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Anomalous Resistance Induced by Chaos of Electron Motion and its Application
to Plasma Production
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Null points in magnetic fields destroy the adiabatic invariants of charged particle motion, resulting in
a chaotic motion. The mixing effect of the chaos produces efficient collisionless heating of electrons.
The entropy production is represented by an effective resistance in a macroscopic description. This
“chaos-induced resistance” enables plasma production at a low gas pressure suitable for ultrafine plasma
etching. [S0031-9007(98)07155-5]

PACS numbers: 52.80.Pi, 05.45.+b, 52.50.Dg, 52.75.Rx

Nonlinearity stems in the equation of motion of a of electrons are supplied from a low-energy region, and
charged patrticle from the spatial inhomogeneity of electhey “cascade” towards the sink. The intermediate energy
tromagnetic fields. The “magnetic null point” yields a range can be approximated by the collisionless model. The
strong enough nonlinearity to generate “chaos” of the parehaos accelerates the cascade process, and enhances the
ticle motion [1]. The chaotic motion of electrons brings energy dissipation into the sink. The following numerical
about rapid production of entropy, resulting in efficientanalysis gives a proof for the above-mentioned scenario,
heating of electrons at a low-collisionality regime. This and derives a quantitative estimate of the resistivity.
nonlinear process can be applied to plasma production We consider an electron that obeys Newton’s equation
that meets the increasing demand for a low-gas-pressud motion:
plasma source suitable for use in ultrafine etching of semi- 2 d
conductors [2,3]. Moreover, this effect may play an im- m——X = —e[E + (—X) X B}, (@H)]
portant role in high-temperature plasmas such as solar dt dt
corona, neutral sheet, and fusion plasmas. At the magvherem is the electron mass, is the elementary charge,
netic null point, magnetic field lines can reconnect if thereand E and B are the electric field and magnetic field, re-
is a finite resistivity (magnetic diffusivity). In many dif- spectively. IfE and B are spatially homogeneous fields,
ferent examples, the classical collisional resistivity, which(1) is a linear equation with respect 3. For example,
is due to the scattering of current-carrying electrons byet us assume tha = const andE = Ne'“'Ey (Eo =
field particles, is very small and it cannot account for theconst). If the frequencyw is not resonant with the cy-
realistic reconnection rates [4]. Some different mechaclotron frequencyw,. = eB/m, the particle motion is pe-
nisms have been proposed to explore the “anomalous réiodic, and hence “heating” cannot occur [6]. If we can
sistivity,” including the effect of the chaos. introduce “disorder” to the system, we can heat electrons.

The aim of this Letter is to elucidate the chaos-induced-ollisions randomize the phase of oscillations of particles,
resistivity for radio-frequency (rf) driven currents in a resulting in a nonzero average of energy transfer from
magnetic-null region. The conventional analysis of thethe electric field to particles. The other possible mecha-
plasma conductivity [5] does not apply when the electromism is the chaos that is a deterministic dynamics pro-
motion is nonintegrable. In a chaotic system, microscopiélucing complex orbits of particles. Here, we consider
analyses of the orbit of a test particle do not providea strongly inhomogeneous magnetic field that makes (1)
us with any useful information about the collective nonlinear with respect t&. When the adiabatic invari-
behavior of the system of particles. By studying statisticarnce of the magnetic moment is destroyed in an inhomo-
properties of the system, we explore how the chaos, geneous field, the degree of freedom increases enough to
microscopic process of generating complexity, can bringienerate chaotic motion of electrons.
about the macroscopic effect of generating heat. We formulate a slab plasma model by assuming, in

We will start with a pure collisionless model, and Cartesian coordinates,
will show that the mixing effect of the chaos yields a

rapid production of the (kinetic) entropy. This process, B — 8 _ 8 @)
however, is transient, and the heating saturates after a B Jx ’

short time. In the second step, we study the effect of ¢

collisions with neutral particles. Electrons lose energy £ F

through inelastic collisions. This process opens a “sink” E— EX _ §piont f)‘ 3)
of the energy in a high-energy region of the velocity Oy e Oy ’

space. A steady state is achieved when the same number
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wherelJ is a real constant that characterizes the gradient dfyapunov exponent. In a short time, the mixing process

the magnetic field strength, arffl, and E, are complex saturates. In this slow phase, the domain, over which

constants. The length scale is defined as follows. Fothe orbit moves, does not expand appreciably, and the
a given wg, the cyclotron-resonant magnetic fieR}l is  average energy of particles saturates. In this macroscopic
given by solvingwy = eB./m for B.. ThisB. occurs at equilibrium, the averages of chaotic accelerations and
x = L = mwy/(eJ). We define the normalized time and decelerations of particles cancel out.

