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Nonlinear Competition between Small and Large Hexagonal Patterns
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Recent experiments by Kudrolli, Pier, and Gollub [Physica D (to be published)] on surface waves,
parametrically excited by two-frequency forcing, show a transition from a small hexagonal standing
wave pattern to a triangular “superlattice” pattern. We show that generically the hexagons and the
superlattice wave patterns bifurcatgnultaneouslyfrom the flat surface state as the forcing amplitude
is increased, and that the experimentally observed transition can be described by considering a
low-dimensional bifurcation problem. A number of predictions come out of this general analysis.
[S0031-9007(98)07195-6]

PACS numbers: 47.54.+r, 47.20.Ky

In recent years there has been considerable interest lam, with single frequency forcing, the first modes to lose
pattern formation in spatially extended nonequilibrium sys-stability with increased acceleration are subharmonic with
tems [1]. These studies have identified universal mechaespect to the vibration frequency [7]. With two frequen-
nisms for the formation of certain patterns. For instancecies, harmonic response can occur [8,9]. The triangular
the origin of the ubiquitous hexagonal pattern can be traceduperlattice pattern in Fig. 1 was obtained with an accel-
to a symmetry-breaking instability of a spatially homoge-eration f(z) = a[cody)cod6w?) + sin(y)cog7wt +
neous state that occurs in the presence of Euclidean syrd)]. In the experiments, a hexagonal standing wave
metry. In this Letter we use similar ideas to investigate gpattern is produced at the onset of instability, then, as the
family of hexagonal and triangular patterns which are borracceleration is increased, there is a transition to the super-
in the same instability that gives rise to simple hexagonslattice pattern in Fig. 1 [4]. Comparison of the Fourier
but have structure on two disparate length scales [2,3]. Kuransform of the onset hexagons and the superlattice
drolli et al. [4] call such structures “superlattice patterns”; patterns reveals that the new state is formed from the non-
Fig. 1 gives two examples. Current interest in superlatlinear interaction of twelve prominent Fourier modes with
tice patterns is sparked by recent observations of their fowave numbelk. that lie on a hexagonal lattice with fun-
mation in experiments on parametrically excited surfacelamental wave number.//7. In this Letter we address
waves [4] and in nonlinear optics [5], as well as in a studythe transition between hexagons and superlattice patterns
of Turing patterns in reaction-diffusion systems [6]. by considering a degenerate bifurcation problem akin to

In this Letter we show that superlattice patterns can aristhat which explains the transition between hexagons and
directly from the spatially uniform state via a transcriti- rolls in many systems. A number of concrete predictions
cal bifurcation. Moreover, this occurs in generic pattern-about the form, origin, and stability of the superlattice
forming systems with onlpneunstable wave number. We patterns come out of this symmetry-based analysis.
show that the triangular superlattice pattern differs from The experimentally observed patterns are put into a
simple patterns such as hexagons and complex quasipdheoretical framework by restricting to solutions that tile
terns, because it is characterizeddmthan amplitude and the plane in a hexagonal fashion. The time-periodic
a phasewhich depend on the distance from the bifurca-forcing leads us to a formulation in terms of a stroboscopic
tion point. In order to investigate the phase we find thatmap. Since we seek spatially periodic solutions, we
it is necessary to include high order resonant interactiomxpress all fields in terms of double Fourier series; for
terms in the amplitude equations. When these terms amxample, the free surface height, at time mT, is
neglected the problem becomes degenerate and superlattice
patterns such as those in Fig. 1 become just two isolated Zn(X) = Re Z W (mT)ei ki nka)x (1)
examples in a continuum of states with varying symme- " " ’
try. Thus high order terms are essential to understanding

neZ?

superlattice patterns. whereT is the forcing period. We obtain patterns periodic
While much of our analysis is quite general, our presenon a hexagonal Iattilce whday, k, satisfy k| = |k,| =
tation focuses on the recent experiments of [4], in whichk and k; - k, = —5k%. A standardansatzin pattern

surface waves are parametrically excited by subjecting aelection problems is to skt= k., wherek. is the critical
fluid layer to a periodic vertical acceleration involving two wave number of the instability. However, here we want to
rationally related frequencies. In the classic Faraday prohinvestigate competition between small and large hexagonal
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FIG. 1. On the left is a blowup of the experimental superlattice standing wave pattern [4] (courtesy of Kudrolli, Pier, and Gollub).
We show a region with area1/30 of the circular container’s cross-sectional area. Note that the pattern is periodic on a hexagonal
lattice, and that it has triangular symmetry. On the right is a hexagonal superlattice Turing pattern obtained from a numerical
integration of a reaction-diffusion system [6] (courtesy of Judd).

patterns, which we do following the approach in [3]. with one of the hexagons are excited, then the pattern
Specifically, we choos& so that twelve wave vectors periodicity is dictated by, and one recovers the standard

K, = n1ky + mk; in (1) satisfy|K,| = k., i.e., sothere six-dimensional hexagonal lattice bifurcation problem.

exists a coprime integer pait = («,8), « > 8 >0, However, if all twelve modes are excited, then the period
such that of the pattern is greater by a factor &f/k. In order

to simplify our presentation we set = 3, 8 = 2; the
— 2 2 _ =
laks + Bka| = kyfa? + B2 — aB = ke (2)  regyits for generak, 8 are similar.

