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A dynamical mechanism underlying pattern formation in a spatially extended network of integra
and-fire oscillators with synaptic interactions is identified. It is shown how in the strong coupling regim
the network undergoes a discrete Turing-Hopf bifurcation of the firing times from a synchronous st
to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. T
separation of these orbits in phase space results in a spatially periodic pattern of mean firing
across the network that is modulated by deterministic fluctuations of the instantaneous firing ra
[S0031-9007(98)07173-7]
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There has been much recent interest in studying the d
namics of pulse-coupledintegrate-and-fire( IF) oscillators
with applications to a wide range of systems includin
flashing fireflies [1], cardiac pacemaker cells [2], biologi
cal neural networks [3–10], digital phase-locked loop
[11], and stick-slip models [12,13]. Most of the work has
been concerned with the existence and stability of phas
locked solutions in which all oscillators have the sam
common frequency. A less well understood aspect of
oscillators concerns the dynamics of more complex firin
patterns. A number of studies of two-dimensional IF ne
works have shown that spontaneous excitations can oc
leading to the formation of synchronized waves of activit
across the network [14–17]. The analysis of pattern fo
mation in such networks has so far been restricted to fo
mulations in which the output of each oscillator is take
to be a mean firing rate [18]. This leads to an analog ne
work model that is well known to undergo a Turing-like
instability when there is competition between short-rang
excitation and long-range inhibition [19]. However, the
mean-rate description does not include any informatio
concerning the dynamics on short time scales. It is like
that the latter plays a significant role in the metastabilit
of patterns, as has been illustrated by Usheret al. [18]
in the case of noise-induced instabilities. Therefore, it
important to understand the basic mechanism of patte
formation in terms of the original spiking model without
recourse to any mean-rate approximation.

In this Letter we analyze pattern formation in a spatiall
extended network of pulse-coupled IF oscillators wit
synaptic interactions. We begin by deriving condition
for the oscillators to be synchronized. We then determin
the local stability of the synchronous state by considerin
perturbations of the oscillator firing times. We show how
the synchronous state can undergo a discrete Turing-Ho
bifurcation of the firing times to a state with periodic o
quasiperiodic variations in the interspike interval. Th
resulting spatiotemporal modulation of the oscillator firin
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times leads to a spatially regular pattern of network outp
activity whose time-averaged properties are consiste
with the behavior found in an analog version of the mode

Consider ad-dimensional network of IF oscillators.
Let Usx, td denote the state variable of the oscillato
located atx [ Rd at timet. Suppose thatUsx, td satisfies
the equation

≠Usx, td
≠t

­ I0 2 Usx, td

1 g
Z

Rd
Wsjx 2 x0 jdbEsx0, td dx0 (1)

supplemented by the reset conditionUsx, t1d ­ 0 when-
everUsx, td ­ 1. Here bEsx, td represents the input from
the oscillator atx and I0 is an external input that is
taken to be time independent and homogeneous. T
strength of the interactions between oscillators is dete
mined by the coupling parameterg, g . 0, and the pat-
tern of connectivity is specified by the weight function

Wsjxjd where jxj ­
qPd

i­1 x2
i . We shall assume that

I0 . 1 so that in the absence of any coupling,g ­ 0, each
oscillator fires at a rate1yT0 with T0 ­ lnfI0ysI0 2 1dg.
Neglecting the shape of an individual pulse, the outp
spike train of each oscillator is represented as a seque
of Dirac delta functions,Esx, td ­

P`
j­2` dssst 2 Tjsxdddd,

whereTjsxd is the jth firing time of the oscillator atx,
that is, Usssx, Tjsxdddd ­ 1 for all integersj. Each spike
is converted to a postsynaptic potential whose shape
given by the so-calleda function Jstd ­ a2te2at so
that bEsx, td ­

