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Fractal Dislocation Patterning During Plastic Deformation
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During the later stages of plastic deformation, strain hardening of face-centered cubic metals goes
along with the formation of cellular dislocation patterns appearing on various scales. The paper presents
an analysis of the fractal geometry of these dislocation structures. A theoretical model is presented
according to which dislocation cell formation is associated with a noise-induced structural transition far
from equilibrium. The observed fractal dimensions are related to the stochastic process of dislocation
glide, and implications for quantitative metallography are discussed. [S0031-9007(98)07147-6]

PACS numbers: 62.20.Fe, 05.40.+j, 61.72.Ff

The performance of solid materials is usually affected byCu single crystals are considered after tensile deformation
the presence of defects: point defects, dislocations, crackalong a[100] axis, i.e., a symmetric multiple slip orien-
and phase and grain boundaries. In some cases clastion leading to isotropic dislocation structures [5]. The
cal methods of materials characterization (e.g., in terms afrystals had been deformed at room temperature (strain rate
mean particle size, average dislocation density, etc.) fa x 107> s™!) to stresses (resolved shear stress in the ac-
to describe properly defect microstructures which exhibitive slip systems)*t = 37.3, 68.2, and 75.6 MPa, and
features of both randomness and heterogeneity. Owinguicrographs taken from sections parallel and normal to the
to a high degree of disorder on various scales, stochasensile axis [6]. In addition, comparable micrographs from
tic methods are then needed to characterize and, possibljre literature have been considered (C00] deformed to
predict and control the structural features. Fractal analys®"' = 52 [7], 67 [7], and 75.6 MPa [4]).
sis then provides a tool to account for multiscale behavior The micrographs were digitized to obtain binary maps
and, hence, to address the important question of how thef the cell walls (“black”) and cell interiors (“white”). To
macroscopic properties of a material relate to its micro-estimate the fractal dimension, the box-counting method
scopic defect structure, e.g., the particle size distributionvas applied: For grids of square boxes with edge length
of dispersion strengthened materials or the arrangement dfx, the numberV(Ax) of boxes containing at least one
grains in multiphase materials [1]. In the present work,pixel of a cell wall is determined. A relatioN(Ax) ~
fractal analysis is applied for the first time to deformation-Ax~?» defines the “box-counting” dimensioPg. For
induced dislocation cell structures which are characterizethe cell patterns investigated, double-logarithmic plots of
by a hierarchy of mesoscopic scales (ranging from say 0.N¥(Ax) X Ax? vs Ax reveal three distinct regimes (see
to 10 um) [2]. The results are interpreted in terms of aFig. 2): (i) At very smallAx, N ~ Ax~2, i.e., the slope
stochastic dislocation dynamical model of cell formation. of the plot becomes small. This is a consequence of the

The flow stress of metals deforming plastically by dis-areal character of the cell walls which shows up at small
location glide is governed by dislocation-dislocation inter-scales. (ii) At intermediaté\x, linear scaling regimes
actions [3]. During deformation dislocations accumulate
in the crystal which gives rise to work hardening. At the
same time cellular dislocation patterns may develop spon-
taneously. These patterns consist of dislocation-rich “cell
walls” separating dislocation-depleted cell interiors. Al-
though the actual aspects of the cell structures depend on
various extrinsic (e.g., strain rate, temperature, crystal ori-
entation) and intrinsic (crystal structure, stacking fault en-
ergy, chemical composition) parameters, the propensity to
dislocation patterning and its relation to work hardening
are common to various materials.

Figure 1 shows a transmission electron micrograph of a
cellular dislocation structure in a Cu single crystal de- Sl
formed in tension. One notes the absence of a well-defined _
scale, as cells of various sizes appear. Obviously, the aveE

Il size that i I f dtoin th tallurai 1G. 1. Transmission electron micrograph of the dislocation
age cell size that Is usually rererred 1o In the metallurgiCagq| sirycture of a Cu single crystal after tensile deformation
literature is not representative of this microstructural mor-ajong a[100] direction at room temperature to a stress of

