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We show that systems with a first integral (i.e., a constant of motion) or a Lyapunov function can
be written as “linear-gradient systems,”Ùx ­ Lsxd=V sxd, for an appropriate matrix functionL, with a
generalization to several integrals or Lyapunov functions. The discrete-time analog,DxyDt ­ L=V ,
where = is a “discrete gradient,” preservesV as an integral or Lyapunov function, respectively.
[S0031-9007(98)07076-8]
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I. INTRODUCTION

Integrals and Lyapunov functions—quantities that ar
conserved or dissipated, respectively—are fundamental
dynamics. They severely constrain the system’s evolutio
and can be used to establish stability. There is no unive
sal method to find such quantities, but if they are know
(e.g., on physical grounds), we show that the system c
be presented in a universal form which makes the co
servation (dissipation) property manifest. Although ele
mentary, this result is very general and will find many
applications: Here we use it to preserve the conservati
(dissipation) property under time discretization.

We start with the definition and an example of each o
the classes of systems covered in this Letter.

(i) Hamiltonian systems: Hamiltonian systems ar
ubiquitous in physics [1]. They have the formÙx ­
J=V sxd; x [ R2n, whereV sxd denotes the Hamiltonian

function; andJ :=
≥ 0 Id

2Id 0

¥
, where Id denotes the iden-

tity matrix in Rn.
Example 1. A simple Hamiltonian system is the pen-
dulum [1] Ùx1 ­ x2, Ùx2 ­ 2 sinsx1d; here n ­ 1 and
V sx1, x2d ­

1
2 x2

2 2 cossx1d.
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(ii) Poisson systems: Poisson systems also occur ve
frequently in physics ([1], App. 14; [2]). They have the
form Ùx ­ Vsxd=V sxd, x [ Rn, where V sxd again de-
notes the Hamiltonian function and the Poisson stru
ture Vsxd is an antisymmetric matrix [Vtsxd ­ 2Vsxd],
satisfying the Jacobi identityVjk≠kV,m 1 V,k≠kVmj 1

Vmk≠kVj, ­ 0.
Example 2. The equations of motion of a free rigid body
with moments of inertiaI1, I2, andI3 form a Poisson sys-
tem with angular momentumx [ R3 and Poisson structure

Vsxd ­

0B@ 0 x3 2x2
2x3 0 x1
x2 2x1 0

1CA (1)

and HamiltonianV sxd ­ 1
2

P3
i­1 x2

i yIi [1]. [Actually this
is an example of a so-called Lie-Poisson structure, in whic
Vsxd is a linear function.]

(iii) Systems with a first integral: The ordinary differ-
ential equation (ODE)Ùx ­ fsxd, x [ Rn, is said to have
the first integralV if dV sxdydt ­ 0.
Example 3. A Lotka-Volterra system [3]. The ODE

Ùx1 ­ ex3 , Ùx2 ­ ex1 1 ex3 , Ùx3 ­ Bex1 1 ex2 , (2)
© 1998 The American Physical Society 2399
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whereB is a parameter, possesses the integral

V sx1, x2, x3d ­ ex22x1 1 Bsx2 2 x1d 2 x3 . (3)

(iv) Gradient systems: Gradient systems arise, e.
in dynamical systems theory [4]. They are described
Ùx ­ 2=V sxd, x [ Rn.
Example 4. The systemÙx1 ­ 22x1sx1 2 1d s2x1 2 1d,
Ùx2 ­ 22x2 is a gradient system [4] withn ­ 2 and
V sx1, x2d ­ x2

1sx1 2 1d2 1 x2
2 .

(v) Systems with a Lyapunov function: The ODE
Ùx ­ fsxd, x [ Rn, is said to possess the Lyapunov func
tion V if dV sxdydt # 0. These functions were introduced
by Lyapunov [5] and are a crucial ingredient of his d
rect or second method in the study of dynamical stabili
[6,7]. Some sufficient conditions for the existence of
Lyapunov function are given in [8].
Example 5. [9]

Ùx1 ­ 2x2 2 x3
1 , Ùx2 ­ x1 2 x3

2 (4)

has the Lyapunov functionV sx1, x2d ­ x2
1 1 x2

2 .
What do the above five classes of dynamical syste

have in common? A preliminary answer would be th
they all possess a functionV sxd such thatdV sxdydt # 0.
That is, classes (i), (ii), and (iii) each possess a functi
V sxd such thatdV sxdydt ; 0, and classes (iv) and (v)
each possess a functionV sxd such thatdV sxdydt # 0.

