
VOLUME 81, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 21 SEPTEMBER1998

ingdom

2

Nonlinear Competition between Small and Large Hexagonal Patterns
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Recent experiments by Kudrolli, Pier, and Gollub [Physica D (to be published)] on surface waves,
parametrically excited by two-frequency forcing, show a transition from a small hexagonal standing
wave pattern to a triangular “superlattice“ pattern. We show that generically the hexagons and the
superlattice wave patterns bifurcatesimultaneouslyfrom the flat surface state as the forcing amplitude
is increased, and that the experimentally observed transition can be described by considering a
low-dimensional bifurcation problem. A number of predictions come out of this general analysis.
[S0031-9007(98)07195-6]
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In recent years there has been considerable interes
pattern formation in spatially extended nonequilibrium sy
tems [1]. These studies have identified universal mech
nisms for the formation of certain patterns. For instanc
the origin of the ubiquitous hexagonal pattern can be trac
to a symmetry-breaking instability of a spatially homoge
neous state that occurs in the presence of Euclidean sy
metry. In this Letter we use similar ideas to investigate
family of hexagonal and triangular patterns which are bo
in the same instability that gives rise to simple hexagon
but have structure on two disparate length scales [2,3]. K
drolli et al. [4] call such structures “superlattice patterns”
Fig. 1 gives two examples. Current interest in superla
tice patterns is sparked by recent observations of their fo
mation in experiments on parametrically excited surfac
waves [4] and in nonlinear optics [5], as well as in a stud
of Turing patterns in reaction-diffusion systems [6].

In this Letter we show that superlattice patterns can ari
directly from the spatially uniform state via a transcriti-
cal bifurcation. Moreover, this occurs in generic pattern
forming systems with onlyoneunstable wave number. We
show that the triangular superlattice pattern differs fro
simple patterns such as hexagons and complex quasip
terns, because it is characterized bybothan amplitude and
a phasewhich depend on the distance from the bifurca
tion point. In order to investigate the phase we find th
it is necessary to include high order resonant interacti
terms in the amplitude equations. When these terms
neglected the problem becomes degenerate and superla
patterns such as those in Fig. 1 become just two isola
examples in a continuum of states with varying symm
try. Thus high order terms are essential to understand
superlattice patterns.

While much of our analysis is quite general, our prese
tation focuses on the recent experiments of [4], in whic
surface waves are parametrically excited by subjecting
fluid layer to a periodic vertical acceleration involving two
rationally related frequencies. In the classic Faraday pro
450 0031-9007y98y81(12)y2450(4)$15.00
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lem, with single frequency forcing, the first modes to los
stability with increased acceleration are subharmonic wi
respect to the vibration frequency [7]. With two frequen
cies, harmonic response can occur [8,9]. The triangul
superlattice pattern in Fig. 1 was obtained with an acce
eration fstd ­ afcossxd coss6vtd 1 sinsxd coss7vt 1

fdg. In the experiments, a hexagonal standing wav
pattern is produced at the onset of instability, then, as t
acceleration is increased, there is a transition to the sup
lattice pattern in Fig. 1 [4]. Comparison of the Fourie
transform of the onset hexagons and the superlatti
patterns reveals that the new state is formed from the no
linear interaction of twelve prominent Fourier modes wit
wave numberkc that lie on a hexagonal lattice with fun-
damental wave numberkcy

p
7. In this Letter we address

the transition between hexagons and superlattice patte
by considering a degenerate bifurcation problem akin
that which explains the transition between hexagons a
rolls in many systems. A number of concrete prediction
about the form, origin, and stability of the superlattic
patterns come out of this symmetry-based analysis.

The experimentally observed patterns are put into
theoretical framework by restricting to solutions that tile
the plane in a hexagonal fashion. The time-period
forcing leads us to a formulation in terms of a stroboscop
map. Since we seek spatially periodic solutions, w
express all fields in terms of double Fourier series; fo
example, the free surface height, at timet ­ mT , is

zmsxd ­ Re

√ X
n[Z2

wnsmT deisn1k11n2k2d?x

!
, (1)

whereT is the forcing period. We obtain patterns periodi
on a hexagonal lattice whenk1, k2 satisfy jk1j ­ jk2j ­
k and k1 ? k2 ­ 2