phology. To verify the fractal nature of these structuresy75.6 MPa. After Mughrabét al. [4].
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with fractional slopem are found to extend between specimens, according tO = Dgp + 1. These values
1 and 2 orders of magnitude. The corresponding bokave been compiled in Fig. 4.
dimensionsDg = 2 — m increase with stress, ranging To give a theoretical interpretation of our findings we
from Dg = 1.64 £ 0.02 at 37.3 MPa t01.79 = 0.01 consider collective dislocation glide as a stochastic process
at 75.6 MPa (cf. Fig. 4 below). (iii) At largeAx, N  far from thermodynamic equilibrium [10,11]. As disloca-
decreases again asx > after the largest cell within tions interact via long-range internal stresses (decaying as
the analyzed area is covered completely. While scaling/r with distancer [12]), the mobile dislocations, i.e., the
is bounded intrinsically from below due to the finite carriers of plastic strain, scan the stress fields produced
thickness of cell walls, the upper boundary is a finite sizeby many other dislocations and thus experience appre-
effect imposed by the sample area of the micrographs. ciable fluctuations of the internal stres§' when gliding
Complementary information is obtained from distribu- through the crystal. The effective stress, which is the
tions of cell sizesA. For a “hole fractal” [8] in two difference of the external stres&" (a smooth function in
dimensions, a hyperbolic frequency distributidifA >  space and time) and the rapidly fluctuating internal stress,
A) = CA~Ps of cells with sizes greater thahdefinesthe  7°ff = 7t — 7int " reflects those transient dislocation
“gap dimension"Dg. The prefactoiC which depends on interactions. On the mesoscopic scale characteristic of
cell shape, fractal dimensidbg, and the analyzed area  dislocation patterning, this gives rise to spatiotemporal
readsC(Dg,A) = [4(2 — Dg)A/(7wDg)]P/? for spheri- variations in the plastic shear strain rageproduced by
cal cells [9]. Cell size distributions obtained from two dif- the mobile dislocation ensemble.
ferent crystals are depicted in Fig. 3. Again, scaling over The fluctuation amplitudes of*" and y derive from
more than 1 order of magnitude is found. With the val-requiring macroscopic stress equilibrium and using the
uesA = 32 um?for 7' = 75.6 MPaandd = 510 um?>  Furutsu-Novikov theorem [13]. Formally, the results re-
for 7%t = 68.2 MPa, the gap dimension3; were deter- semble fluctuation-dissipation theorems [10,11]:

mined by fitting curveC(Dg)A~Ps to the experimental o . . . .
Y g cunesCiia) P (67 = S(™),  (63/GF = (r™)/S. (M)

data (solid lines in Fig. 3). This yieldebg = 1.78 =

0.04 (75.6 MPa) and1.85 * 0.06 (68.2 MPa). Note that  Tne strain-rate sensitivity = () (07°%!/a(y)) represents

not only the hyperbolic behavior of the distributions, butthe dynamicresponse function to the average imposed

also theA dependence of the scaling regime is reproducedyrain rate(y). The correlation timec,, of the fluctua-

correctly. This gives strong evidence that scaling is gentions scales with the mean glide pathof the mobile

uine and only delimited by finite size effects. dislocations (average density,) which is delimited
The fact that, within the limits of confidence, the valuespy dislocation immobilization or annihilationzeo, =

of Dg and Dg coincide (cf. Fig. 4), indicates that the bpmL/{7), with the dislocation strength given by the

roughness of the cell surfaces does not affect the fractghodulush of the Burgers vector.

dimension and that the cell structures are indeed self- The nojsy character of dislocation glide is used in for-

similar hole fractals. In this case, the fractal dimensionsyy|ating a stochastic differential equation for the evolution
D of the cell arrangements in the three-dimensional (3D the total dislocation density [11]. Since dislocations

crystals relate to the fractal dimensiobg; s determined e line objects, it is not obvious how their density (to-
from 2D electron micrographs, i.e., planar sections of thgg| length per unit volume) evolves on a fractal topology
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FIG. 3. Cell size distributions in Cu single crystals deformed

FIG. 2. Analysis of the cell structure in Fig. 1 by determining to stresses of 68.2 MP@l) and 75.6 MPa®) and determina-
the “box dimension"Dy; for details see text.

