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Phonon Symmetry Selection Rules for Inelastic Neutron Scattering
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A theorem is proven demonstrating the existence of phonon symmetry selection rules, independent
of particular structural features, for coherent inelastic neutron scattering by crystals. The resulting
systematic absences depend only on the mode symmetry and the Brillouin zone where the measurement
takes place. Several examples show their power for identifying the symmetries of measured phonon
branches. Despite their importance and simplicity, these structure-independent extinction rules, based
only on symmetry arguments, have, to our knowledge, never been formulated and are not currently
considered in the analysis of phonon scattering data. [S0031-9007(98)06876-8]

PACS numbers: 61.12.Bt, 63.20.—e, 64.70.Kb

The determination of crystal phonon frequenciesinstance, Ref. [6]). To our knowledge, a rule regarding
through experiments of coherent inelastic neutron scatsystematic phonon absences in INS spectra, based only
tering (INS) is now a rather standard technique in solidon the space group of the material, the symmetry of
state physics. Conservation of crystalline momentunthe phonon, and the scattering vec@r has never been
implies that one-phonon emission (absorption) processdsrmulated and is not currently being used in the analysis
for a particular modg, of wave vectorq(—q), can be or preparation of INS experiments. The purpose of this
observed only at scattering vectd@s such thatQ + q  Letter is to demonstrate that, in fact, such a general rule
is a reciprocal lattice vector. Hence, repeated measurexists and can be extremely useful when systematically
ments at differenQ values, allow one, in principle, to applied.
determine the phonon branches(q) [1]. However, a The scattered neutron intensity due to a mgdef
proper interpretation of the results and/or an unambiguougave vectorq, and polarization vectoe(u | q, j), mea-
comparison with theoretical predictions requires, in manysured at a particular scattering vec@y such thafQ + q
cases, additional information on the symmetry of eachis a reciprocal lattice vector, is proportional [t6;(Q)|?,
mode, i.e., the small irreducible representation (irrepwhereF;(Q) is the one-phonon dynamical structure factor
describing its transformation properties [2]. Usually, onlyfor INS, and is given by [1,6]
partial symmetry assignments are done by comparison s
with other spectroscopic results as Raman or infrared F;(Q) = > m}'bule(ulq.)) - Q]
frequencies, or making use of the well-defined symmetry m=1
properties of acoustic branches. Sometimes, calculations X exdi(Q + q) - rylexd-W,(Q)], (1)

using more or less complex lattice dynamical modelsyhere the index: labels the atoms (nuclei) in a primitive
are also performed and the irrep labels of the measureghit cell, m,, is the mass of atomu, b, is its coherent
phonon branches are identified by similarity with thescattering lengthW,(Q) is the exponent of the corre-
calculated ones. On the other hand, some authors ha¥ponding Debye-Waller factor. In the caseroflegen-
been aware of the existence of some kind of extinctiorerate modes transforming according to:alimensional
rules in INS experiments, which were explained using(small) irrep D97, the scattered intensity is proportional
various arguments related with specific structural or symgg Z;f:] |F;(Q)I%.

metry features of the material under stuqu [3]. Inthe few According to well-known expressions from the group-
cases where general rules have been discussed, they haMgoretical formalism of lattice dynamics, the action of
been considered in a complex framework that dependgny crystal symmetry operatiofR |t} belonging to the
not only on symmetry argu'ments', .but also on the actugépace group of the wave vectq; G4, on a mode of
structure (i.e., on the atomic positions) [4,5]. Indeed, itpolarization vectoe(u | q, j), transforms the mode into a

is a quite widespread belief that INS experiments do nohew one with polarization vectofR | t}e(x | q, j), which
obey any particular systematic symmetry extinction ruless given by [2,7]