1
2 k2. A standardansatz in pattern

selection problems is to setk ­ kc, wherekc is the critical
wave number of the instability. However, here we want t
investigate competition between small and large hexagon
© 1998 The American Physical Society



VOLUME 81, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 21 SEPTEMBER1998

ollub).
gonal
merical
FIG. 1. On the left is a blowup of the experimental superlattice standing wave pattern [4] (courtesy of Kudrolli, Pier, and G
We show a region with area,1y30 of the circular container’s cross-sectional area. Note that the pattern is periodic on a hexa
lattice, and that it has triangular symmetry. On the right is a hexagonal superlattice Turing pattern obtained from a nu
integration of a reaction-diffusion system [6] (courtesy of Judd).
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patterns, which we do following the approach in [3
Specifically, we choosek so that twelve wave vectors
Kn ­ n1k1 1 n2k2 in (1) satisfyjKnj ­ kc, i.e., so there
exists a coprime integer pairn ­ sa, bd, a . b . 0,
such that

jak1 1 bk2j ­ k
q

a2 1 b2 2 ab ­ kc . (2)

Figure 2 presents an example associated witha ­ 3, b ­
2, kcyk ­

p
7. The lattice points on the critical circle lie a

the vertices of two hexagons rotated by an angleu relative
to each other. The angle, determined by the dot produc
K1 ­ ak1 1 bk2 andK4 ­ ak1 1 sa 2 bdk2, satis-
fies cossud ­

a212ab22b2

2sa22ab1b2d . If only those modes associated

K 2

K 3 K 4k 2

1k

1KK 6

K 5

-K  1

-K  5-K  2

-K -K

-K

  4   3

  6

FIG. 2. Intersection of the critical circlejkj ­ kc with the
k-space hexagonal lattice generated byk1, k2. In this ex-
amplea ­ 3, b ­ 2 in (2). The wave vectors6K1, . . . , 6K3
lie at the vertices of a hexagon, as do6K4, . . . , 6K6.
].
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with one of the hexagons are excited, then the patte
periodicity is dictated bykc and one recovers the standar
six-dimensional hexagonal lattice bifurcation problem
However, if all twelve modes are excited, then the perio
of the pattern is greater by a factor ofkcyk. In order
to simplify our presentation we seta ­ 3, b ­ 2; the
results for generala, b are similar.

In formulating the bifurcation problem, we assume th
the flat fluid surface loses stability to harmonic waves
wave numberkc as a bifurcation parameterl is increased
through zero. Thus the Faraday instability sets in wh
a Floquet multiplierm crosses the unit circle atm ­ 1.
In our formulation there are twelve Fourier modes in (1
that are neutrally stable atl ­ 0; all others are damped.
In this case the map can be reduced, near the on
of instability, to a twelve-dimensional center manifold
Let zjsmd be the complex amplitude, att ­ mT , of the
Fourier modeeiKj ?x, with zj the amplitude ofe2iKj?x.
Here theKj are labeled as in Fig. 2.

The possible nonlinear terms in the stroboscopic m
zsm 1 1d ­ fssszsmdddd, z ; sz1, . . . , z6d, are restricted by
the symmetries of the problem. The first component
f has the general form

f1 ­ h1su, q, qdz1 1 h2su, q, qdz2z3

1 c1z2
3z2

4z6 1 c2z1z2z4z2
5 1 O sjzj6d , (3)

where u ; sjz1j
2, jz2j

2, jz3j
2, jz4j

2, jz5j
2, jz6j

2d, and q ;
sz1z2z3, z4z5z6d. The discrete hexagonal symmetries plac
further restrictions on the functionsh1, h2 and determine
the other components off from f1 [3]. We note that if the
resonant interaction terms, with coefficientsc1 andc2, are
2451
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neglected, then the phasesfj associated with eachzj ;
Rjeifj enter the problem only through the total phase
F1 ; f1 1 f2 1 f3 andF2 ; f4 1 f5 1 f6. As a
result the cubic truncation of (3) admits solutions in th
form of two hexagons rotated relative to each other b
u ø 22± (for a ­ 3, b ­ 2), and translated relative to
each other byarbitrary amounts. Kudrolliet al. [4] noted
that only a restricted set of relative translations of the tw
hexagons leads to a superlattice pattern with triangu
symmetry. Their phenomenological description did no
however, give a mechanism for selecting a particul
shift. We now investigate an alternative description of th
triangular superlattice pattern which has the advantage t
it is, in fact, consistent with the inclusion of the high orde
resonant interaction terms.

