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We show that systems with a first integral (i.e., a constant of motion) or a Lyapunov function can
be written as “linear-gradient systems;"= L(x)VV(x), for an appropriate matrix functioh, with a
generalization to several integrals or Lyapunov functions. The discrete-time adalggs = LVV,
where V is a “discrete gradient,” preserveés as an integral or Lyapunov function, respectively.
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I. INTRODUCTION (i) Poisson systems: Poisson systems also occur very

Integrals and Lyapunov functions—quantities that are]fcr;?nuiniy ('? (f)ry;'(is) (EL]’EA[I'\E’P ) \}vi;e[rze])\./ (ghgéaﬁﬁvget_he

conserved or dissipated, respectively—are fundamental i N . >
) . , ._notes the Hamiltonian function and the Poisson struc-
dynamics. They severely constrain the system’s evolution : : X vl
. . . =~ ture Q(x) is an antisymmetric matrix(}’(x) = —Q(x)],
and can be used to establish stability. There is no unlvers-atisfyin the Jacobi identit® 49, Qe + QocdeQyr +
sal method to find such quantities, but if they are knowni;y kakﬂge — 0 JH Ok ZEm e Ok=Emj
m ] .

(e.g., on physical grounds), we show that the system CaExample 2. The equations of motion of a free rigid body

be presented in a universal form which makes the con- . S ;
. S . with moments of inertid;, I, and/; form a Poisson sys-
servation (dissipation) property manifest. Although ele- : 3 .
. . - tem with angular momentum € R~ and Poisson structure

mentary, this result is very general and will find many

applications: Here we use it to preserve the conservation 0

X3 —X
(dissipation) property under time discretization. Q) = | —x3 (; xlz (1)
We start with the definition and an example of each of x» —x; O

the classes of systems covered in this Letter.

(i) Hamiltonian systems: Hamiltonian systems areand HamiltoniarnV (x) = %Zlexiz/],- [1]. [Actually this
ubiquitous in physics [1]. They have the form=  isanexample of a so-called Lie-Poisson structure, in which
JVV(x); x € R*", whereV(x) denotes the Hamiltonian ((x) is a linear function.]

function; andJ := ( 0 Id ) where Id denotes the iden- (i_ii) Systems with a.first integral: The_ ordi.nary differ-
tity matrix in R” —ld 0 ential equation (ODE} = f(x), x € R", is said to have

: P . the first integralV if dV(x)/dt = 0.
Example 1. A simple Hamiltonian system is the pen-
dulum [1] % = x», i = —sin(x;); here n = 1 and Example 3. A Lotka-Volterra system [3]. The ODE

Vixi,x) = %x% — cogx). X1 =¢e% xp=e" +e% x3=Be" +e2, (2
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whereB is a parameter, possesses the integral Then for all {x | VV(x) # 0} there exists a locally
T o boundedC” matrix L(x) such that the ODE (5) can be
Vi, xo,x3) = e B —x) —x. () rawitten in the linear-gradient form

(iv) Gradient systems: Gradient systems arise, e.g.,

in dynamical systems theory [4]. They are described by * =LAV, ©

x = -VV(x), x € R". where

Example 4. The systemy; = —2x(x; — 1) (2x; — 1), (@) L(x) is an antisymmetric matrix, respectively
X, = —2x, is a gradient system [4] with = 2 and (resp.)

V(xi,x) = xi(x — 1) + 3. i

(b) L(x) is a negative semidefinite matrix, resp.,
() L(x)is a negative definite matrix.
Some remarks:

(v) Systems with a Lyapunov function: The ODE
x = f(x), x € R", is said to possess the Lyapunov func-

tion V' if aV(x)/dr = 0. These functions were introduced ;= A \jorse function is a function whose critical points

by Lyapunov [5] and are a crucial ingredien; of his d' are all nondegenerate. A negative semidefinite matiix
rect or second method in the study of dynamical stability, \+rix such thab'Lv = 0 for all vectorsy. A negative
[6,7]. Some sufficient conditions for the existence of ajqfinite matrixZ. is a matrix such thab'Lv < 0 for all

