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Anomalous Resistance Induced by Chaos of Electron Motion and its Application
to Plasma Production
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Null points in magnetic fields destroy the adiabatic invariants of charged particle motion, resulting in
a chaotic motion. The mixing effect of the chaos produces efficient collisionless heating of electrons.
The entropy production is represented by an effective resistance in a macroscopic description. Thi
“chaos-induced resistance” enables plasma production at a low gas pressure suitable for ultrafine plasm
etching. [S0031-9007(98)07155-5]

PACS numbers: 52.80.Pi, 05.45.+b, 52.50.Dg, 52.75.Rx
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Nonlinearity stems in the equation of motion of
charged particle from the spatial inhomogeneity of ele
tromagnetic fields. The “magnetic null point” yields a
strong enough nonlinearity to generate “chaos” of the pa
ticle motion [1]. The chaotic motion of electrons bring
about rapid production of entropy, resulting in efficien
heating of electrons at a low-collisionality regime. Thi
nonlinear process can be applied to plasma product
that meets the increasing demand for a low-gas-press
plasma source suitable for use in ultrafine etching of sem
conductors [2,3]. Moreover, this effect may play an im
portant role in high-temperature plasmas such as so
corona, neutral sheet, and fusion plasmas. At the m
netic null point, magnetic field lines can reconnect if the
is a finite resistivity (magnetic diffusivity). In many dif-
ferent examples, the classical collisional resistivity, whic
is due to the scattering of current-carrying electrons
field particles, is very small and it cannot account for th
realistic reconnection rates [4]. Some different mech
nisms have been proposed to explore the “anomalous
sistivity,” including the effect of the chaos.

The aim of this Letter is to elucidate the chaos-induce
resistivity for radio-frequency (rf) driven currents in a
magnetic-null region. The conventional analysis of th
plasma conductivity [5] does not apply when the electro
motion is nonintegrable. In a chaotic system, microscop
analyses of the orbit of a test particle do not provid
us with any useful information about the collectiv
behavior of the system of particles. By studying statistic
properties of the system, we explore how the chaos
microscopic process of generating complexity, can bri
about the macroscopic effect of generating heat.

We will start with a pure collisionless model, and
will show that the mixing effect of the chaos yields
rapid production of the (kinetic) entropy. This proces
however, is transient, and the heating saturates afte
short time. In the second step, we study the effect
collisions with neutral particles. Electrons lose energ
through inelastic collisions. This process opens a “sin
of the energy in a high-energy region of the velocit
space. A steady state is achieved when the same num
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of electrons are supplied from a low-energy region, an
they “cascade” towards the sink. The intermediate ener
range can be approximated by the collisionless model. T
chaos accelerates the cascade process, and enhance
energy dissipation into the sink. The following numerica
analysis gives a proof for the above-mentioned scenar
and derives a quantitative estimate of the resistivity.

We consider an electron that obeys Newton’s equatio
of motion:

m
d2

dt2 X ­ 2e

∑
E 1

µ
d
dt

X
∂

3 B
∏

, (1)

wherem is the electron mass,e is the elementary charge,
andE andB are the electric field and magnetic field, re-
spectively. IfE andB are spatially homogeneous fields,
(1) is a linear equation with respect toX. For example,
let us assume thatB ­ const andE ­ Reiv0tE0 (E0 ­
const). If the frequencyv0 is not resonant with the cy-
clotron frequencyvc ­ eBym, the particle motion is pe-
riodic, and hence “heating” cannot occur [6]. If we can
introduce “disorder” to the system, we can heat electron
Collisions randomize the phase of oscillations of particle
resulting in a nonzero average of energy transfer fro
the electric field to particles. The other possible mecha
nism is the chaos that is a deterministic dynamics pro
ducing complex orbits of particles. Here, we conside
a strongly inhomogeneous magnetic field that makes (
nonlinear with respect toX. When the adiabatic invari-
ance of the magnetic moment is destroyed in an inhom
geneous field, the degree of freedom increases enough
generate chaotic motion of electrons.