In Sect. 2 we announce the result that classes
systems (i) to (v) have even more in common: und
some mild technical assumptions, they can all be writt
as special cases of the novel class of “linear-gradie
systems.” In Sect. 3 we show how these linear-gradie
systems can be integrated numerically in such a way t
V sxd is constant or nonincreasing, as appropriate.

An extended version of this work, including proofs o
the results presented here, is given in [10].

II. LINEAR-GRADIENT SYSTEMS

Our main result is the following:
Theorem 1. Let the ODE,

Ùx ­ fsxd , f [ Cr , (5)

possess aCr11 Morse functionV sxd, where

sad
dV
dt

­ 0 ,

i.e., V is an integral; or

sbd
dV
dt

# 0 ,

i.e., V is a (weak) Lyapunov function; or

scd
dV
dt

, 0 ,

where fsxd fi 0, i.e., V is a strong Lyapunov function.
2400
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Then for all hx j =V sxd fi 0j there exists a locally
boundedCr matrix Lsxd such that the ODE (5) can be
rewritten in the linear-gradient form

Ùx ­ Lsxd=V sxd , (6)

where
(a) Lsxd is an antisymmetric matrix, respectively

(resp.),
(b) Lsxd is a negative semidefinite matrix, resp.,
(c) Lsxd is a negative definite matrix.
Some remarks:
1. A Morse function is a function whose critical point

are all nondegenerate. A negative semidefinite matrixL is
a matrix such thatytLy # 0 for all vectorsy. A negative
definite matrixL is a matrix such thatytLy , 0 for all
nonzero vectorsy.

2. Under a coordinate transformationx ° Csxd we
have Lsxd ° L̃sxd := dCsxdLsxd fdCsxdgt. This implies
that the theorem is invariant under coordinate transform
tions becausẽL is antisymmetric, negative semidefinite
resp., negative definite if and only ifL is.

3. The theorem has a converse: If an ODE is in linea
gradient form (6) withL antisymmetric, resp., negative
semidefinite, resp., negative definite, thenV is an integral,
resp., weak Lyapunov function, resp., strong Lyapun
function.

4. If the sign ofdVydt (zero, nonpositive, or negative)
depends onx, thenL can be chosen to be antisymmetric
negative semidefinite, or negative definite, respective
depending onx. The type of representation is not unique
At points wheredVydt ­ 0, L can be chosen to be eithe
antisymmetric or negative semidefinite.

5. A particularLsxd satisfying the requirements of the
theorem is

Lijsxd ­
fiyj 2 yifj 1 dij

P
fkykP

y
2
k

, (7)

whereyj ­ ≠Vy≠xj . However,L in (6) yielding (5) is
not unique. In particular, under further mild technica
conditions, there is anL which extends smoothly through
critical points ofV .

6. The fact that all systems with an integral can b
written in the skew-gradient formÙx ­ Lsxd=V sxd was,
as far as we know, first published in [11]. The gener
case is new, although the special case of the converse w
Lsxd symmetric negative definite is well known and form
the subject of “generalized gradient systems” in dynam
cal systems [4]. Special cases corresponding to a ma
L, which is the sum of a skew, Poisson part and a sy
metric, dissipative part, are given in [12], and referenc
therein.