tion of the respective gap dimensiobg;.
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in 3D. Instead a 2D cross section of the crystal is conwherea = (1/2) (1 — 4/0?%) and 2N is a normalization
sidered where represents the area density of dislocationconstant. As the following discussion will show, this result

intersection points with the plane arig+/p gives their

(i) yields conditions which have to be met for dislocations

average distance in the plane. Accordingly, the followingto self-organize into cellular patterns and (ii) provides
results relate directly to the situation observed on 2D miestimates of the fractal dimensions of the structures.
crographs. The dislocation balance involving generation Figure 5 illustrates the qualitative changes occurring

and losses reads
ap = [n/EL)r™(3) — [B/bIVp [(7) + 67]. (2

Here it is assumed that a fractiop of the mechanical
work done per unit volume and time (i.er*'(y)) is
stored in the form of elastic energy of dislocations,
Ey is the dislocation line energy, and the paramete
B gives the efficiency of dislocation density reduction
due to dislocation reactions.
path for such reactions is proportional to the dislocatio
spacing1/\/p while [(3) + 8v]/b is the (fluctuating)

flux of moving dislocations. The strain rate fluctuations
are approximated by a stationary Gaussian white noisB

with zero mean [14](y(0)y (1)) = 2(8Y*)tcorr 8(1). If
we introduce dimensionless variablég,7} according

to {p = [nb7*/(BEL)Pp,t = [nb*7°' /(B*EL(¥))]}
and drop henceforth the tildes, Eq. (2) becomes

dp =1-— \/; - U\/;c‘iw,
2E int
g BEGM e
anText S

. W
where éw represents a standard white process W'thsi

Sw(0)dw(r)) = 28(2).
Statistical information about dislocation patterning is

obtained from the steady-state solution of the Fokker

Planck equation corresponding to Eq. (3). Using th
Stratonovich calculus yields the probability distribution

ps(p) = Np “exd—4/p/a?], (4)
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FIG. 4. Fractal dimension® of dislocation cell structures of

[100]-orientated Cu single crystals as a function of stress; filledFIG. 5. Steady-state probability distributions of the

symbols: D = Dg + 1 from box counting; open symbols:
D = D¢ + 1 from gap method.
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Note that the mean free et . . .
rPpear giving way to monotonically decreasing probabil-

e

when the noise increases from smai’> < 1) to large

(o> > 4) values. For smalb?, the probability distribu-
tions possess maxima in the vicinity of the deterministic
steady-statep = 1, while they fall off to zero both for

p — 0andforp — . This situation corresponds to more
or less homogeneous dislocation arrangements with well-

defined mean density in spage). The only characteristic

length is the mean dislocation spacigg /2.
At the critical noise intensityr; = 4 the maxima dis-

ity distributions which, foro> > o2, diverge ap ~ asp
goes to zero. These hyperbolic distributions (with expo-
ential cutoffs at a maximum dislocation density..
a*/16) reflect the fact that dislocations organize on vari-
ous scales down to an intrinsic minimum scalg, ~
1/+/p .- The fractal dimension of the cell structures is
obtained from noting that the mean dislocation spacing in a
cell is proportional to the cell sizey ~ 1/1/p. Equa-
tion (4) is then transformed into a dislocation cell size dis-
tribution by change of variabldg,(A)dA = p,(p)dp]:

ps(/\) ~ AP eXF[_)\min//\] (5)

ith 8 =3 — 2a. The corresponding cumulative cell
ze distributions functionrP(A > A) in 2D behaves as
P(A) ~ A~@72¢) Hence the observed fractal dimensions
can be related to the noise intensity. In 3D, one obtains

D =2 + 4/0% which means that for those noise lev-
els that give rise to hyperbolic probability distributions
and dislocation cell patterning, < o2 < «, fractal di-
mensions range between the physically meaningful limits
3> D >2. Wheno? > g2 = 4 the dislocation struc-
ture ceases to fill up homogeneously the 3D specimens and
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total

dislocation densities for various values of the noise

intensity o2.
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spongy clustering sets in. This represents a noise-inducedll] E. Hornbogen, Int. Mater. Re\84, 277 (1989).
transition (control parameter2) [15] from homogeneous [2] In a paper by Gil Sevillano, Bouchaud, and Kubin [Scr.
dislocation arrangements to scale-invariant structures char-  Metall. Mater.25, 355 (1991)] an attempt is reported to
acterized by hyperbolic distributions of length scales. assess the fractal dimensiénof cellular dislocation pat-

A peculiarity of the system considered is that noise is (€S by plotting the mean cell siza) determined from
generic to plastic flow by dislocation glide, since disloca- ~ E/€ctron micrographs vs the TEM magnificatitih  Note
tions experience spatiotemporal stress fluctuations on the that the minimum resolvable cell sizg, ~ 1/M, while

