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During the later stages of plastic deformation, strain hardening of face-centered cubic metals g
along with the formation of cellular dislocation patterns appearing on various scales. The paper pres
an analysis of the fractal geometry of these dislocation structures. A theoretical model is presen
according to which dislocation cell formation is associated with a noise-induced structural transition
from equilibrium. The observed fractal dimensions are related to the stochastic process of disloca
glide, and implications for quantitative metallography are discussed. [S0031-9007(98)07147-6]
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The performance of solid materials is usually affected b
the presence of defects: point defects, dislocations, crac
and phase and grain boundaries. In some cases cla
cal methods of materials characterization (e.g., in terms
mean particle size, average dislocation density, etc.) f
to describe properly defect microstructures which exhib
features of both randomness and heterogeneity. Ow
to a high degree of disorder on various scales, stoch
tic methods are then needed to characterize and, possi
predict and control the structural features. Fractal ana
sis then provides a tool to account for multiscale behav
and, hence, to address the important question of how
macroscopic properties of a material relate to its micr
scopic defect structure, e.g., the particle size distributi
of dispersion strengthened materials or the arrangemen
grains in multiphase materials [1]. In the present wor
fractal analysis is applied for the first time to deformation
induced dislocation cell structures which are characteriz
by a hierarchy of mesoscopic scales (ranging from say
to 10 mm) [2]. The results are interpreted in terms of
stochastic dislocation dynamical model of cell formation

The flow stress of metals deforming plastically by dis
location glide is governed by dislocation-dislocation inte
actions [3]. During deformation dislocations accumula
in the crystal which gives rise to work hardening. At th
same time cellular dislocation patterns may develop spo
taneously. These patterns consist of dislocation-rich “c
walls” separating dislocation-depleted cell interiors. A
though the actual aspects of the cell structures depend
various extrinsic (e.g., strain rate, temperature, crystal o
entation) and intrinsic (crystal structure, stacking fault e
ergy, chemical composition) parameters, the propensity
dislocation patterning and its relation to work hardenin
are common to various materials.

Figure 1 shows a transmission electron micrograph o
cellular dislocation structure in a Cu single crystal de
formed in tension. One notes the absence of a well-defin
scale, as cells of various sizes appear. Obviously, the av
age cell size that is usually referred to in the metallurgic
literature is not representative of this microstructural mo
phology. To verify the fractal nature of these structure
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Cu single crystals are considered after tensile deformati
along af100g axis, i.e., a symmetric multiple slip orien-
tation leading to isotropic dislocation structures [5]. The
crystals had been deformed at room temperature (strain r
5 3 1025 s21) to stresses (resolved shear stress in the a
tive slip systems)text ­ 37.3, 68.2, and 75.6 MPa, and
micrographs taken from sections parallel and normal to th
tensile axis [6]. In addition, comparable micrographs from
the literature have been considered (Cuf100g deformed to
text ­ 52 [7], 67 [7], and 75.6 MPa [4]).

The micrographs were digitized to obtain binary map
of the cell walls (“black”) and cell interiors (“white”). To
estimate the fractal dimension, the box-counting metho
was applied: For grids of square boxes with edge leng
Dx, the numberNsDxd of boxes containing at least one
pixel of a cell wall is determined. A relationNsDxd ,
Dx2DB defines the “box-counting” dimensionDB. For
the cell patterns investigated, double-logarithmic plots o
NsDxd 3 Dx2 vs Dx reveal three distinct regimes (see
Fig. 2): (i) At very smallDx, N , Dx22, i.e., the slope
of the plot becomes small. This is a consequence of th
areal character of the cell walls which shows up at sma
scales. (ii) At intermediateDx, linear scaling regimes

FIG. 1. Transmission electron micrograph of the dislocatio
cell structure of a Cu single crystal after tensile deformatio
along a f100g direction at room temperature to a stress o
75.6 MPa. After Mughrabiet al. [4].
© 1998 The American Physical Society
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with fractional slopem are found to extend between
1 and 2 orders of magnitude. The corresponding b
dimensionsDB ­ 2 2 m increase with stress, ranging
from DB ­ 1.64 6 0.02 at 37.3 MPa to1.79 6 0.01
at 75.6 MPa (cf. Fig. 4 below). (iii) At largeDx, N
decreases again asDx22 after the largest cell within
the analyzed area is covered completely. While scali
is bounded intrinsically from below due to the finite
thickness of cell walls, the upper boundary is a finite siz
effect imposed by the sample area of the micrographs.

Complementary information is obtained from distribu
tions of cell sizesl. For a “hole fractal” [8] in two
dimensions, a hyperbolic frequency distributionNsl .