Lyapunov function are given in [8].

nonzero vectors.
Example 5. [9]

2. Under a coordinate transformation— C(x) we

X1 = —x — 3, Y= x — X (4) haveL(x)+— Z(x)_ = dC(x)L(x)[dC(x)]. This implies
_ 5 5 that the theorem is invariant under coordinate transforma-
has the Lyapunov functiol (x;, x2) = xi + x3. tions becausd. is antisymmetric, negative semidefinite,

What do the above five classes of dynamical systemgesp_, negative definite if and only if is.

have in common? A preliminary answer would be that 3 The theorem has a converse: If an ODE is in linear-
they all possess a function(x) such that?V(x)/dt = 0.  gradient form (6) withL antisymmetric, resp., negative
That is, classes (i), (i), and (iii) each possess a functiorsemidefinite, resp., negative definite, tHéfis an integral,
V(x) such thatdV(x)/dt = 0, and classes (iv) and (V) resp., weak Lyapunov function, resp., strong Lyapunov
each possess a functidf{x) such thadV (x)/dr < 0. function.

In Sect. 2 we announce the result that classes of 4 |f the sign ofdV /dr (zero, nonpositive, or negative)
systems (i) to (v) have even more in common: undeidepends o, thenL can be chosen to be antisymmetric,
some mild technical assumptions, they can all be writtetegative semidefinite, or negative definite, respectively,
as special cases of the novel class of “linear-gradienjepending on. The type of representation is not unique:
SyStemS." In Sect. 3 we show how these Iinear'gradienAt points Wher&ZV/dt =0, L can be chosen to be either
systems can be integrated numerically in such a way thg{ntisymmetric or negative semidefinite.

V(x) is constant or nonincreasing, as appropriate. 5. A particularL(x) satisfying the requirements of the

An extended version of this work, including proofs of theorem is
the results presented here, is given in [10].

fivi — vifj + 8ij 2 frvk

Il. LINEAR-GRADIENT SYSTEMS Lijte) = S o2 ’ %
Our main result is the following:
Theorem 1. Let the ODE g wherev; = 9V /dx;. However,L in (6) yielding (5) is
' ' not unique. In particular, under further mild technical
x = f(x), fec, (5)  conditions, there is ah which extends smoothly through

critical points ofV.
6. The fact that all systems with an integral can be
dv written in the skew-gradient form = L(x)VV(x) was,
(a) ar 0, as far as we know, first published in [11]. The general
case is new, although the special case of the converse with
L(x) symmetric negative definite is well known and forms

possess &’ ! Morse functionV (x), where

i.e.,V is an integral; or

dv the subject of “generalized gradient systems” in dynami-
(b) ar =0, cal systems [4]. Special cases corresponding to a matrix
_ _ _ L, which is the sum of a skew, Poisson part and a sym-
i.e., V is a (weak) Lyapunov function; or metric, dissipative part, are given in [12], and references
dv therein.
(c) o’ <0, The constructive proof of Theorem 1 is given in [10].

We now give some illustrative examples of the above
where f(x) # 0, i.e., V is a strong Lyapunov function. theorem.
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Example 6. Particle in 1D with friction [4]. Consider the Example 9. Here is the linear-gradient form for the ODE

ODE (4) in Example 5:
. . 9f(x) ) b
X =Xxy, Xp= _a—xl - axp, (8) (2) = (_ab a>VV(X1,X2), (14)

wherea = 0 is a coefficient of friction andf is a po- 4 42 ) ) )
tential function. Equation (8) has the energix;, x,) =  Wherea = —(xi + x3)/(xi + x3), b = —(xi + x5 +

3 3\ ) 2 2
1x3 + f(x1) as a Lyapunov function and can be written fﬁzlmatr)iil(zzi)r{((xll4)+isxa)égzt':i(\j/gdefi)rc]lit; %z. Note that
in the linear-gradient form (6) as '

({q) _ (_01 | )Vv(xl’xz)' 9) lll. DISCRETE GRADIENTS AND THE
X2 a NUMERICAL INTEGRATION OF
For @ = 0, the system is conservative and the mafkix LINEAR-GRADIENT SYSTEMS

is antisymmetric [case (a) above]. Far> 0, the sys-
tem is dissipativey is a (weak) Lyapunov function, and
L(x) is negative semidefinite [case (b) above; cf Sect. 9.
of [13]].