R`

0 JstdEsx, t 2 td dt. [One could also
include other features such as axonal transmission d
lays and dendritic delays into the definition of the dela
kernel Jstd.] Finally, we shall take the weight distribu-
tion to be the difference of GaussiansWsrd ­ W1srd 2

W2srd, Wisrd ­ Aie2r2y2s
2
i ys

p
2p sidd, with s1 , s2

andA1s
d
2 . A2s

d
1 . This combination of short-range ex-

citation and long-range inhibition is the most commo
© 1998 The American Physical Society
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form of architecture used to model pattern formation i
neural systems. It will be convenient for our subse
quent analysis to setA1 ­ A2 ­ 1 so that there is an
equal balance between excitation and inhibition, that
W ;

R
`

0 rd21W srd dr ­ 0. (This condition is not nec-
essary, however, for pattern formation to occur.)

At least in the case of slow synapses (smalla), the IF
model can be reduced to a mean firing-rate (analog) mo
since incoming spike trains are sampled over a relative
long time interval. This leads to the following integra
equation for the averaged currentIsx, td:

Isx, td ­ g
Z

Rd
Wsjx 2 x0 jd

3
Z `

0
JstdfsssIsx0, t 2 tdddd dt dx0 , (2)

where fsId ­ hTref 1 lnf I01I
I01I21 gj21 is the mean firing

rate andTref is the absolute refractory period betwee
pulses. SinceW ­ 0, it is clear thatIsx, td ­ 0 for all
x andt is a solution of Eq. (2). Linearizing Eq. (2) abou
this zero solution and settingIsx, td ­ I0eip?x1lt leads to
the characteristic equationµ

1 1
l

a

∂2

­ gf 0s0d eWspd , (3)

where eWspd ­ e2p2s
2
1 y2 2 e2p2s

2
2 y2 is the Fourier trans-

form of Wsrd and p2 ­
Pd

i­1 p2
i . It is then easy to

establish that the zero homogeneous state undergoe
Turing-like instability [19] at a critical value of the
coupling where 1 ­ gcf 0s0d eWspcd and eWspcd ­
maxp

eWspd, that is, p2
c ­ 4 lnss2ys1dyss2

2 2 s
2
1d.

Depending on the initial conditions, one finds that beyon
the bifurcation point large-scale spatial patterns devel
whose wavelength close to the bifurcation point is ap
proximately2pypc.

We shall now investigate the analogous mechanism f
pattern formation in the original IF model of Eq. (1)
We begin by restricting our attention to phase-locke
solutions of Eq. (1) in which every oscillator resets o
fires with the same self-consistent periodT . (Such
solutions play an analogous role to the homogeneo
zero solution in the mean-rate model.) The state
each oscillator can then be characterized by a co
stant phasefsxd [ R n Z such that thejth firing time
of the oscillator at x is Tjsxd ­ fj 2 fsxdgT, inte-
ger j. We can now integrate Eq. (1) over the inter
val t [ f2Tfsxd, T 2 Tfsxdg and incorporate the reset
condition by settingUfx, 2fsxdTg ­ 0 and Ufx, T 2

fsxdTg ­ 1. This leads to the set of integral equations

1 ­ s1 2 e2T dI0 1 g
Z

Rd
Wsjx 2 x0 jd

3 KT ffsx0d 2 fsxdg dx0 ,
(4)

whereKT sfd ­ e2T
RT

0 etbJT st 1 fTd dt and bJT std is a
T -periodic function oft with bJT std ­

P`
j­0 Jst 1 jT d for
n
-
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0 # t , T . The periodic interaction functionKT sfd can
be evaluated explicitly whenJstd is ana function sincebJT std reduces to a geometric series. For more gener
delay kernels one can use Fourier series to determi
KT sfd. After choosing some reference oscillator, Eq. (4
determines the relative phases and the periodT of the
phase-locked state.