The constructive proof of Theorem 1 is given in [10
We now give some illustrative examples of the abov
theorem.
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Example 6. Particle in 1D with friction [4]. Consider the
ODE

Ùx ­ x2 , Ùx2 ­ 2
≠fsx1d

≠x1
2 ax2 , (8)

where a $ 0 is a coefficient of friction andf is a po-
tential function. Equation (8) has the energyV sx1, x2d ­
1
2 x2

2 1 fsx1d as a Lyapunov function and can be written
in the linear-gradient form (6) asµ

Ùx1
Ùx2

∂
­

µ
0 1

21 2a

∂
=V sx1, x2d . (9)

For a ­ 0, the system is conservative and the matrixL
is antisymmetric [case (a) above]. Fora . 0, the sys-
tem is dissipative,V is a (weak) Lyapunov function, and
Lsxd is negative semidefinite [case (b) above; cf Sect. 9
of [13]].
Example 7. An averaged system in wind-induced oscilla
tion [6]. Consider the system

Ùx1 ­ 2zx1 2 lx2 1 x1x2 ,

Ùx2 ­ lx1 2 z x2 1
1
2 sx2

1 2 x2
2d .

(10)

Herez $ 0 is a damping factor andl is a detuning parame-
ter. Guckenheimer and Holmes [6] remark that Eq. (10
is a Hamiltonian forz ­ 0 and a gradient system forl ­
0. We now show that, for all allowed values ofz andl,
Eq. (10) can be written in linear-gradient form. To this
end, denotez ­ r cossud andl ­ r sinsud. Then Eq. (10)
can be written in linear-gradient formÙx ­ L=V with

L ­

µ
2cossud 2sinsud
sinsud 2cossud

∂
, (11)

V sx1, x2d ­
1
2

r
°
x2

1 1 x2
2

¢
2

1
2

sinsud

√
x1x2

2 2
x3

1

3

!

1
1
2

cossud

√
x3

2

3
2 x2

1x2

!
. (12)

Note that for the matrixL in this example we haveytLy ­
2cossudjy2j. Therefore, in the physical regime [where
z $ 0 and hence cossud $ 0], either the matrixL is an-
tisymmetric andV is an integral [for cossud ­ 0] or L
is negative definite andV is a strong Lyapunov function
[for cossud . 0]. [Note that, for l ­ z ­ 0, we have
r ­ 0 and we are free to chooseu. In this limit, the sys-
tem possesses an integralV1 ­ x1x2

2 2 x3
1y3, as well as

a Lyapunov functionV2 ­ x3
2y3 2 x2

1x2, andV given by
Eq. (12) represents an arbitrary linear combination of the
two functions.]
Example 8. Reproduced from [11], here is the linear-
gradient form for the ODE (2) in Example 3:0B@ Ùx1

Ùx2
Ùx3

1CA ­

0B@ 0 0 2ex3

0 0 2ex1 2 ex3

ex3 ex1 1 ex3 0

1CA=V , (13)

whereV is given by Eq. (3).
.4
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Example 9. Here is the linear-gradient form for the ODE
(4) in Example 5:µ

Ùx1
Ùx2

∂
­

µ
a b

2b a

∂
=V sx1, x2d , (14)

wherea ­ 2sx4
1 1 x4

2dysx2
1 1 x2

2d, b ­ 2sx2
1 1 x2

2 1

x2x3
1 2 x1x3

2dysx2
1 1 x2

2d, and V ­ x2
1 1 x2

2 . Note that
the matrixL in (14) is negative definite.

III. DISCRETE GRADIENTS AND THE
NUMERICAL INTEGRATION OF
LINEAR-GRADIENT SYSTEMS

For differential equations whose time evolution ha
particular structural properties, such as preservation
Lagrangian structure [14], symplectic structure, pha
space volume, symmetries, or conserved quantities
is desirable to mimic these properties in any numeric
integration [15]. This is particularly useful in long-
time integrations. One can also view the discrete-tim
analogs as interesting physical systems in their own rig
[16]. Note that, in general, it is impossible to preserv
symplectic structureand all first integrals simultaneously
[17]. In this Letter we concentrate on preserving integra
(and Lyapunov functions).