Example 7. An averaged system in wind-induced oscilla-
tion [6]. Consider the system

For differential equations whose time evolution has

articular structural properties, such as preservation of
agrangian structure [14], symplectic structure, phase
space volume, symmetries, or conserved quantities, it
is desirable to mimic these properties in any numerical
integration [15]. This is particularly useful in long-
X1 = —{x1 — Axo + x1x2, time integrations. One can also view the discrete-time
= Ay — o+ A0 — X2 (10)  analogs as interesting physical systems in their own right
2 : 22 [16]. Note that, in general, it is impossible to preserve
Here{ = 0is a damping factor andlis a detuning parame- symplectic structur@nd all first integrals simultaneously
ter. Guckenheimer and Holmes [6] remark that Eq. (10)17]. In this Letter we concentrate on preserving integrals
is a Hamiltonian fory = 0 and a gradient system far= (and Lyapunov functions).
0. We now show that, for all allowed values gfand A, A major application of the linear-gradient formulation
Eq. (10) can be written in linear-gradient form. To this (6) is that it has a simple and elegant discrete-time analog;
end, denoté = p cog6) andi = p sin(f). Then Eq. (10) moreover, this analog is also a universal representation for

can be written in linear-gradient forsn= LVV with systems of each class.
_cod6) —sin) Definition 1. [18] Let V(x) be a differentiable function.
= . , (11) ThenVV(x,x’) is adiscrete gradienbf V if it is continu-
sin(@) —co96)
ous and
1 1 i T
V(xy,xp) = Ep(xf + x3) — ESIh(H)(xlxg — x?l VWi x) (' —x) =V(E') — V), (15)
! 3 VV(x,x) = VV(x).
- 22
+ 2 COS(G)( 3 x1x2>. (12) Discrete gradients are not unique. Several examples of

o discrete gradients are given in [10,18,19].
Note that for the matrit. in this example we have’Lv = pefinition 2. The functionV is an integral of the map
—cog#)|v?|. Therefore, in the physical regime [where .5 \/if v(x/) = V(x), Vx. Itis a weak Lyapunov func-
¢ = 0 and hence cdg) = 0], either the matrixL is an- tjon if v(x') = V(x),Vx. Itis a strong Lyapunov function
tisymmetric andV' is an integral [for co®) = 0] or L it y(x/) < v(x) for all x such thatx # x'.
is negative definite and is a strong Lyapunov function Thegrem 2. [10] Let the mapr — x' be defined implic-
[for cog#) > 0]. [Note that, forA = ¢ = 0, we have itly by
p = 0 and we are free to chooge In this limit, the sys-
tem possesses an integial = x;x7 — xi/3, as well as Ax \x' —x
a Lyapunov functiorV, = x3/3 — xix,, andV given by (E >
Eq. (12) represents an arbitrary linear combination of these

= L(x,x',7)VV(x,x"), (16)

T

two functions.] whereVV is any discrete gradient, is a matrix function,
Example 8. Reproduced from [11], here is the linear- and = represents a time step. Theéf(x) is an integral,
gradient form for the ODE (2) in Example 3: resp., weak Lyapunov function, resp., strong Lyapunov

