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Phonon Symmetry Selection Rules for Inelastic Neutron Scattering
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A theorem is proven demonstrating the existence of phonon symmetry selection rules, independent
of particular structural features, for coherent inelastic neutron scattering by crystals. The resulting
systematic absences depend only on the mode symmetry and the Brillouin zone where the measurement
takes place. Several examples show their power for identifying the symmetries of measured phonon
branches. Despite their importance and simplicity, these structure-independent extinction rules, based
only on symmetry arguments, have, to our knowledge, never been formulated and are not currently
considered in the analysis of phonon scattering data. [S0031-9007(98)06876-8]

PACS numbers: 61.12.Bt, 63.20.–e, 64.70.Kb
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The determination of crystal phonon frequencie
through experiments of coherent inelastic neutron sc
tering (INS) is now a rather standard technique in sol
state physics. Conservation of crystalline momentu
implies that one-phonon emission (absorption) proces
for a particular modej, of wave vectorqs2qd, can be
observed only at scattering vectorsQ, such thatQ 1 q
is a reciprocal lattice vector. Hence, repeated measu
ments at differentQ values, allow one, in principle, to
determine the phonon branchesvjsqd [1]. However, a
proper interpretation of the results and/or an unambiguo
comparison with theoretical predictions requires, in ma
cases, additional information on the symmetry of ea
mode, i.e., the small irreducible representation (irre
describing its transformation properties [2]. Usually, on
partial symmetry assignments are done by comparis
with other spectroscopic results as Raman or infrar
frequencies, or making use of the well-defined symme
properties of acoustic branches. Sometimes, calculatio
using more or less complex lattice dynamical mode
are also performed and the irrep labels of the measu
phonon branches are identified by similarity with th
calculated ones. On the other hand, some authors h
been aware of the existence of some kind of extinctio
rules in INS experiments, which were explained usin
various arguments related with specific structural or sym
metry features of the material under study [3]. In the fe
cases where general rules have been discussed, they
been considered in a complex framework that depen
not only on symmetry arguments, but also on the actu
structure (i.e., on the atomic positions) [4,5]. Indeed,
is a quite widespread belief that INS experiments do n
obey any particular systematic symmetry extinction rul
except for the wave vector relation mentioned above a
the obvious ones coming from the transverse or long
tudinal character of their polarization vectors (see, f
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instance, Ref. [6]). To our knowledge, a rule regarding
systematic phonon absences in INS spectra, based o
on the space group of the material, the symmetry o
the phonon, and the scattering vectorQ, has never been
formulated and is not currently being used in the analys
or preparation of INS experiments. The purpose of thi
Letter is to demonstrate that, in fact, such a general ru
exists and can be extremely useful when systematical
applied.

The scattered neutron intensity due to a modej, of
wave vectorq, and polarization vectoresm j q, jd, mea-
sured at a particular scattering vectorQ, such thatQ 1 q
is a reciprocal lattice vector, is proportional tojFjsQdj2,
whereFjsQd is the one-phonon dynamical structure facto
for INS, and is given by [1,6]

FjsQd 
sX

m1

m21
m bmfesm j q, jd ? Qg

3 expfisQ 1 qd ? rmg expf2WmsQdg , (1)

where the indexm labels the atoms (nuclei) in a primitive
unit cell, mm is the mass of atomm, bm is its coherent
scattering length,WmsQd is the exponent of the corre-
sponding Debye-Waller factor. In the case ofn degen-
erate modes transforming according to an-dimensional
(small) irrepDq,t , the scattered intensity is proportional
to

Pn
j1 jFjsQdj2.

According to well-known expressions from the group-
theoretical formalism of lattice dynamics, the action o
any crystal symmetry operationhR j tj belonging to the
space group of the wave vectorq, Gq, on a mode of
polarization vectoresm j q, jd, transforms the mode into a
new one with polarization vector PhR j tjesm j q, jd, which
is given by [2,7]

PhR j tjesm j q, jd  Resn j q, jd exps2iRq ? td

3 expfisRq 2 qd ? rmg , (2)
© 1998 The American Physical Society
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where atom y is the symmetry equivalent tom by
operationhR j tj. On the other hand, this action can als
be considered as a transformation described by the sm
irrep Dq,t , and this implies

PhR j tjesm j q, jd 
X

i1,n

Dq,tshR j tjdijesm j q, id , (3)

where the labeli  1, . . . , n runs over then degenerate
modes transforming according toDq,t andDq,tshR j tjdij

represent the corresponding matrix coefficients for this
rep. Combining both Eqs. (2) and (3) and taking into a
count the rotational symmetry between the Debye-Wall
terms, it is straightforward to derive that the dynamica
structure factor given by Eq. (1), and corresponding
thesen degenerate modes, satisfies

FisRQd 
X

j1,n

Dq,tshR j tjdp
ij expsiRQ ? tdFjsQd .

