where we have introduced the potentiah,(x) = polynomials of degreé can thus be expressed as

nV(x) — alogx. By using orthogonality relations it can
be shown that all spectral correlation functions can be

l
— 2a+1
expressed in terms of the kernel Ri(x) = Z;.)Tijqja (x) (14)
2n—1 J=
KX¥(x,y) = D qi“(x)gi(y). (6) whereT is a lower triangular matrix with nonvanishing
k=0 diagonal elements. An essential role is played by the

The spectral density is given b (x, x) exf —2¢,(x)].  inverseL of the operatorX ~'Z with Z defined in (10)
Microscopic universality then follows from the following andXg(x) = xg(x). It can be easily verified that
generalization of (3) [23]:

L=X[0-¢/X)]+1. (15)
lim /2 g2 x_in — T+ 1) Jza[u(t)xz] ’ The matrix reprgs%r;ﬁtions of the operatlitskd, X 'Z,
n—c n f—in [u(t)x/2]? andL in the basisz"" will be denoted byX;, Dy, Y,

(7) andLy, respectively (with the conventiokigx = Xuq:,
etc.). In the remainder of this derivation the index + 1
will be suppressed.

In matrix notation (8) can be rewritten as

in the normalizatiorq,%“(o)\/ﬁ = 1. The functionu(r)
follows from the asymptotic properties of the leading
order coefficients of the;7“(x) and the normalizations
hi®. Its value at = 1 is given byu(1) = 27 p(0). TYT" = —J. (16)

In order to perform the integrations by means of
orthogonality relations for8 = 1 and B8 = 4, one has
to introduce the skew-orthogonal polynomials [39,40]. L=T"JT. a7
Below, we first discuss the case = 1 and then give
general outlines for the cage = 4.

For B = 1, the skew orthogonal polynomials of the
second kind are defined by

By using thatLY = 1, this relation can be expressed as

It can be shown that the matrik; is a band matrix with
width determined by the order of the polynomial potential
V(x). It then follows thatT is a band matrix as well
[41]. For example, for a Gaussian potential we have that

(Ri.Rj)x = Jij.- (8) Tomp = aobamx and Top+1x = bodom+1x + b162mp +
with the skew orthogonal scalar product by 62m—14 With coefficients derived in [42,28].
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It turns out that we do not need explicit expressions forshown in [16,17]. We therefore expect universal behavior

theT;;. The prekernel (12) can be expressed as of ki(x,y) in these domains.
2n—1 Let us finally focus on the spectral density. Using (13)
kt,y) = DD qu)THI;Tuqi(y). (18)  and (22), for a Gaussian potential it can be expressed as
ij=0k=il<j o
In this relation the indices and j run up to2n — 1 p(x) = e“/’"()‘)f dye %We(x — y)l(ay —9,)
in contradistinction to the relations (17) where they run 0 2
up to . However, it follows from the band structure X K3¢(x,y). (23)

of L that the number of terms outside the range in (18), ihe microscopic limit wherer — o at fixed z = xn?

is of the same order as the degree of the polynom_ia{he factor exp—2nV (x)] — 1 andk2* approaches its uni-

potential which is finite. These terms are negligible iny e qq) |imit. However, in one of the terms contributing to
the continuum limit of the type (7) where thg*"'(x) e integral the microscopic limit and the integration can-

andLy depend smoothly ok and! (notice thatLy is not ot he interchanged. It can be shown that there is an ad-
smooth inlk — I]). However, forx around zero and  itional contribution withy near zero ang near the edge
near the largest zero qfi(y) we expect potentially non- o the spectrum. Naively taking into account this contri-
negligible contributions. We thus have that bution for non-Gaussian potentials leads to a microscopic
2t spectral density that differs from the universal expres-
k(x, y) = Z k() Luqi(y). (19 sjon. Alternatively, we have established universality of
) k_’lzo ) ) the microscopic spectral density by means of Monte Carlo
By means of a partial integration the matrix elements Ofjmylations. Apparently, the assumptions in the deriva-
1 — X¢,(X) in L can be expressed in terms of the matrixjon of (21) are violated in this case [Eq. (13)]. In the first
elements oX'9. This results in term contributing to spectral densiti, (x, x), the micro-
_1 (" —2¢.(2) scopic limit and the integral can be interchanged. This
Ly = Efo zdze """qi(2)z9qk(2) — qi(2)20q:1(2)]  establishes universality & (x, x).

In the case of a Gaussian potential the edge contribution
can be obtained from the asymptotic expansion of the
Laguerre polynomials in this region (an expression in
terms of Airy functions). In a future publication, we hope
to establish a possible relation with the universal behavior
of the g3 near the edge of the spectrum [16,17].

The above analysis carries through for the symplectic
1) ensemble. In this case there are no contributions from

the soft edge and universality of the microscopic spectral
density can be shown rigorously. Fg = 4 [with
n additional factor1/2 in the exponent of (4)], the
orrelation functions can be expressed in terms of the
kernel

= %(Dkl — Dy). (20)

The matrix elements oD can be reexpressed as, or
vd,. We finally arrive at a remarkably simple expression
for ki (x,y),

1
kilx,y) = = (yoy — x0,)K3  (x,y).

With the help of the asymptotic properties of tigg
(which are the same as for the Laguerre polynomials
this relation can be further simplified to (up to an overall
factor determined by the average spectral density) -
ki (x,y) ~ %(3}, — 90K (x, y). (22) ky(x,y) = ijz—o Qi(x)Ji;Q;(y), (24)
This is the central result of this paper. It is valid Where theQ;(x) are skew orthogonal polynomials of the
asymptotically both forc and y close to zero (the hard first kind which are defined by the skew-scalar product
edge of the spectrum) and ferandy in the neighborhood dx g0 A
of the largest eigenvalue (the soft edge of the spectrum) (/-8 = /;) ~ ¢ WL - Dgl), o (29)
where a continuum limit of the orthogonal polynomials )
qi*! exists. However, as will be argued below, the resulwith the operatorL defined in (15). In this case we
(22) is not valid forx near the hard edge andat the soft ~express the; (x) in terms of the polynomialg;* " (x),
edge of the spectrum. This result relates the orthogonal i
prekernel to the unitary kern&3%(x, y) which has been 0:i(x) = D Suqt'(x). (26)
studied elaborately in the literature [43—45]. The relation k=0
(22) is exact for a Gaussian potential in which case ifThe matrix elements of the operators are also in this basis.
coincides with the result obtained in [10,28,31,46,47].  From the orthogonality relatiodQ;, Q;)o = J;; it can
Universality of the unitary kernelk3%(x,y) at the be shown thas(L — 1)S” = —J from which we derive
hard edge has been well established [23] for the chiraf”JS = ZX~'. Again, due to the band structure bf;,
ensembles, whereas universality at the soft edge wabe range of the summations in this relation and in (24)
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