function of the map ifL is antisymmetric, resp., nega-

"% 0 0 ;w o tive semidefinite, resp., negative definite. Conversely, for

o (3,3 N 0 W e VV. (13) " any map with such &, and any discrete gradier¥, at

*3 en ettt et 0 points such tha¥ V (x,x’) # 0 there exists such ah that
whereV is given by Eq. (3). the map takes the form (16).
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It follows that (16) is a discrete approximation to the Vy,...,V,, can be written in the “multilinear-gradient”
linear-gradient system (6) that preserves integrals, respgfiorm
Lyapunov functions, provided the method is consistent,
i.e., L(x,x,0) = L(x). x=Lx)VVi...VV,, x€eR, (17)
Equations similar to (15) and (16) have appeared ) )
in many energy-conserving schemes for Hamiltoniavhere L(x) is an(m + 1) tensor. Structure-preserving
systems [20—23], although the first axiomatic presentatiofhtegrators for Eq. (17) have also been constructed, gen-
was [18], and the first application to all systems with anéralizing Eq. (16).

integral was [24]. (i) Associated with (multi)linear-gradient systems of
the form (17) there is also a formulation in terms of a
IV. CONCLUDING REMARKS bracket:
() In this Letter, for simplicity, we have restricted our df(x) _ (v v} (18)
discussion to the case @ine first integral or Lyapunov dt SV Vit

function. In [10] we show that am-dimensional ODE
with m = n — 1 integrals and/or Lyapunov functions where the bracket is defined by

af1 afp

= L. . , 19
i Ioh i,%,, et g ax;, (19
wherep = m + 1. This bracket satisfies the Leibnitz rule in each of its variables:
k 96
{fb-"xfj—l’d)(gl,--"gk)’fj'F]s'-',fp}L:Z(agi>{fl,-~'9fj—1$gi$fj+]s"-,fp}L, (20)
i=1
!
j=1,...,p. Conversely, the tensdr is defined by the  [1] V.I. Arnold, Mathematical Methods of Classical Mechan-
fundamental brackets;, . ; = {x;....,x; }.. Itfollows ics (Springer, New York, 1989), 2nd ed. . _
that V(x) is an integral, resp., weak Lyapunov function, [2] P.J. Olver, Applications of Lie Groups to Differential
resp., strong Lyapunov function of the (multi)linear- Equations(Springer, New York, 1993), 2nd ed.
gradient system (17) if and only i = 0 Vx, resp., [3 2' Gl‘rammat'gog’ JwMO.”"?]'O”aEn';rH A. Rarxan" Jd-M'
W < 0 Vx, resp.,W < 0 for all x such tha{VV (x)| # 0, trelcyn, and S. Wojciechowski, Physica (Amsterdam)

163A, 683 (1990).
[4] Morris Hirsch and Stephen Smalbjfferential Equations,
Dynamical Systems, and Linear Algel{fscademic Press,

whereW ={V,Vy,..., V.. It also follows thatV is an
integral (resp., Lyapunov function) of the system (17) if

and only ifV; is an integral (resp., Lyapunov function) of New York, 1974).
the system [5] A.M. Lyapunov, The General Problem of the Stability of
x = L(x)VV, VYV VYV VY, (21) Motion (Taylor & Francis, London, 1992).
where [6] J. Guckenheimer and P. Holmeaspnlinear Oscillations,
- Dynamical Systems, and Bifurcations of Vector Fields,
Lil ..... 1+ Vi = L tedn - (22) (Springer, New York, 1983).
Special cases of the bracket (19) are the Poisson brackdf] N. Rouche, P. Habets, and M. LaLoStability Theory by
and the Nambu bracket [25]. Liapunov’s Direct MethodSpringer, New York, 1977).

(iii) It will be interesting to investigate whether there [8] Taro Yoshizawa,Stability Theory by Liapunov’s Second
are topological obstacles to carrying over the results of MﬁthOd (Mathematical Society of Japan, Tokyo, 1966),
this paper to the case of non-Euclidean phase spaces. Chap. 5.

. . [9] D.A. SanchezOrdinary Differential Equations and Sta-
(iv) We hope to address the numerical order of accuracy bility Theory (Freeman, San Francisco, 1968).

of the integrator (16) in a forthcoming publication. [10] R.I. McLachlan, G.R.W. Quispel, and N. Robidoux,
Philos. Trans. R. Soc. London A (to be published).
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