. . . for a hyperbolic cell size distribution characterizing a frac-

same range of mesoscopic scales whe_re dlslo'cat'lon Pat- 5 (A) and A, are proportional. Thus the procedure al-
terning takes place. Hence a stochastic description was |ows one to distinguish multiscale behavign) ~ M)
chosen to reveal the information relevant to patterning. from quasiperiodic structurdQ}O ~ Consh, whereas a de-
Being intrinsic the noise escapes direct external control.  termination ofD is not possible.
However, in view of the dependence @f on strain-rate  [3] J. Gill Sevillano, in Materials Science and Technolqgy
sensitivity S [Eq. (3)] a wide range of noise levels can be edited by H. Mughrabi (VCH, Weinheim, 1993), Vol. 6,
realized for different materials and deformation conditions. p. 19.
In fact, bcc metals deformed at low temperatures posses?l H. Mughrabi, T. Ungar, W. Kienle, and M. Wilkens,
considerably smaller ratids"t)/S than fcc metals. The Philos. Mag. AS3, 793 (1986).
correspondingly small noise? is in accordance with the ~[2] Ch- Schwink, Scri. Metall27, 963 (1992).

. . 6] We thank Dr. U. Essmann for providing these (unpub-
rather homogeneous dislocation structures observed ther[e lished) TEM micrographs.

[5]. The othgr extreme is found in dy_nami_c strain aging [7] Y. Kawasaki and T. Takeuchi, Scr. Metall4, 183 (1980);
alloys where interactions between moving dislocations and” = Goettler, Philos. Mag28, 1057 (1973).

point defects may makg vanish(s> — «,D = 2). Ac- [8] P. Pfeifer and M. Obert, inThe Fractal Approach to
cordingly, tuning deformation rate and/or temperature into  Heterogeneous Chemistnedited by D. Avnir (Wiley,
this regime leads to a pronounced transition from homoge-  New York 1989), p. 11.
neous dislocation arrangemefifs = 3) or cell structures  [9] This normalization is obtained by assuming that the
(3 > D > 2) to planar dislocation arrays [16]. scaling regime extends up to the cell size where the
The observed stress dependence of the fractal dimension  cumulative frequency distribution falls below 1.

D (Fig. 4) can be related to the evolution of the variousﬁ% E' :ng:’ 222"\7;3:; fg’;?(%%%?)'

1 i int . s y .
parameters affecting Fhe. nome%, Eq. (.3)' AS(T")/S [12] F.R.N. Nabarro, Theory of Crystal Dislocations (Dover,
shows only small variations with strain (Cottrell-Stokes

. . . New York, 1987), pp. 53ff.
law [3]), we focus on the evolution of the mobile dislo- [13] U. Frisch, Turbulence: the Legacy of A.N. Kolmogorov

cation densityp,, and the mean glide path WiFh respect (Cambridge University Press, Cambridge, 1995),

to stressr®*'. When plastic flow proceeds without quali- p. 43.

tative change in deformation mechanisnis~ 1/7*'  [14] The Gaussian white-noise approximation is justified by

holds. Theno? is expected to decrease, as during strain the fact that the correlation time., is short as com-

hardening the mobile dislocation density increases atarate pared to the characteristic time of the systematic evo-

smaller thanN(TeXt)z_ This explains whyD is found to lution of the dislocation density (which causes strain

slightly increase with stress (Fig. 4). hardening). For the same reason we may concentrate
To conclude we point out that deformation-induced ~ Without loss of generality on the steady-state probabil-

dislocation cell structures are dominated by randomness Y 9€nsity ps(p), Eq. (4). A more detailed analysis in-

rather than Euclidean order, and hence represent systems cluding the effects of a finite strain hardenmg rate will

B . " T be presented elsewhere [M. Zaiser and P. Hahner (to be

where “entropy wins over energy” [17]. This is to be published)].

contrasted with earlier attempts to interpret them as “low{15] w. Horsthemke and R. LefeveNoise-Induced Transi-

energy dislocation structures” [18]. Moreover, the present  tions (Springer, Berlin, 1984).

analysis has shown that care must be taken when chargas] S. Flor and H. Neuhauser (to be published).

terizing a cell structure in terms of an average cell sizg17] H.E. Stanley, inFractals and Disordered Systemedited

(A). Since fractal behavior implie§\) ~ A, the re- by A. Bunde and S. Havlin (Springer, Berlin, 1991),

sults of metallographic investigations depend sensitively  P- 39.

cation used. This gives a natural explanation for the larg 81, 141 (1986). .

systematic and not as yet understood discrepancies regatd®’ Sl'g;{éGRaJ and G.M. Pharr, Mater. Sci. Engl, 217

ing the average cell sizes reported by different authors [19]. ( )
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