Ld ­ CL2DG of cells with sizes greater thanL defines the
“gap dimension”DG. The prefactorC which depends on
cell shape, fractal dimensionDG , and the analyzed areaA
readsCsDG, Ad ­ f4s2 2 DGdAyspDGdgDGy2 for spheri-
cal cells [9]. Cell size distributions obtained from two dif
ferent crystals are depicted in Fig. 3. Again, scaling ov
more than 1 order of magnitude is found. With the va
uesA ­ 32 mm2 for text ­ 75.6 MPa andA ­ 510 mm2

for test ­ 68.2 MPa, the gap dimensionsDG were deter-
mined by fitting curvesCsDGdL2DG to the experimental
data (solid lines in Fig. 3). This yieldedDG ­ 1.78 6

0.04 s75.6 MPad and1.85 6 0.06 s68.2 MPad. Note that
not only the hyperbolic behavior of the distributions, bu
also theA dependence of the scaling regime is reproduc
correctly. This gives strong evidence that scaling is ge
uine and only delimited by finite size effects.

The fact that, within the limits of confidence, the value
of DG and DB coincide (cf. Fig. 4), indicates that the
roughness of the cell surfaces does not affect the frac
dimension and that the cell structures are indeed se
similar hole fractals. In this case, the fractal dimension
D of the cell arrangements in the three-dimensional (3D
crystals relate to the fractal dimensionsDG,B determined
from 2D electron micrographs, i.e., planar sections of th

FIG. 2. Analysis of the cell structure in Fig. 1 by determining
the “box dimension”DB; for details see text.
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specimens, according toD ­ DG,B 1 1. These values
have been compiled in Fig. 4.

To give a theoretical interpretation of our findings we
consider collective dislocation glide as a stochastic proce
far from thermodynamic equilibrium [10,11]. As disloca-
tions interact via long-range internal stresses (decaying
1yr with distancer [12]), the mobile dislocations, i.e., the
carriers of plastic strain, scan the stress fields produc
by many other dislocations and thus experience app
ciable fluctuations of the internal stresstint when gliding
through the crystal. The effective stress, which is th
difference of the external stresstext (a smooth function in
space and time) and the rapidly fluctuating internal stres
teff ­ text 2 tint, reflects those transient dislocation
interactions. On the mesoscopic scale characteristic
dislocation patterning, this gives rise to spatiotempor
variations in the plastic shear strain rateÙg produced by
the mobile dislocation ensemble.

The fluctuation amplitudes ofteff and Ùg derive from
requiring macroscopic stress equilibrium and using th
Furutsu-Novikov theorem [13]. Formally, the results re
semble fluctuation-dissipation theorems [10,11]:

ksdteffd2l ­ Sktintl, kd Ùg2lyk Ùgl2 ­ ktintlyS . (1)

The strain-rate sensitivityS ­ k Ùgl s≠texty≠k Ùgld represents
the dynamic response function to the average impose
strain ratek Ùgl. The correlation timetcorr of the fluctua-
tions scales with the mean glide pathL of the mobile
dislocations (average densityrm) which is delimited
by dislocation immobilization or annihilation:tcorr ­
brmLyk Ùgl, with the dislocation strength given by the
modulusb of the Burgers vector.

The noisy character of dislocation glide is used in for
mulating a stochastic differential equation for the evolutio
of the total dislocation densityr [11]. Since dislocations
are line objects, it is not obvious how their density (to
tal length per unit volume) evolves on a fractal topolog

FIG. 3. Cell size distributions in Cu single crystals deforme
to stresses of 68.2 MPashd and 75.6 MPa (d) and determina-
tion of the respective gap dimensionsDG .
2471
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in 3D. Instead a 2D cross section of the crystal is co
sidered wherer represents the area density of dislocatio
intersection points with the plane and1y

p
r gives their

average distance in the plane. Accordingly, the followin
results relate directly to the situation observed on 2D m
crographs. The dislocation balance involving generatio
and losses reads

≠tr ­ fhyELgtextk Ùgl 2 fbybg
p

r fk Ùgl 1 d Ùgg . (2)

Here it is assumed that a fractionh of the mechanical
work done per unit volume and time (i.e.,textk Ùgld is
stored in the form of elastic energy of dislocations
EL is the dislocation line energy, and the paramet
b gives the efficiency of dislocation density reductio
due to dislocation reactions. Note that the mean fr
path for such reactions is proportional to the dislocatio
spacing1y

p
r while fk Ùgl 1 d Ùggyb is the (fluctuating)

flux of moving dislocations. The strain rate fluctuation
are approximated by a stationary Gaussian white no
with zero mean [14]:k Ùgs0d Ùgstdl ­ 2kd Ùg2ltcorrdstd. If
we introduce dimensionless variableshr̃, t̃j according
to hr ­ fhbtextysbELdg2r̃, t ­ fhb2textysb2ELk Ùgldgt̃j
and drop henceforth the tildes, Eq. (2) becomes

≠tr ­ 1 2
p

r 2 s
p

rdw,

s2 ­
b2EL

hb2text

ktintl
S

brmL ,
(3)

where dw represents a standard white process wi
kdws0ddwstdl ­ 2dstd.