(4)

For a generalQ, this equation implies the trivial result
that

Pn
j1 jFjsQdj2 

Pn
j1 jFjsRQdj2, i.e., the scattered

intensities are equivalent for scattering vectors rotated
R. However, for anyR belonging to the (strict) point
group [8] of Q, P

ssd
Q (i.e., for anyR such thatRQ  Q)

Eq. (4) reduces to

FisQd 
X

j1,n

TQ,tsRdijFjsQd , (5)

whereTQ,t is a representation ofP
ssd
Q which is related to

the small irrepDq,t in the form:

TQ,tsRd  Dq,tshR j tjdp expsiQ ? td . (6)

According to Eq. (5), the set of dynamical structur
factors hFjsQdj is fully invariant for all transformations

TQ,tsRd, with R belonging toP
ssd
Q . This can happen only

for a set of nonzero valuesFjsQd, if the representation

TQ,t of P
ssd
Q contains the identity irrep. Hence, we can

state the following theorem:All phonon modes of wave
vector q and symmetry given by the small irrepDq,t

will be INS inactive at a scattering wave vectorQ
(even thoughQ 1 q is a reciprocal lattice vector), if the
representation ofP

ssd
Q constructed as described in Eq. (6

does not contain the identity irrep at least once.
Using the well-known “magic” formula from group

theory [2], this can be reformulated:All phonon modes
of wave vectorq and symmetry given by the small irrep
Dq,t will be INS inactive at a scattering wave vectorQ
(even thoughQ 1 q is a reciprocal lattice vector), ifX

R[P
ssd
Q

xq,tshR j tjdp expsiQ ? td  0 , (7)

wherexq,tshR j tjd is the character of the operationhR j tj
for the small irrepDq,t .

The determination for a givenq vector of all possible
selection rules depending on the type ofQ vector requires
o
all
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a previous classification of the latter into subsets acco
ing to theirP

ssd
Q (i.e., a classification of theQ vectors into

different orbits with respect to the point group ofq, Pq).
As Q  H 2 q, whereH is a reciprocal lattice vector, an
operationRi belonging toPq will also belong toP

ssd
Q if

RiH 2 Ki  H, whereKi is the reciprocal lattice vec-
tor satisfyingKi  Riq 2 q. In general, two situations
can be distinguished.

(i) The wave vectorq is not on the Brillouin zone
boundaries.—In this case,Ki  0 for all operations in
Pq. Then P

ssd
Q  P

ssd
H > Pq. P

ssd
Q is the intersection of

the point group ofGq and the (strict) point group of
the reciprocal lattice vectorH associated to the Bril-
louin zone where the measurement takes place. T
characterxq,tshR j tjd can be expressed, in this case,
xtsRd exps2iq ? td, with xtsRd being the character of
an irrept of the point groupPq. Therefore, Eq. (7) re-
duces to X

R[P
ssd
Q

xtsRdp expsiH ? td  0 . (8)

We can interpret Eq. (8) as a check that the identity irr
is not contained in the Kronecker product of the two irrep
t and expsiH ? td, of Pq andP

ssd
H , respectively, when re-

duced to their common subgroupP
ssd
Q . For symmorphic

space groups, expsiH ? td  1 for any H, and the selec-
tion rule becomes a simple check of whether the repres
tation subduced inP

ssd
Q by the irrept contains the identity

representation or not. The resulting extinctions are a
valid for nonsymmorphic groups, if the vectorH is such
that expsiH ? td  1 for all elementshR j tj with R be-
longing to the point groupP

ssd
Q . The reciprocal lattice

vectors corresponding to nonextinct Bragg diffraction r
flections fulfill this condition. Hence, it can be generall
stated that: The selection rules for phonons of a no
symmorphic space group coincide with those of the co
responding symmorphic group, if the Brillouin zone of th
measurement is centered in a nonforbidden Bragg refl
tion. Conversely, in Brillouin zones centered on extin
Bragg reflections, new phonon extinction rules exist th
depend on the nonprimitive translational part of the sym
metry operations.

(ii) The wave vectorq is on the Brillouin zone bound-
ary.—In this second case, asKi may be nonzero for some
operations ofPq, P

ssd
Q may contain operations not belong

ing to P
ssd
H . Equation (8) can still be taken as valid, bu

then, in the most general case of a nonsymmorphic sp
group, the charactersxtsRd in the equation should be rein
terpreted as those of a multiplier (weighted) irrep ofPq
[2]. However, one can always avoid the use of multipli
irreps and use directly Eq. (7), the small irreps ofGq being
determined through a direct algorithm (see, for instan
Ref. [9]).