except for the wave vector relation mentioned above and N . o
the obvious ones coming from the transverse or longi- PiR[tle(n]g.j) = Re(r|q./)exp—~iRq - t)
tudinal character of their polarization vectors (see, for X exdi(Rq — q) - r,], (2)
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where atomv is the symmetry equivalent tqu by a previous classification of the latter into subsets accord-
operation{R | t}. On the other hand, this action can alsoing to theirPg’ (i.e., a classification of th@ vectors into
be considered as a transformation described by the smallfferent orbits with respect to the point group @f Py).
irrep D7, and this implies AsQ = H — q, whereH is a reciprocal lattice vec(t<))r, an
. . operationR; belonging toP, will also belong toPg’ if
PR | te(ulq, /) = Z DYT(R|th)ije(nlq, ), (3) R;H — K; = H, wherekK; is the reciprocal Iatticg vec-
e tor satisfyingK; = R;q — q. In general, two situations
where the label = 1,....n runs over thex degenerate 5 pe distinguished.
modes transforming according " and D"({R | t});; (i) The wave vectog is not on the Brillouin zone

represent the corresponding matrix coefficients for this iryoundaries—In this case,K; = 0 for all operations in

rep. Combining both Egs. (2) and (3) and taking into ac- () _ p () ; -
count the rotational symmetry between the Debye-WaIIeﬁ]‘g pTo?r?tn gr%up ngquaﬁgj. trf eQ (sliri:?[)e g:)tﬁ]rtseg?gag ?)ff

terms, it is Straightforward to derive that the dynqmicalthe reciprocal lattice vectoH associated to the Bril-
structure factor given by Eq. .(1.)’ and corresponding tqouin zone where the measurement takes place. The
thesen degenerate modes, satisfies charactery9”({R | t}) can be expressed, in this case, as
. _ 0 " . ) . x"(R)exp(—iq - t), with y"(R) being the character of
Fi(RQ) :ZM DYT(R [ t))}; expliRQ - OF}(Q). an irrepr of the point groupP,. Therefore, Eq. (7) re-
I (4) ducesto

For a general, this equation implies the trivial result TR exoiH - t) = 0. 8
that>;_, |IF;(Q)> = i1 [Fj(RQ)I*, i.e., the scattered Z X (R expl ) ®
intensities are equivalent for scattering vectors rotated b
R. However, for anyR belonging to the (strict) point
group [8] of Q, PS) (i.e., for anyR such thatRQ = Q)
Eq. (4) reduces to

(s)
REP,

VVe can interpret Eq. (8) as a check that the identity irrep
is not contained in the Kronecker product of the two irreps,

7 and exgiH - t), of Py andPS), respectively, when re-

duced to their common subgromfrg). For symmorphic
Fi;(Q) = Z Tq.-(R);;F;(Q), (5) space groups, exiH - t) = 1 for any H, and the selec-
j=Ln tion rule becomes a simple check of whether the represen-
tation subduced iﬂPg) by the irrepr contains the identity
representation or not. The resulting extinctions are also
valid for nonsymmorphic groups, if the vectdk is such
Tq.-(R) = DY"({R|t})" exp(iQ - t). (6) that exgiH - t) = 1 for all elements{R |t} with R be-

According to Eq. (5), the set of dynamical structurelonging to the point groupPq. The reciprocal lattice

factors{F;(Q)} is fully invariant for all transformations Vectors corresponding to nonextinct Bragg diffraction re-
(s) flections fulfill this condition. Hence, it can be generally

Tq.-(R), with R belonging toPg'. This can happen only ) .
for a set of nonzero vaIueEj?Q), if the representation stated that_. The selection r_ule_s for_ phonons of a non-
) , _ e symmorphic space group coincide with those of the cor-
Tq. of Po' contains the identity irrep. Hence, we can responding symmorphic group, if the Brillouin zone of the
state the following theoremAll phonon modes of wave measurement is centered in a nonforbidden Bragg reflec-
vector ¢ and symmetry given by the small irreé?”™  tjon Conversely, in Brillouin zones centered on extinct
will be INS inactive at a scattering wave vect®  pragq reflections, new phonon extinction rules exist that
(even thoughQ + )'5 a reciprocal lattice vector), if the  gepend on the nonprimitive translational part of the sym-
representation oPQS constructed as described in Eq. (6) metry operations.
does not contain the identity irrep at least once. (i) The wave vectog is on the Brillouin zone bound-
Using the well-known “magic” formula from group ary.—In this second case, &; may be nonzero for some
theory [2], this can be reformulatedAll phonon modes  gperations oy, P8> may contain operations not belong-

of wave vectoy and symmetry given by the small irrep . () ; . .
D7 will be INS inactive at a scattering wave vector ing to Py . Equation (8) can still be taken as valid, but