A major application of the linear-gradient formulatio
(6) is that it has a simple and elegant discrete-time anal
moreover, this analog is also a universal representation
systems of each class.
Definition 1. [18] Let V sxd be a differentiable function.
Then=V sx, x0d is a discrete gradientof V if it is continu-
ous and

=V sx, x0d sx0 2 xd ­ V sx0d 2 V sxd ,

=V sx, xd ­ =V sxd .
(15)

Discrete gradients are not unique. Several examples
discrete gradients are given in [10,18,19].
Definition 2. The functionV is an integral of the map
x ° x0 if V sx0d ­ V sxd, ;x. It is a weak Lyapunov func-
tion if V sx0d # V sxd, ;x. It is a strong Lyapunov function
if V sx0d , V sxd for all x such thatx fi x0.
Theorem 2. [10] Let the mapx ° x0 be defined implic-
itly by µ

Dx
Dt

­

∂
x0 2 x

t
­ L̃sx, x0, td=V sx, x0d , (16)

where=V is any discrete gradient,̃L is a matrix function,
and t represents a time step. ThenV sxd is an integral,
resp., weak Lyapunov function, resp., strong Lyapun
function of the map ifL̃ is antisymmetric, resp., nega
tive semidefinite, resp., negative definite. Conversely,
any map with such aV , and any discrete gradient=, at
points such that=V sx, x0d fi 0 there exists such añL that
the map takes the form (16).
2401
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It follows that (16) is a discrete approximation to the
linear-gradient system (6) that preserves integrals, res
Lyapunov functions, provided the method is consisten
i.e., L̃sx, x, 0d ­ Lsxd.

Equations similar to (15) and (16) have appeare
in many energy-conserving schemes for Hamiltonia
systems [20–23], although the first axiomatic presentati
was [18], and the first application to all systems with a
integral was [24].

IV. CONCLUDING REMARKS

(i) In this Letter, for simplicity, we have restricted our
discussion to the case ofone first integral or Lyapunov
function. In [10] we show that ann-dimensional ODE
with m # n 2 1 integrals and/or Lyapunov functions
2402
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V1, . . . , Vm can be written in the “multilinear-gradient”
form

Ùx ­ Lsxd=V1 . . . =Vm, x [ Rn, (17)

where Lsxd is an sm 1 1d tensor. Structure-preserving
integrators for Eq. (17) have also been constructed, g
eralizing Eq. (16).

(ii) Associated with (multi)linear-gradient systems o
the form (17) there is also a formulation in terms of
bracket:

dfsxd
dt

­ h f, V1, . . . , VmjL , (18)

where the bracket is defined by
h f1, . . . , fpjL :=
X

i1,...,ip

Li1,...,ip

≠f1

≠xi1

. . .
≠fp

≠xip

, (19)

wherep ­ m 1 1. This bracket satisfies the Leibnitz rule in each of its variables:

h f1, . . . , fj21, fsg1, . . . , gkd, fj11, . . . , fpjL ­
kX

i­1

√
≠f

≠gi

!
h f1, . . . , fj21, gi , fj11, . . . , fpjL , (20)
)

,

,

.

)

j ­ 1, . . . , p. Conversely, the tensorL is defined by the
fundamental bracketsLi1,...,ip ­ hxi1 , . . . , xip jL. It follows
that V sxd is an integral, resp., weak Lyapunov function
resp., strong Lyapunov function of the (multi)linear
gradient system (17) if and only ifW ­ 0 ;x, resp.,
W # 0 ;x, resp.,W , 0 for all x such thatj=V sxdj fi 0,
whereW := hV , V1, . . . , VmjL. It also follows thatV is an
integral (resp., Lyapunov function) of the system (17)
and only ifVj is an integral (resp., Lyapunov function) of
the system

Ùx ­ L̃sxd=V1 . . . =Vj21=V=Vj11 . . . =Vm , (21)
where

L̃i1,...,ij21,ij ,ij11,...im
­ Lij ,...,ij21,i1,ij11,...,im . (22)

Special cases of the bracket (19) are the Poisson brac
and the Nambu bracket [25].

(iii) It will be interesting to investigate whether there
are topological obstacles to carrying over the results
this paper to the case of non-Euclidean phase spaces.

(iv) We hope to address the numerical order of accura
of the integrator (16) in a forthcoming publication.
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