2, k./k = /7. The lattice points on the critical circle lie at the flat fluid surface loses stability to harmonic waves of
the vertices of two hexagons rotated by an argtelative ~ Wave numbek, as a bifurcation parametaris increased

to each other. The angle, determined by the dot product dirough zero. Thus the Faraday instability sets in when
K; = ak; + Bk, andK, = ak; + (e — B)k,, satis- ? FloqlfJet mILJI:!plle{# crossets\,Ntr:e ulr:ut circle ag= L. W
. _ @+2a8-28 ; n our formulation there are twelve Fourier modes in
fies cogd) = ar=aprg- Ifonly those modes associated that are neutrally stable at = 0; all others are damped.
In this case the map can be reduced, near the onset
of instability, to a twelve-dimensional center manifold.
Let z;(m) be the complex amplitude, at= mT, of the
Fourier modee’™ %, with z; the amplitude ofe /%X,
Here theK; are labeled as in Fig. 2.

The possible nonlinear terms in the stroboscopic map
z(m + 1) = f(z(m)), z = (z1,...,26), are restricted by
the symmetries of the problem. The first component of
f has the general form

fi=hi(,q,Qz + ha(u,q,q7223

+ ClZ%ZZZﬁ + C221Z2Z4f§ + 0(|zl°), 3)

where u = (2112, 1z221%, |z31%, |z4l%, |251%, |z6]%), and q =

FIG. 2. Intersection of the critical circlgk| = k. with the (212223, 242526). The discrete hexagonal symmetries place
k-space hexagonal lattice generated loy, k,. In this ex- further restrictions on the functioris, 4, and deter_mlne
amplea = 3,8 = 2in (2). The wave vectorgK;,...,+K; the other components éffrom f, [3]. We note that if the
lie at the vertices of a hexagon, as ¢, ..., +Kg. resonant interaction terms, with coefficienisandc,, are
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neglected, then the phases associated with eacty =  a rotation of these patterns by changes the sign ap.
Rje'? enter the problem only through the total phasesThese solutions have structure identical to the superlattice
D =¢, + Py + d3and®, = Py + ds + Pg. As a  state described in [4]: compare the triangular superlattice
result the cubic truncation of (3) admits solutions in thepattern in Fig. 1 with that in Fig. 3. Moreover, we know
form of two hexagons rotated relative to each other bythat solutions with ca8¢) > 0 in (4) and co&¢) > 0
0 = 22° (for a« = 3,8 = 2), and translated relative to in (5) bifurcate in the same direction from the origin, as
each other byarbitrary amounts. Kudrollet al. [4] noted  do branches with cd3¢), cog3¢) < 0.
that only a restricted set of relative translations of the two Finally, we address the experimentally observed transi-
hexagons leads to a superlattice pattern with triangulaiion between the patterns in Fig. 3. Since all of the pri-
symmetry. Their phenomenological description did notmary solution branches are unstable at bifurcation, due to
however, give a mechanism for selecting a particulathe quadratic term in (3), we assume that the coefficient
shift. We now investigate an alternative description of thee of this term satisfieje| << 1. This allows us to in-
triangular superlattice pattern which has the advantage thaestigate stable small amplitude solutions and transitions
it is, in fact, consistent with the inclusion of the high order between them. If we truncate (3) at cubic order, thereby
resonant interaction terms. neglecting the high-order resonant terms, then the superlat-
We focus on patterns that have at least threefoldice patterns are at best neutrally stable. Specifically, while
rotational symmetry by restricting the problem to thewe expect a (multiplicity 2) unit multiplier associated with
subspacea(m) = (um, Um, Uy, Vi, Uy Un), Whereu,, v, translations, the extra multiplier (of multiplicity 2) results
are complex. First we recall some results about periodfrom a symmetry of théruncatedequations that allows a
one simple hexagons which satisfy,,, v,,) = (Re’#,0)  relative translation of the two rotated hexagons that make
or (0, Re’?). The amplitudeR and phaser obey up the pattern. As noted above, this symmetry is broken
0= A + eRcod30) + AR® + when the resonant terms are included; the Floquet multi-
eR cod3¢) plier u then moves off the unit circle. In particulae, >
0 = sin3¢)(—€ + BR* + ..)), (4) 1 for the superhexagons #c; + 5c; < 0 [3]. Analo-