: : : ; then, in the most general case of a nonsymmorphic space
(even thouglQ + ¢ is a reciprocal lattice vector), if group, the charactepg” (R) in the equation should be rein-
q.7 * ‘L) terpreted as those of a multiplier (weighted) irrepRyf
Z X*TER )" exliQ - t) = 0, (7) [2]. However, one can always avoid the use of multiplier
irreps and use directly Eq. (7), the small irrepgigfbeing
wherey®7({R | t}) is the character of the operati¢R [t}  determined through a direct algorithm (see, for instance,
for the small irrepD 9", Ref. [9]).
The determination for a giveq vector of all possible As examples, we discuss now the resulting selection
selection rules depending on the typep¥ector requires rules for modes withq = 0 (pointI’), q = («,0,0)
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(line X or A), andq = (%,o, 0) (point X) for some space cussed for line€x. Hence, a single selection rule exists:

groups. The selection rules are indicated in the following(h, 0, I)-X;, X4 [1m1]. This last rule could be expected

manner: The Brillouin zone cente, where some by continuity, since these twa irreps are those compat-

extinction exists for phonons observed @& =H — ible with %1, which is the only active irrep at lin& for

q, are listed and in each case the irreps of the phonoriiese Brillouin zones (see above).

which are “active” and will appear in the INS experiment (2) Space group Pnn2-PointI: The discussion

are given. The irrep labels are those from Ref. [10]. above for Pmm2 concerning the subsets of different
(1) Space group Pmmz2-PointI": The sets of Bril- Brillouin zone centers and the possible irreps of the

louin zone vectord (=Q) with nontrivial symmetry are: modes is also valid for a nonsymmorphic space group.

0, 0, 1) [mm2]; (0, k, 1) [m11]; and (h, O, ) [lm1], However, now exiH - t) is not trivial. As the values

where we have indicated in brackets the correspondsf the nonprimitive translation ar(%, % %), (%, % %),

ing point group Pg). There are four possible irreps (0,0, 0) for m., m,, and2;, respectively, it is straightfor-

of Py(=mm2): T (fully symmetric), I', (antisymmet- Ward to obtain the corresponding values of €Xp - t)

ric for m, andm,), I's (antisymmetric form, and2,),  for different types ofH and apply Eq. (8):

anq Iy (antisymmetric form{c andzz). Applying Eqg. (8) 0. 0. 1) [ even-T: I odd-T, |

or just by simple inspection, taking into account that

exp(iH - t) = 1in all cases, the following selection rules (0, k, [) k # 0, k + [ even-I';,T'3; k + lodd-1', T4,

are obtained(0, 0, I)-I';; (0, k, I) k # 0-1'y, I's; and .

(h,0, ) h # 0-T,, T'y. One can see thdkf, is silent (h, 0, D) b #0, h + 1 everly,Ty; h + lodd-T7, I5.

except at a general Brillouin zone, and, in principle, it isAs expected, equivalent selection rules as thos@ fow:2

sufficient to make a measurement at three different Brilare obtained at Brillouin zones centered at nonextinct

louin zones to identify the symmetry of all measurBd Bragg reflections (even parities). Lie The same

phonons. LineX: Pq = 1ml, with two irreps:3,; (fully ~ considerations are valid and a different selection rule

symmetric) andS, (antisymmetric form,). Pg) does appears only at Brillouin zones corresponding to extinct