Statistical information about dislocation patterning i
obtained from the steady-state solution of the Fokke
Planck equation corresponding to Eq. (3). Using th
Stratonovich calculus yields the probability distribution

pssrd ­ N r2a expf24
p

rys2g , (4)

FIG. 4. Fractal dimensionsD of dislocation cell structures of
f100g-orientated Cu single crystals as a function of stress; fille
symbols: D ­ DB 1 1 from box counting; open symbols:
D ­ DG 1 1 from gap method.
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wherea ­ s1y2d s1 2 4ys2d andN is a normalization
constant. As the following discussion will show, this resu
(i) yields conditions which have to be met for dislocation
to self-organize into cellular patterns and (ii) provide
estimates of the fractal dimensions of the structures.

Figure 5 illustrates the qualitative changes occurrin
when the noise increases from smallss2 ø 1d to large
ss2 . 4d values. For smalls2, the probability distribu-
tions possess maxima in the vicinity of the determinist
steady-stater ­ 1, while they fall off to zero both for
r ! 0 and forr ! `. This situation corresponds to more
or less homogeneous dislocation arrangements with we
defined mean density in spacekrl. The only characteristic
length is the mean dislocation spacingkrl21y2.

At the critical noise intensitys2
c ­ 4 the maxima dis-

appear giving way to monotonically decreasing probab
ity distributions which, fors2 . s2

c , diverge asr2a asr

goes to zero. These hyperbolic distributions (with expo
nential cutoffs at a maximum dislocation densityrmax ­
s4y16) reflect the fact that dislocations organize on var
ous scales down to an intrinsic minimum scalelmin ,
1y

p
rmax. The fractal dimension of the cell structures is

obtained from noting that the mean dislocation spacing in
cell is proportional to the cell size,l , 1y

p
r. Equa-

tion (4) is then transformed into a dislocation cell size dis
tribution by change of variablesfpsslddl ­ pssrddrg:

pssld , l2b expf2lminylg (5)

with b ­ 3 2 2a. The corresponding cumulative cell
size distributions functionPsl . Ld in 2D behaves as
PsLd , L2s222ad. Hence the observed fractal dimension
can be related to the noise intensity. In 3D, one obtai
D ­ 2 1 4ys2 which means that for those noise lev
els that give rise to hyperbolic probability distributions
and dislocation cell patterning,4 , s2 , `, fractal di-
mensions range between the physically meaningful limi
3 . D . 2. Whens2 . s2

c ­ 4 the dislocation struc-
ture ceases to fill up homogeneously the 3D specimens a

FIG. 5. Steady-state probability distributions of the tota
dislocation densities for various values of the nois
intensitys2.
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spongy clustering sets in. This represents a noise-induc
transition (control parameters2) [15] from homogeneous
dislocation arrangements to scale-invariant structures ch
acterized by hyperbolic distributions of length scales.

A peculiarity of the system considered is that noise
generic to plastic flow by dislocation glide, since disloca
tions experience spatiotemporal stress fluctuations on
same range of mesoscopic scales where dislocation p
terning takes place. Hence a stochastic description w
chosen to reveal the information relevant to patternin
Being intrinsic the noise escapes direct external contr
However, in view of the dependence ofs2 on strain-rate
sensitivityS [Eq. (3)] a wide range of noise levels can b
realized for different materials and deformation condition
In fact, bcc metals deformed at low temperatures poss
considerably smaller ratiosktintlyS than fcc metals. The
correspondingly small noises2 is in accordance with the
rather homogeneous dislocation structures observed th
[5]. The other extreme is found in dynamic strain agin
alloys where interactions between moving dislocations a
point defects may makeS vanishss2 ! `, D ­ 2d. Ac-
cordingly, tuning deformation rate and/or temperature in
this regime leads to a pronounced transition from homog
neous dislocation arrangementssD ­ 3d or cell structures
s3 . D . 2d to planar dislocation arrays [16].

The observed stress dependence of the fractal dimens
D (Fig. 4) can be related to the evolution of the variou
parameters affecting the noises2, Eq. (3). As ktintlyS
shows only small variations with strain (Cottrell-Stoke
law [3]), we focus on the evolution of the mobile dislo
cation densityrm and the mean glide pathL with respect
to stresstext. When plastic flow proceeds without quali-
tative change in deformation mechanisms,L , 1ytext

holds. Thens2 is expected to decrease, as during stra
hardening the mobile dislocation density increases at a r
smaller than,stextd2. This explains whyD is found to
slightly increase with stress (Fig. 4).

To conclude we point out that deformation-induce
dislocation cell structures are dominated by randomne
rather than Euclidean order, and hence represent syste
where “entropy wins over energy” [17]. This is to be
contrasted with earlier attempts to interpret them as “low
energy dislocation structures” [18]. Moreover, the prese
analysis has shown that care must be taken when char
terizing a cell structure in terms of an average cell siz
kll. Since fractal behavior implieskll , lmin, the re-
sults of metallographic investigations depend sensitive
on the transmission electron microscopy (TEM) magnifi
cation used. This gives a natural explanation for the lar
systematic and not as yet understood discrepancies reg
ing the average cell sizes reported by different authors [1
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