We focus on patterns that have at least threefo
rotational symmetry by restricting the problem to th
subspacezsmd ­ sum, um, um, ym, ym, ymd, whereum, ym

are complex. First we recall some results about perio
one simple hexagons which satisfysum, ymd ­ sReiw , 0d
or s0, Reiwd. The amplitudeR and phasew obey

0 ­ l 1 eR coss3wd 1 AR2 1 . . . ,

0 ­ sins3wd s2e 1 BR2 1 . . .d , (4)

where e, A, and B are nonlinear coefficients that arise
from the Taylor expansions ofh1 andh2 in (3). The solu-
tions of (4) that bifurcate from the origin atl ­ 0 satisfy
sins3wd ­ 0; the hexagons withw ­ 0, 6

2p

3 are related
by translations, as are the hexagons withw ­ p, 6

p

3 .
These two sets of hexagons, “up-hexagons” (H1) and
“down-hexagons” (H2), form the two branches associ-
ated with a transcritical bifurcation. In non-Boussines
convection, these states correspond to ones in which fl
is rising or falling at the centers of convection cells [10].

Next we consider patterns involving all six mode
z1, . . . , z6, with zj ­ reic . The amplitude and phase
satisfy, cf. (4),

0 ­ l 1 er coss3cd 1 eAr2 1 . . . ,

0 ­ sins3cd s2e 1 eBr2 1 . . .d

1 sc1 2 c2dr3 sins2cd 1 . . . . (5)

In this case there are two distinct types of solutions th
bifurcate from the origin atl ­ 0, those with phase
c ­ 0, p and those withc ø 6py3, 62py3. The phase
associated with the latter solutions depends on the amp
tude, which in turn depends on the distance from the b
furcation. The solutions withc ­ 0, p have hexagonal
symmetry; in [3] they are referred to as “superhexagons
As with simple hexagons, superhexagons bifurcate tra
scritically with the two parts of the branch satisfying
c ­ 0 andc ­ p, respectively. The solutions satisfying
c ø 6py3, 62py3 have only triangular symmetry, and
are new. The triangular solutions withc ø 2py3 and
c ø 2py3 form the two parts of a transcritical branch
2452
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a rotation of these patterns byp changes the sign ofc.
These solutions have structure identical to the superlatti
state described in [4]: compare the triangular superlattic
pattern in Fig. 1 with that in Fig. 3. Moreover, we know
that solutions with coss3wd . 0 in (4) and coss3cd . 0
in (5) bifurcate in the same direction from the origin, as
do branches with coss3wd, coss3cd , 0.

Finally, we address the experimentally observed trans
tion between the patterns in Fig. 3. Since all of the pri
mary solution branches are unstable at bifurcation, due
the quadratic term in (3), we assume that the coefficie
e of this term satisfiesjej ø 1. This allows us to in-
vestigate stable small amplitude solutions and transition
between them. If we truncate (3) at cubic order, thereb
neglecting the high-order resonant terms, then the superl
tice patterns are at best neutrally stable. Specifically, whi
we expect a (multiplicity 2) unit multiplier associated with
translations, the extra multiplier (of multiplicity 2) results
from a symmetry of thetruncatedequations that allows a
relative translation of the two rotated hexagons that mak
up the pattern. As noted above, this symmetry is broke
when the resonant terms are included; the Floquet mul
plier m then moves off the unit circle. In particular,m .

1 for the superhexagons if4c1 1 5c2 , 0 [3]. Analo-
gously, we can show thatm , 1 for the triangular super-
lattice pattern if4c1 1 5c2 , 0. Thus if the superlattice
patterns areneutrallystable when the high-order resonan
terms are neglected, then we expect that one of them
stable and the other is, in fact, unstable. This is consiste
with the experimental observations of Kudrolliet al. [4]
who only observe the triangular superlattice pattern.