) Bragg reflections(h, 0, ) h # 0, h + [ even=y; h +

L . (s .
nﬁé;{%?lcgihlowewggﬂe’ l?;ttic;i iaszug?rr\O:t?éi -Ir-lrt]fir?vgr dl odd->,,. PointX: No selection rule exists for this point.
P 9 q 9 9 (3) Space group Pnma-The set of possible sym-

yielding (h, 0, 1)-T'; [1m1], where we indicate in brack- metry types of vectorsH for the Brillouin zone is

ets, the corresponding point gromg). For(0, k. 1), N0 now larger:(0, 0, 1) [mm2]; (0, k, 0) [m2m]; (h, 0, 0)
extinction exists ang) reduces to the group identity. [2mm]; (0, k, [) [m11]; (h, O, ) [1ml1]; and (h, k, 0)
PointX: Pq = mm2, with four irrepsX;, i = 1,...,4, [11m]. The lineX has2mm symmetry and the poinX
whose labeling scheme follows the one mentioned abovbas again the full symmetmyimm. Let us consider first
for the pointl’. However, the possible symmetries of the resulting selection rules for the poifitand lineX..
the scattering vectoQ are reduced to those already dis- PointI':

0,0, )1 #0, lLeven-T'),I'5; lodd-T,, T3,
0, k, 0) k # 0, k even-T'{", I, ; k odd-T'y,T5,
(h, 0, 0) h # 0, h even-T;,I'5; hodd-T,,T;,

O, k, ) k,l # 0, k + leven-T,,I5,T,,[;; k +1odd-T5,T,, [, T;,
(h, 0, 1) h,1 # 0-T, T, T;,I5,
(h, k, 0) h,k # 0, heven-I';",T,,I'5,T;; hodd-Iy, T/, I, T;.
Line 3: | restrictive as Raman or infrared spectroscopy. It is clear
that by combining measurements at different types of Bril-
(h,0,0) h even-2; h = odd-25, louin zones all symmetry labels for the measured phonons

(h. 0. 1)1 # 0-3,.35 can be identified. In principle, both for the poihtand
T P the line X, it would be sufficient to perform INS measure-
(h, k, 0) k # 0, h even-21,24; h odd-3,,35. ments at three different Brillouin zones. Pokit There
are only two bidimensional small irreps to be considered
The extinction rules at Brillouin zones whose centers ar¢10] and again, as the poin lie on the border between
extinct Bragg reflections due to nonsymmorphic operaBrillouin zones with alternative selection rules for the
tions (odd parities) are specific for the space grfupia.  line X, the few remaining selection rules are those to be
The rest are common with the space gradtpmm. Note  expected from the compatibility relationg = %, + 33
that for some Brillouin zones the selection rules may be aandX, = 2, + 24: (h, 0, 1) [ # 0-X;.

2464



VOLUME 81, NUMBER 12 PHYSICAL REVIEW LETTERS 21 BPTEMBER1998

(4) Space GrougPn3m.—PointI': atomic positions are not reduced to a few high-symmetry
positions.
(h,0, 0) h # 0, heven-I'|,T;,T;; It is also important to note that the general selection

hodd-T- . T- T+ rules formulated above include the trivial extinctions of
0 2:73025> transversal and longitudinal modes resulting from the
(h, h, h) h # 0-T{, TS, T,. T, factor (Q - e) in the structure factor formula.
_ o Summarizing, a general method is proposed for de-
+ 1+ p+
O, k, k) k # 0=y, T3, T5 . Ty Ts riving phonon extinction rules in INS experiments. The
O, k, Dk, 1 #0, formulation is quite simple and demonstrates that very
b ot d T T e e restrictive phonon absences can happen for certain types
k+ leven Iy, Iy, I3, Iy, 15, Iy s, of scattering wave vectors, independently of the specific
k+ [lodd-I;), IS, I, 05,057,015, atomic positions in the crystal structure. The derived se-
L e e e lection rules can be used to identify the symmetries of the
+ 7+ 1+ 1+
(h, k, k) bk # 0-Ty, T3, I, I5, Ty, Ty Ty Ts measured phonons or to choose adequate scattering vectors
to prevent the overlapping of phonon responses. Their sys-

Line A (q = (a, 0, 0)): tematic use will surely help to optimize the preparation of
INS experiments and the analysis of the resulting data.
(h, 0, 0) h even-Ay; h = odd-Ajz, This work has been supported by the DGICYT (Project

(h, 0, 1),(h, k, 0) I(k) # 0 h + 1(k) even-Ay, Ay, As No. PB94-1362).
h + l(k) Odd—A3,A4,A5 ,