We formulate a slab plasma model by assuming, i
Cartesian coordinates,

B ­

0B@ 0
0

Bz

1CA ­

0B@ 0
0

Jx

1CA , (2)

E ­

0B@ Ex

Ey

0

1CA ­ Reiv0t

0B@ Ex

Ey

0

1CA , (3)
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whereJ is a real constant that characterizes the gradient
the magnetic field strength, andEx andEy are complex
constants. The length scale is defined as follows. F
a given v0, the cyclotron-resonant magnetic fieldBc is
given by solvingv0 ­ eBcym for Bc. This Bc occurs at
x ­ L ­ mv0yseJd. We define the normalized time and
coordinates by

t̂ ­ v0t, X̂ ­
X
L

.

The normalized temporal derivative (dydt̂) will be de-
noted by0. The normalized electric field is

Ê ­
E

Lv0Bc
.

They component of (1) yields

ŷ0 ­
x̂2

2
2 F̂y

µ
F̂y ­

Z
Êydt̂ 1 C

∂
,

whereC is a constant number determined by the initia
velocity ŷ0. Thex component of (1) now reads

x̂00 ­ 2
x̂3

2
1 F̂yst̂dx̂ 2 Êxst̂d . (4)

In the z direction, the particle moves with a constan
velocity.

When Ê ­ 0, the energy (Hamiltonian) of the par-
ticle conserves, and, hence, the nonlinear Eq. (4), wh
involves only one degree of freedom, is integrable. Th
particle describes a “meandering” orbit in the magnet
null region (jx̂j & 1). A finite electric field (̂E fi 0)
changes the energy to yield nonintegrable (chaotic) orb
(Fig. 1). The equation of motion (4) becomes “most no
linear” when all terms have the same order of magnitu
[7–9]. For example, let us consider an rf electric fiel
with v0y2p ­ 13.56 3 106 sec21 and jEj ­ 103 Vym.
For L ­ 2.4 3 1022 m, we obtainjÊj ­ 1.

The maximum Lyapunov exponent of the chaot
meandering orbit is about 0.2 forjÊj ­ Os1d. In Fig. 2,
we show the Poincaré plot on the phase spacex̂-x̂0.
The orbit moves almost densely over a region in th
phase space. The kinetic entropy is defined byS ­
2

P
, p, ln p,, wherep, is the probability of realization

of a certain state (cell in the phase space) denoted
, (the absolute value ofS depends on how we divide
the phase space into cells). Figure 3 shows the tim
evolution of S in the chaotic dynamics (solid line), and
compares it with a periodic case ofB ­ 0 (dashed line).
The rapid increase inS is due to the mixing process of
the chaos. The rate of the mixing is of the order of th

FIG. 1. The chaotic meandering motion of an electro
(jÊyj ­ 1, jÊxj ­ 0).
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Lyapunov exponent. In a short time, the mixing proces
saturates. In this slow phase, the domain, over whic
the orbit moves, does not expand appreciably, and t
average energy of particles saturates. In this macrosco
equilibrium, the averages of chaotic accelerations an
decelerations of particles cancel out.

Figure 4 shows the velocity distribution of104 par-
ticles. Each particle has different initial conditions, bu
obeys the same equation of motion (4); viz., there are
mutual interactions such as collisions or collective mo
tions. We observe that small variations in the initial stat
expand to create almost Gaussian distribution. Althoug
the oscillating electric field is constantly applied, the to
tal energy of particles approaches a constant vale. T
system may be regarded as a canonical ensemble. Th
electric field interacts with particles, while the total en
ergy transfer cancels out in the approximate equilibriu
state; i.e., the macroscopic current is out of phase wi
the rf electric field, so that the average of the Poyntin
flux vanishes. Because of the almost ergodic motion
particles (Fig. 2), the Gibbs distribution can be deduce
from the equal probability in the phase space.