In Fig. 4, we present part of a bifurcation diagram
associated with the map. Specifically, we keep all term
through cubic and the essential quintic terms:

f1 ­ s1 1 ldz1 1 ez2z3

1 sa1jz1j
2 1 a2jz2j

2 1 a2jz3j
2dz1

1 sa4jz4j
2 1 a5jz5j

2 1 a6jz6j
2dz1

1 c1z2
3z2

4z6 1 c2z1z2z4z2
5 , (6)

FIG. 3. Examples of patterns, periodic on a hexagonal lattic
that bifurcate transcritically from the flat state atl ­ 0. These
are plots of appropriate superpositions of critical Fourier mode
with wave vectors6K1, . . . , 6K6 of Fig. 2. The plots are, left
to right, down-hexagons (H2) and superlattice down-triangles
(T2) (cf. Fig. 1). The critical wave numberkc dictates the size
of the small scale structure evident in the superlattice pattern.



VOLUME 81, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 21 SEPTEMBER1998

al-
we

le
in
of
ng
-
al
e-
of

h
ity

-
al

a-
at-

A
er-
i-
uve
el
e

er-

H.
l
ant
ed
e
C

d

-

i,

;

d

s.
H_

T_

T+

H+

FIG. 4. Part of the bifurcation diagram associated with th
bifurcation problem (6) for21 ø e , 0. Bifurcation points
are indicated by solid circles. Only branches of simpl
hexagonssH6d and superlattice triangles (T6) are indicated;
solid lines correspond to stable solutions. Branches produc
in secondary bifurcations andunstableprimary branches are
not shown.

and assume that the cubic coefficients satisfy

a1 1 2a2 , 2ja4 1 a5 1 a6j ,

a2 2 a1 .

s
sa4 2 a5d2 1 sa4 2 a6d2 1 sa5 2 a6d2

2
,

(7)

with 4c1 1 5c2 , 0. Conditions (7) ensure that super
lattice patterns eventually supersede the simple hexago
and that the stripe pattern is never stabilized.

This example demonstrates that it is possible to r
produce the type of transition reported in [4] within the
framework of a generic bifurcation problem. Moreover,
number of predictions come out of this analysis. Speci
cally, we find thatboth the transition between the flat state
and the small hexagons and the transition between
hexagons and the superlattice pattern are hysteretic, w
the region of bistability between hexagons and the sup
lattice pattern exceeding that between hexagons and
flat state. While there is no clear detection of hysteres
in the experiments, the transition from hexagons to the s
perlattice pattern is reported to occur via domains of th
superlattice pattern growing, with increased acceleratio
until they fill the container [4]. Coexisting domains o
different patterns is a common manifestation of bistabilit
of patterns in extended systems. Another prediction th
comes out of our analysis is that fore , 0 the transition is
between the down states depicted in Fig. 3, while ife . 0
the transition is between up states. While in Rayleig
Bénard convection there is a clear distinction between
and down states; this distinction may be a subtle one in t
Faraday experiment since standard imaging techniques r
on reflection of light from the surface of the fluid, so tha
surface peaks are not distinguishable from troughs. T
e

e

ed

-
ns,

e-

a
fi-

the
ith

er-
the
is
u-
e
n,

f
y
at

h-
up
he
ely
t
he

nonlinearity inherent in the imaging may also present ch
lenges to extracting the amplitude-dependent phase that
associate with the triangular superlattice patterns.

While the foregoing analysis shows how it is possib
to achieve the experimentally observed transitions with
a general framework, many of the specific predictions
the analysis still need to be tested. It would be interesti
to calculate the nonlinear coefficients in (3) from the hy
drodynamic equations to determine whether the minim
inequalities (7) are satisfied for the experimental param
ters. Such computations are quite involved in the case
two-frequency forcing of viscous fluids. However, muc
progress has been made in the case of very low viscos
fluids by Zhang and Viñals [11].

Finally, we note that all of our calculations have as
sumed that solutions are strictly periodic on a hexagon
lattice. This is certainly an appropriate model for observ
tions of superlattice patterns, but as noted in [4] quasip
terns are observed for other experimental parameters.
mechanism for favoring quasipatterns by a resonant int
action between two bifurcating states with different hor
zontal wave numbers was proposed by Edwards and Fa
[8], and investigated for a Swift-Hohenberg type of mod
by Lifshitz and Petrich [12]. Whether a similar resonanc
mechanism is responsible for the spatially periodic sup
lattice patterns is an intriguing, open question.
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