As examples, we discuss now the resulting selecti
rules for modes withq  0 (point G), q  sa, 0, 0d
2463
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(line S or D), andq  s 1
2 , 0, 0d (point X) for some space

groups. The selection rules are indicated in the followin
manner: The Brillouin zone centersH, where some
extinction exists for phonons observed atQ  H 2

q, are listed and in each case the irreps of the phono
which are “active” and will appear in the INS experimen
are given. The irrep labels are those from Ref. [10].

(1) Space group Pmm2.—Point G: The sets of Bril-
louin zone vectorsHsQd with nontrivial symmetry are:
s0, 0, ld fmm2g; s0, k, ld fm11g; and sh, 0, ld f1m1g,
where we have indicated in brackets the correspon
ing point group P

ssd
Q . There are four possible irreps

of Pqsmm2d: G1 (fully symmetric), G2 (antisymmet-
ric for mx and my), G3 (antisymmetric formy and 2z),
andG4 (antisymmetric formx and2z). Applying Eq. (8)
or just by simple inspection, taking into account tha
expsiH ? td  1 in all cases, the following selection rules
are obtained:s0, 0, ld G1; s0, k, ld k fi 0 G1, G3; and
sh, 0, ld h fi 0 G1, G4. One can see thatG2 is silent
except at a general Brillouin zone, and, in principle, it
sufficient to make a measurement at three different Br
louin zones to identify the symmetry of all measuredG

phonons. LineS: Pq  1m1, with two irreps:S1 (fully

symmetric) andS2 (antisymmetric formy). P
ssd
Q does

not coincide now withP
ssd
H , but is a subgroup. The ap-

plication of the general equation is again straightforwa
yielding sh, 0, ld G1 f1m1g, where we indicate in brack-
ets, the corresponding point groupP

ssd
Q . For s0, k, ld, no

extinction exists asP
ssd
Q reduces to the group identity.

Point X: Pq  mm2, with four irreps Xi , i  1, . . . , 4,
whose labeling scheme follows the one mentioned abo
for the pointG. However, the possible symmetries o
the scattering vectorQ are reduced to those already dis
2464
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cussed for lineS. Hence, a single selection rule exists
sh, 0, ld X1, X4 f1m1g. This last rule could be expected
by continuity, since these twoX irreps are those compat
ible with S1, which is the only active irrep at lineS for
these Brillouin zones (see above).

(2) Space group Pnn2.—Point G: The discussion
above for Pmm2 concerning the subsets of differen
Brillouin zone centers and the possible irreps of th
modes is also valid for a nonsymmorphic space grou
However, now expsiH ? td is not trivial. As the values
of the nonprimitive translation ares 1

2 , 1
2 , 1

2 d, s 1
2 , 1

2 , 1
2 d,

s0, 0, 0d for mx , my , and2z, respectively, it is straightfor-
ward to obtain the corresponding values of expsiH ? td
for different types ofH and apply Eq. (8):

s0, 0, ld l even G1; l odd G2 ,

s0, k, ld k fi 0, k 1 l even G1, G3; k 1 l odd G2, G4 ,

sh, 0, ld h fi 0, h 1 l even G1, G4; h 1 l odd G2, G3 .

As expected, equivalent selection rules as those forPmm2
are obtained at Brillouin zones centered at nonextin
Bragg reflections (even parities). LineS: The same
considerations are valid and a different selection ru
appears only at Brillouin zones corresponding to extin
Bragg reflections:sh, 0, ld h fi 0, h 1 l even–S1; h 1

l odd–S2. Point X: No selection rule exists for this point
(3) Space group Pnma.—The set of possible sym-

metry types of vectorsH for the Brillouin zone is
now larger:s0, 0, ld fmm2g; s0, k, 0d fm2mg; sh, 0, 0d
f2mmg; s0, k, ld fm11g; sh, 0, ld f1m1g; and sh, k, 0d
f11mg. The lineS has2mm symmetry and the pointX
has again the full symmetrymmm. Let us consider first
the resulting selection rules for the pointG and lineS.
Point G:
s0, 0, ld l fi 0, l even G1
1 , G2

2 ; l odd G1
4 , G2

3 ,

s0, k, 0d k fi 0, k even G1
1 , G2

4 ; k odd G1
2 , G2

3 ,

sh, 0, 0d h fi 0, h even G1
1 , G2

3 ; h odd G1
4 , G2

2 ,

s0, k, ld k, l fi 0, k 1 l even G1
1 , G1

3 , G2
2 , G2

4 ; k 1 l odd G1
2 , G1

4 , G2
1 , G2

3 ,

sh, 0, ld h, l fi 0 G1
1 , G1

4 , G2
2 , G2

3 ,

sh, k, 0d h, k fi 0, h even G1
1 , G1

2 , G2
3 , G2

4 ; h odd G1
3 , G1

4 , G2
1 , G2

2 .
ar
il-
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Line S:

sh, 0, 0d h even S1; h  odd S3 ,

sh, 0, ld l fi 0 S1, S3 ,

sh, k, 0d k fi 0, h even S1, S4; h odd S2, S3 .