(h, k, k),(h, k, —k) k # 0—-A, A3, As.
[1] S.W. Lovesey,Theory of Neutron Scattering from Con-
Point X densed Mattel(Clarendon, Oxford, 1984); G.L. Squires,
Introduction to the Theory of Thermal Neutron Scattering
(Cambridge University, Cambridge, England, 1978).
(r, 0, 0) Xy, [2] G.Y. Lyubarskii, The Application of Group Theory in
(h, k, k),(h, k, —k) k # 0-X1, X3, X4. Physics (Pergamon, Oxford, 1960); C.J. Bradley and
A.P. Cracknell, The Mathematical Theory of Symmetry

. . . in Solids(Clarendon, Oxford, 1972).
For the pointl’, only the selection rules for a single rep- [3] See, for instance, E. R. Cowley and A.K. Pant, Phys. Rev.

resentative Brillouin zone within each set of symmetry B 8, 4795 (1973); H. Schober, D. Strauch, and B. Dorner

equivalent ones is listed. For instance, k, k) is indi- Z. Phys. B92, 273 (1993).

cated as representative for the €tk, *k), (h, *=h, 0), [4] R.J. Elliot and M. F. Thorpe, Proc. Phys. Soc. Londdn

and (k, 0, =h), which have equivalent extinction rules 903 (1967).

with identical allowed irreps. [5] R.C. Casella and S.F. Trevino, Phys. Rev.6B 4533
It is interesting to compare the results Br3m with (1972); S. Devine and G. Peckham, J. Phys4,C1091

the selection rules determined by Elliot and Thorpe [4]  (1971); S.F. Trevino, H. Prask, and R.C. Casella, Phys.
for Cl,O. One can clearly see the difference between the ~ Rev. B 10, 739 (1974); M. Sieskind, J. Phys. (Par&),
two approaches. Cuprite has only a few atoms in the unit 899 (1978); S.F. Trevino, M.K. Farr, P. A. Giguere, and
cell at high-symmetry positions. Hence, similarly as for ~ 2: L Amau, J. Chem. Phy8, 4260 (1978); G. S. Pawley,

. . L2 L . G. Dolling, B.M. Powell, and B.H. Torrie, Can. J. Phys.
diffraction, extra extinction rules exist in addition to those 59, 122 (1981).

resulting from space group symmetry. These two very [6] W. Biihrer, inPhonons: Theory and Experiment &dlited

different kinds of extinction rules are not distinguished by P. Bruesch, Springer Series in Solid-State Sciences

in Ref. [4], and all of them are derived by making use Vol. 65 (Springer-Verlag, Berlin, 1986).

of the specific atomic positions of the cuprite structure. [7] A.A. Maradudin and S.H. Vosko, Rev. Mod. Phy40,

For pointI’, the extinction rules in cuprite (see Table 4 1 (1968); J.L. Birman,Theory of Crystal Space Groups

in Ref. [4]) are much more restrictive than those listed and Infrared and Raman Lattice Processes of Insulating

above, being in each case a subset. Only in the case Crystals(Springer-Verlag, Berlin, 1974).

of Brillouin zones of type(i, 0, 0), the three allowed [8] The term “strict” is used here to distinguish from those

irreps for the general case are also active in cuprite. For POt groups, asPq, which includes operations that

the line A, however, nearly all selection rules have their ~ transform the relevant vector into equivalent ones through
S . a reciprocal lattice vector.

origin in the general space group symmetry, the specific

. L . [9] E. Hovestreydt, M. Aroyo, S. Sattler, and H. Won-
structure introduces only the additional absence of irrep™ ~ yaischek J. Appl. Crystallogs, 544 (1992).

Az at Brillouin zones of type(h, k, k) (see Table 5 [10] A p. Cracknell, B. L. Davies, S.C. Miller, and W. F. Love,
in Ref. [4]). Obviously, the extinction rules exclusively Kronecker Product Tables, General Introduction and
based on the space group symmetry, as derived here, are Tables of Irreducible Representations of Space Groups
those to be expected in a complex structure, where the (Plenum, New York, 1979), Vol. 1.

2465