coordinates by Figure 4 shows the velocity distribution d0* par-
P = wot %= {_ ticles. Each particle has different initial conditions, but
’ L obeys the same equation of motion (4); viz., there are no
The normalized temporal derivative/ {d7) will be de- mutual interactions such as collisions or collective mo-
noted by’. The normalized electric field is tions. We observe that small variations in the initial state

expand to create almost Gaussian distribution. Although

po _E . the oscillating electric field is constantly applied, the to-

LwoB. tal energy of particles approaches a constant vale. The

They component of (1) yields system may be regarded as a canonical ensemble. The rf
. &2 . . . electric field interacts with particles, while the total en-
V=5 -5 (Fy = nydf + C>’ ergy transfer cancels out in the approximate equilibrium

state; i.e., the macroscopic current is out of phase with
velocity §'. Thex component of (1) now reads the rf e[ectric field, so that the average of the Poynting
. fluxt_v?nls(rlLe_zs. 2I)3et(;]ausGe_b%f tf&(_—:‘ t<';1_Ilr)nc:_st ergodlt;: ngjottljon 0(];
s X m e  Bon particles (Fig. 2), the Gibbs distribution can be deduce
* 2 T EOF -~ £, “) from the equal probability in the phase space.
In the z direction, the particle moves with a constant In the approximate equilibrium state, the macroscopic
velocity. current produces approximately periodic oscillations, al-
When E = 0, the energy (Hamiltonian) of the par- though the response of the macroscopic system to the
ticle conserves, and, hence, the nonlinear Eq. (4), whicHriving electric field is apparently nonlinear. Figure 5
involves only one degree of freedom, is integrable. Theshows the Fourier spectrum of the macroscopic current
particle describes a “meandering” orbit in the magnetiovaveform. We observe that the harmonics of the fre-
null region (%] = 1). A finite electric field & # 0)  quencyw, dominate the oscillations.
changes the energy to yield nonintegrable (chaotic) orbits In what follows, we discuss the role of a sink of the
(Fig. 1). The equation of motion (4) becomes “most non-energy (or the entropy) in the velocity space that is intro-
linear” when all terms have the same order of magnitudeluced by including the effect of inelastic collisions into
[7-9]. For example, let us consider an rf electric fieldthe model. Electrons lose energy through inelastic colli-
with wo/27 = 13.56 X 10° sec”! and|E| = 10° V/m.  sions of excitation and ionization, which have threshold
ForL = 2.4 X 1072 m, we obtain/E| = 1. energies. For a low temperature plasma, the sink ap-
The maximum Lyapunov exponent of the chaoticpears in the superthermal region of the velocity space.
meandering orbit is about 0.2 foE| = O(1). In Fig. 2, We simulate collisions by a random process of removing
we show the Poincaré plot on the phase spac®. particles from the sink region with a given probability
The orbit moves almost densely over a region in thehat is consistent with the relevant inelastic collisions.
phase space. The kinetic entropy is defined Sy
— > pelnpe, wherepy is the probability of realization
of a certain state (cell in the phase space) denoted by 3
€ (the absolute value of depends on how we divide

where C is a constant number determined by the initial

the phase space into cells). Figure 3 shows the time 21
evolution of S in the chaotic dynamics (solid line), and 11
compares it with a periodic case 8f = 0 (dashed line).

