Comment on "Quantum Statistical Mechanics of an Ideal Gas with Fractional Exclusion Statistics in Arbitrary Dimension"

In a recent Letter on quantum statistical mechanics of an ideal gas with fractional exclusion statistics, Iguchi [1] proved an interesting property that anyons can be regarded as composites of fermions and boson in arbitrary dimension, i.e., in an N-anyon system the thermodynamic potential Q(a, N) can be factorized in terms characteristic

of the ideal boson (a = 0) and fermion (a = 1) gases by the relation $Q(a, N) = (1 - a)Q(0, N_b) + aQ(1, N_f)$, in which $N = N_f + N_b$. In this Comment I first use high-temperature perturbation theory to point out that this relation does not exit in an arbitrary dimension. Next, I prove that in the two-dimensional N-anyon system the thermodynamic potential can be factorized as Q(a, N) = (1 - a)Q(0, N) + aQ(1, N).

First, from the anyon distribution function n = 1/(W + a), and the relation $W^a(1 + W)^{(1-a)} = e^{\beta(\varepsilon - \mu)}$ [2], the high-temperature expansion of the energy becomes

$$E(a,N) = \frac{D}{2} NkT \left[1 + \frac{N}{V} \lambda^{D} (-1 + 2a)/2^{(1+D/2)} + \left(\frac{N}{V} \lambda^{D} \right)^{2} \right] \times \left[1/2^{D} - 2/3^{(1+D/2)} - 4a/2^{D} + 3a/3^{D/2} + 4a^{2}/2^{D} - 3a^{2}/3^{D/2} \right] + \cdots ,$$

in which λ is the conventional thermal wavelength, and D is the space dimension. From this result we see that the relation $E(a,N)=(1-a)E(0,N_b)+aE(1,N_f)$ cannot be satisfied for any value of $\{N_f,N_b\}$ with the condition $N=N_f+N_b$. Thus the theorem 3 in [1] is incorrect. The mistake can be traced to the fact that the definitions $W(\varepsilon)=e^{\beta(\varepsilon-\mu_f)}$ and $1+W(\varepsilon)=e^{\beta(\varepsilon-\mu_b)}$ used in [1] can be satisfied only for $\varepsilon=0$ but not for other values of ε .

Next, I have evaluated the high-temperature expansion of the energy E(a,N) to order $(\lambda^D)^7$, and the result shows that *only in two dimensions* can it be linear in a. Let me now prove that energy E(a,N) is linear in a. Using the definition of W we have two useful relations: $d[\ln(1+W^{-1})]/d\varepsilon = -\beta n$ and $W^{-1}(1+W)^{-1}dW/da = n[-\beta d\mu/da + \ln(1+W^{-1})]$. Then, as the density of state N_d is constant in two dimensions we have the relation

$$\begin{split} d[PV\beta]/da &= \int d\varepsilon \, N_d d[\ln(1+W^{-1})]/da = -\int d\varepsilon \, N_d W^{-1}(1+W)^{-1} dW/da \\ &= -\int d\varepsilon \, N_d n [-\beta d\mu/da + \ln(1+W^{-1})] \\ &= N\beta d\mu/da - kT \int d\varepsilon \, N_d \ln(1+W^{-1}) d[\ln(1+W^{-1})]/d\varepsilon \\ &= N\beta d\mu/da + \frac{kT}{2} \, N_d \{\ln[1+W(0)^{-1}]\}^2. \end{split}$$

Now, because μ is linear in a [2] and $W(0) = e^{-\beta \mu_b}$, we thus see that $d[PV\beta]/da$ does not depend on a. This means that the thermodynamic potential Q(a,N) is linear in a and can be factorized as Q(a,N) = (1-a)Q(0,N) + aQ(1,N).

In summary, the relation $Q(a,N) = (1-a) \times Q(0,N_b) + aQ(1,N_f)$, where $N = N_f + N_b$, does not hold in an arbitrary dimension anyon system, while in a two-dimensional anyon system the thermodynamic potential can be factorized as Q(a,N) = (1-a)Q(0,N) + aQ(1,N).

Wung-Hong Huang
Department of Physics
National Cheng Kung University
Tainan, 70101, Taiwan

Received 6 April 1998 [S0031-9007(98)07154-3] PACS numbers: 05.30.-d

- [1] K. Iguchi, Phys. Rev. Lett. 78, 3233 (1997).
- [2] Y. S. Wu, Phys. Rev. Lett. **73**, 922 (1994).