In the approximate equilibrium state, the macroscop
current produces approximately periodic oscillations, a
though the response of the macroscopic system to t
driving electric field is apparently nonlinear. Figure 5
shows the Fourier spectrum of the macroscopic curre
waveform. We observe that the harmonics of the fre
quencyv0 dominate the oscillations.

In what follows, we discuss the role of a sink of the
energy (or the entropy) in the velocity space that is intro
duced by including the effect of inelastic collisions into
the model. Electrons lose energy through inelastic col
sions of excitation and ionization, which have threshol
energies. For a low temperature plasma, the sink a
pears in the superthermal region of the velocity spac
We simulate collisions by a random process of removin
particles from the sink region with a given probability
that is consistent with the relevant inelastic collisions

FIG. 2. The Poincaré plot of the chaotic orbit (jÊy j ­ 1,
jÊx j ­ 0).
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FIG. 3. Increase of the kinetic entropyS. Solid line: chaotic
motion (Êy ­ 1, Êx ­ 0). Dashed line: periodic motion.

Particles are supplied with zero initial velocity to conserv
the total number of particles. In a macroscopic stea
state, the energy removed by the particles leaking into
sink balances with the energy gained by the supplied p
ticles. To model collisions, we need parameters to eva
ate the physical time and length scales. Here, we assu
v0y2p ­ 13.56 3 106 sec21 and L ­ Os1022d m [see
the discussion after Eq. (4)].

The mixing effect drives the cascade in the veloci
space to broaden the distribution function, and enhan
the energy dissipation in the sink region. We estimate t

FIG. 4. Heating of electrons by the chaos.
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FIG. 5. The frequency spectrum of the macroscopic curre
(kyxl driven byÊy ; integrated over21.6 , x̂ , 1.6).

effective resistivity by the total change of the energy.
Fig. 6, we show that the effective resistivity is enhance
by the mixing effect of the chaos by a factor of10 102

in comparison with the case ofB ­ 0. The effective
collision induced by the chaos is comparable to th
scattering in a neutral gas of 0.1 Pa. These estimates
consistent with experimental observations [2,3].

The electron heating occurs in a narrow region arou
the null point. Figure 7 shows the spatial distributio
of the dissipative current density (the current densi
that oscillates in the same phase of the rf electric field
We observe that the heat production is concentrated
the region jx̂j , 5. Because of the localized powe
absorption (plasma production), a plasma source ba
on this heating mechanism has a potential advantage
reducing contamination due to plasma-wall interactions

FIG. 6. Effective resistivity (solid curve) enhanced by th
chaos, in comparison with the classical resistivity (dash
curve).
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FIG. 7. Spatial distribution of the current density (the resistive
component).

In summary, we have studied both collisionless and co
lisional models of chaos-induced resistance. In the co
lisionless system, an approximate canonical equilibrium
is achieved after the rapid mixing phase that produce
the entropy. There is an essential difference between th
present collisionless chaotic system and the usual co
lisional system. The former system can absorb energ
from the rf electric field in the first mixing phase, while
the energy saturates and an approximate equilibrium sta
appears. In the latter case, however, unceasing heati
must occur when we continue to apply an rf electric field
without assuming an energy loss mechanism. The com
bination of the chaos effect due to the inhomogeneou
magnetic field and the inelastic collision effect yields an
enhanced resistance. Inelastic collisions open a sink
energy (entropy) in the high-energy region of the veloc
ity space. This nonequilibrium system is characterized b
the cascade process driven by the mixing effect. The e
ergy dissipation is determined by the speed of the cascad
which is scaled by the Lyapunov exponent, and the energ
removal rate in the sink region.

This work was supported by Grant-in-Aid for Scientific
Research from the Japanese Ministry of Education, Sc
ence and Culture No. 09308011.
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