) . . gously, we can show that < 1 for the triangular super-
where €, A, and B are nonlinear coefficients that arise |attice pattern if4c; + 5¢c, < 0. Thus if the superlattice
from the Taylor expansions @f andh; in (3). The solu-  patterns armeutrally stable when the high-order resonant
tions of (4) that bifurcate from the origin at = 0 satisfy  terms are neglected, then we expect that one of them is
sin(3¢) = 0; the hexagons withp = 0, =" are related  stable and the other is, in fact, unstable. This is consistent
by translations, as are the hexagons with= 7, =3.  with the experimental observations of Kudrad al. [4]
These two sets of hexagons, “up-hexagon&”f and  who only observe the triangular superlattice pattern.
“down-hexagons” K ), form the two branches associ- |n Fig. 4, we present part of a bifurcation diagram

ated with a transcritical bifurcation. In non'BOUSSineSQassociated with the map. Specifica”y’ we keep all terms
convection, these states correspond to ones in which fluighrough cubic and the essential quintic terms:

is rising or falling at the centers of convection cells [10]. (1 + Vot + €707

Next we consider patterns involving all six modes fr=( )z + €227
z1,-.-,26, With z; = pe’”. The amplitude and phase + (ailz1l* + aslzal* + aslz3P)z;
satisfy, cf. (4),

~ + (aglzal® + aslzsl* + aslzel®)z1
0= A+ epcod3y) + Ap? + ...,

o + 1232326 + 271202475, (6)
0= sinB3y)(—e + Bp* +..)
+ (cy — 3sin2y) + ... 5 by L e L
(c1 — c2)p” sin(24) (5) ‘a® .....

. - . .
In this case there are two distinct types of solutions that # .. . .. - .

bifurcate from the origin at\ = 0, those with phase | .. ™ .. ™ .“
= 0, 7 and those withy =~ *7/3, +277/3. The phase M A
associated with the latter solutions depends on the ampli- | # .. . .. . a
tude, which in turn depends on the distance from the bi-  # .. . .. - .
furcation. The solutions withy = 0, 7 have hexagonal . .. . .. - .‘
- - - -

symmetry; in [3] they are referred to as “superhexagons.” -
As with simple hexagons, superhexagons bifurcate tranFIG. 3. Examples of patterns, periodic on a hexagonal lattice,
scritically with the two parts of the branch satisfying that bifurcate transcritically from the flat state/at= 0. These

¢ = 0andy = m, respectively. The solutions satisfying are plots of appropriate superpositions of critical Fourier modes

B . with wave vectorstKy,..., =K of Fig. 2. The plots are, left
¥ ~ *m/3,=27/3 have only triangular symmetry, and right, down-hexagonsH~) and superlattice down-triangles

are new. The triangular solutions with ~ 27/3 and  (7-)'(cf. Fig. 1). The critical wave numb, dictates the size
~ —q /3 form the two parts of a transcritical branch; of the small scale structure evident in the superlattice pattern.
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nonlinearity inherent in the imaging may also present chal-
lenges to extracting the amplitude-dependent phase that we
associate with the triangular superlattice patterns.

While the foregoing analysis shows how it is possible
to achieve the experimentally observed transitions within
a general framework, many of the specific predictions of
the analysis still need to be tested. It would be interesting
to calculate the nonlinear coefficients in (3) from the hy-
drodynamic equations to determine whether the minimal
inequalities (7) are satisfied for the experimental parame-
ters. Such computations are quite involved in the case of
two-frequency forcing of viscous fluids. However, much
progress has been made in the case of very low viscosity
fluids by Zhang and Vifals [11].

Finally, we note that all of our calculations have as-

FIG. 4. Part of the bifurcation diagram associated with thesur.ned thqt S.O|Ution.s are strictly p?riOdiC on a hexagonal
bifurcation problem (6) for-1 < € < 0. Bifurcation points atticé. This is certainly an appropriate model for observa-
are indicated by solid circles. Only branches of simpletions of superlattice patterns, but as noted in [4] quasipat-
hexagons(H=) and superlattice triangles'{) are indicated; terns are observed for other experimental parameters. A
_solid lines corre_sponq to stable solution_s. Branches produceghechanism for favoring quasipatterns by a resonant inter-
'r?otsserfg\?vﬁary bifurcations andnstableprimary branches are 5400 petween two bifurcating states with different hori-
' zontal wave numbers was proposed by Edwards and Fauve
[8], and investigated for a Swift-Hohenberg type of model
by Lifshitz and Petrich [12]. Whether a similar resonance
a; + 2a, < —lag + as + agl, mechanism is responsible for the spatially periodic super-
. . . lattice patterns is an intriguing, open question.
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framework of a generic bifurcation problem. Moreover, a
number of predictions come out of this analysis. Specifi-
cally, we find thaboththe transition between the flat state [1] For a review of pattern formation, see M.C. Cross and
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hexagons and the superlattice pattern are hysteretic, with?] 26[()1%2)2(; and M. Golubitsky, Z. Angew. Math. Physs,
thel region of bistability between hexagons and the super- 3] B. Dionne., M. Silber, and A. C. Skeldon, Nonlinearity,
lattice pattern exceeding that between hexagons and the ™ 55/ (1997).
flat state. While there is no clear detection of hysteresis|4) A, kudrolli, B. Pier, and J. P. Gollub, Physica D (Amster-
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and assume that the cubic coefficients satisfy

a — ay >
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