The rapid increase i is due to the mixing process of X 0

the chaos. The rate of the mixing is of the order of the

8>
'
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FIG. 1. The chaotic meandering motion of an electronFIG. 2. The Poincaré plot of the chaotic orbikE(I =1,
(IEy] = 1, |E,| = 0). |E| = 0).
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FIG. 3. Increase of the kinetic entrogy Solid line: chaotic w/wo

motion (£, = 1, E; = 0). Dashed line: periodic motion. FIG. 5. The frequency spectrum of the macroscopic current

((v,) driven by E, ; integrated over-1.6 < % < 1.6).
Particles are supplied with zero initial velocity to conserve

the total number of particles. In a r_nacrosco_pic _Stead)éffective resistivity by the total change of the energy. In
state, the energy removed by the particles leaking into the;, g \ve show that the effective resistivity is enhanced

sink balances with the energy gained by the supplied Palsy the mixing effect of the chaos by a factor ti—102

ticles. To model collisions, we need parameters to evalug, comparison with the case dB = 0. The effective

ate the physical timeﬁand lca;ngth scales. H?ge, We assUM@lision induced by the chaos is comparable to the
“;10/2.77 = 13.56 ;( 10%sec™and L = O(107°) m [S€€  giaitering in a neutral gas of 0.1 Pa. These estimates are
the discussion after Eq. (4)]. consistent with experimental observations [2,3].

The mixing effect drives the cascade in the veloCity tq glectron heating occurs in a narrow region around
space to broaden the distribution function, and enhanceme null point. Figure 7 shows the spatial distribution

the energy dissipation in the sink region. We estimate thet yhe gissipative current density (the current density
that oscillates in the same phase of the rf electric field).
We observe that the heat production is concentrated in

i=0 . . .
1200 . . ' . the region |%| < 5. Because of the localized power
" L absorption (plasma production), a plasma source based
< on this heating mechanism has a potential advantage in
'§ 800 1 reducing contamination due to plasma-wall interactions.
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# FIG. 6. Effective resistivity (solid curve) enhanced by the
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FIG. 4. Heating of electrons by the chaos. curve).
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FIG. 7. Spatial distribution of the current density (the resistive
component).

In summary, we have studied both collisionless and col-
lisional models of chaos-induced resistance. In the col-
lisionless system, an approximate canonical equilibrium
is achieved after the rapid mixing phase that produces
the entropy. There is an essential difference between the
present collisionless chaotic system and the usual col-
lisional system. The former system can absorb energy
from the rf electric field in the first mixing phase, while
the energy saturates and an approximate equilibrium state
appears. In the latter case, however, unceasing heating
must occur when we continue to apply an rf electric field
without assuming an energy loss mechanism. The com-
bination of the chaos effect due to the inhomogeneous
magnetic field and the inelastic collision effect yields an [8]
enhanced resistance. Inelastic collisions open a sink of
energy (entropy) in the high-energy region of the veloc-
ity space. This nonequilibrium system is characterized by
the cascade process driven by the mixing effect. The en-
ergy dissipation is determined by the speed of the cascade,
which is scaled by the Lyapunov exponent, and the energy
removal rate in the sink region.
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Chaotic motion occurs in the magnetic null regidf|(=

1), where B, varies from zero to the order df.. This
strong inhomogeneity a8, yields a strong nonlinearity of
electron motion. In the magnetic null region, the velocity
%', which is amenable to the electric field | = 0(1),

is of order unity, and, hence, the length scale of the orbit
must be of order unity. Such a particle cannot describe
a cyclotron orbit because of the strong inhomogeneity
of the magnetic field, and it is unmagnetized (Fig. 1).
The local cyclotron frequency varies along the orbit,
and, hence, the particle motion does not have a definite
frequency. The cyclotron resonance cannot occur. The
heating mechanism considered here is different from the
cyclotron heating. Random sequences of acceleration and
deceleration yield complex changes of the particle energy,
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For a small electric field || < 1) and small initial
velocities (&'],19'] < 1), we can linearize the equation
of motion (4) in the magnetized region. Then, the
conventional theory of particle motion applies. Let=

%0(1 + %) with 2y = const. We assume thatis small.
With choosing C = %§/2, which corresponds to the
“gradient B drift velocity,” we can linearize (4) a&’
—%0% + aexpif), where a = —(Z, +iZ,)/%. We
obtain () = aexp(i?)/(3] — 1). For many particles
with random phases, the ensemble average of the energy
achieves equilibrium, if the cyclotron resonand&,|(=
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York, 1983).
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