The extinction rules at Brillouin zones whose centers a
extinct Bragg reflections due to nonsymmorphic oper
tions (odd parities) are specific for the space groupPnma.
The rest are common with the space groupPmmm. Note
that for some Brillouin zones the selection rules may be
re
a-

as

restrictive as Raman or infrared spectroscopy. It is cle
that by combining measurements at different types of Br
louin zones all symmetry labels for the measured phono
can be identified. In principle, both for the pointG and
the lineS, it would be sufficient to perform INS measure
ments at three different Brillouin zones. PointX: There
are only two bidimensional small irreps to be consider
[10] and again, as the pointsX lie on the border between
Brillouin zones with alternative selection rules for th
line S, the few remaining selection rules are those to
expected from the compatibility relationsX1  S1 1 S3
andX2  S2 1 S4: sh, 0, ld l fi 0 X1.
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(4) Space GroupPn3̄m.—Point G:

sh, 0, 0d h fi 0, h even G1
1 , G1

3 , G2
4 ;

h odd G2
2 , G2

3 , G1
5 ,

sh, h, hd h fi 0 G1
1 , G1

5 , G2
2 , G2

4 ,

s0, k, kd k fi 0 G1
1 , G1

3 , G1
5 , G2

4 , G2
5 ,

s0, k, ld k, l fi 0 ,

k 1 l even G1
1 , G1

2 , G1
3 , G1

4 , G1
5 , G2

4 , G2
5 ,

k 1 l odd G1
4 , G1

5 , G2
1 , G2

2 , G2
3 , G2

4 , G2
5 ,

sh, k, kd h, k fi 0 G1
1 , G1

3 , G1
4 , G1

5 , G2
2 , G2

3 , G2
4 , G2

5 .

Line D sq  sa, 0, 0dd:

sh, 0, 0d h even D1; h  odd D3 ,

sh, 0, ld, sh, k, 0d lskd fi 0 h 1 lskd even D1, D2, D5

h 1 lskd odd D3, D4, D5 ,

sh, k, kd, sh, k, 2kd k fi 0 D1, D3, D5 .

Point X:

sh, 0, 0d X1 ,

sh, k, kd, sh, k, 2kd k fi 0 X1, X3, X4 .

For the pointG, only the selection rules for a single rep-
resentative Brillouin zone within each set of symmetr
equivalent ones is listed. For instance,s0, k, kd is indi-
cated as representative for the sets0, k, 6kd, sh, 6h, 0d,
and sh, 0, 6hd, which have equivalent extinction rules
with identical allowed irreps.

It is interesting to compare the results forPn3̄m with
the selection rules determined by Elliot and Thorpe [4
for Cu2O. One can clearly see the difference between th
two approaches. Cuprite has only a few atoms in the un
cell at high-symmetry positions. Hence, similarly as fo
diffraction, extra extinction rules exist in addition to those
resulting from space group symmetry. These two ve
different kinds of extinction rules are not distinguishe
in Ref. [4], and all of them are derived by making us
of the specific atomic positions of the cuprite structure
For pointG, the extinction rules in cuprite (see Table 4
in Ref. [4]) are much more restrictive than those liste
above, being in each case a subset. Only in the ca
of Brillouin zones of typesh, 0, 0d, the three allowed
irreps for the general case are also active in cuprite. F
the lineD, however, nearly all selection rules have the
origin in the general space group symmetry, the speci
structure introduces only the additional absence of irre
D3 at Brillouin zones of typesh, k, kd (see Table 5
in Ref. [4]). Obviously, the extinction rules exclusively
based on the space group symmetry, as derived here,
those to be expected in a complex structure, where t
y
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atomic positions are not reduced to a few high-symmet
positions.

It is also important to note that the general selectio
rules formulated above include the trivial extinctions o
transversal and longitudinal modes resulting from th
factor sQ ? ed in the structure factor formula.

Summarizing, a general method is proposed for d
riving phonon extinction rules in INS experiments. The
formulation is quite simple and demonstrates that ve
restrictive phonon absences can happen for certain typ
of scattering wave vectors, independently of the specifi
atomic positions in the crystal structure. The derived s
lection rules can be used to identify the symmetries of th
measured phonons or to choose adequate scattering vec
to prevent the overlapping of phonon responses. Their sy
tematic use will surely help to optimize the preparation o
INS experiments and the analysis of the resulting data.
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No. PB94-1362).
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