One class of phase-locked solutions of Eq. (4) is gua
anteed to exist by the translational symmetry of the sy
tem, namely, rotating waves of the formfsxd ­ k ? x 1

f0 wherek is a wave vector andf0 is an arbitrary con-
stant (which we shall set to zero). The particular solutio
with k ­ 0 corresponds to the synchronous state. Subs
tution into Eq. (4) leads to a single independent equatio
that determines a dispersion relation for the collective p
riod, T ­ T skd. It is important to realize that the rotating
wave solutions involve spatial modulations in the firing
phase of the oscillators under the assumption that there
1:1 frequency locking. However, the distribution of net
work output activity across the network, as specified b
the interspike intervalsDjsxd ­ Tj11sxd 2 Tjsxd, is ho-
mogeneous sinceDjsxd ­ T for all j [ Z, x [ Rd. We
shall establish in this Letter that a phase-locked homog
neous state can undergo adiscrete Turing-Hopfinstability
of the firing times to a state in which there is a spatia
variation in the average firing rate of the oscillators acros
the network. In the case of a one-dimensional network w
show that the resulting patterns are consistent with tho
generated via aTuring instability in mean firing rate of
the analog version described by Eq. (2).

The linear stability of a phase-locked solution o
Eq. (4) can be determined by considering perturbation
of the firing timesTjsxd ­ fj 2 fsxdgT 1 djsxd. This
method was previously used by van Vreeswijk to stud
globally coupled IF networks [20]. In order for the
analysis to be tractable, we shall concentrate on th
stability of the synchronous statefsxd ­ 0 for all x.
Thus we takeTjsxd ­ jT 1 djsxd and integrate Eq. (1)
from Tjsxd to Tj11sxd using the reset condition. If the
resulting equation is expanded as a power series in t
perturbationsd then to O s1d we recover Eq. (4) for
the synchronous state. Under the simplifying conditio
W ­ 0, this reduces to1 ­ s1 2 e2T dI0, that is,T ­ T0.
TheO sdd term leads to a linear delay-difference equatio
for the perturbationsdksxd which, after substitution of
the solution dksxd ­ ekl1ip?x, yields the characteristic
equation [21]

sel 2 1d fI0 2 1g ­ g eWspdGsl, T0d (5)

with l [ C, 0 # Im l , 2p, and

Gsl, T d ­
a2e2T fs1 2 aT 1 a2T des12adT 2 1g

s1 2 e2aT2ld s1 2 ad2

2
Ta3e2T e2aT2lfes12adT 2 1g

s1 2 e2aT2ld2s1 2 ad
. (6)
2385
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Note that the functionGsl, T d has a pole atl ­
2aT . Solutions of the characteristic Eq. (5) determin
a dispersion relationl ­ lspd. The invariance of the
dynamics with respect to uniform shifts in the firing time
Tjsxd ! Tjsxd 1 d, is reflected by the identityls0d ­ 0.
Thus the condition for linear stability of the synchronou
state is Relspd , 0 for all p fi 0.

For sufficiently small coupling, solutions to Eq. (5) in
the complexl plane will be either in a neighborhood o
the real solutionl ­ 0 or in a neighborhood of the pole
at l ­ 2aT . Since the latter has a negative real part, t
stability of the phase-locked solution will be determine
by the eigenvalues close to the origin. To first order
g we can setl ­ 0 on the right-hand side of Eq. (5)
so that the spectrum close to the origin is determin
by the equationlsI0 2 1d ­ g eWspdGs0, T0d 1 O sg2d.
One finds thatGs0, T0d , 0 for all a. Hence, the
synchronous state is stable sinceeWspd . 0 for all p fi 0.
It is also easy to establish that the synchronous st
cannot undergo a static bifurcation (with one or more re
eigenvalues crossing the origin) into another phase-lock
solution asg increases. (For convenience, we restri
ourselves in this Letter to solutions that are spatia
periodic so that the spectrum associated with Eq. (3)
(5) is discrete.)

However, it is possible for the synchronous state
undergo a Hopf bifurcation to a state with period
or quasiperiodic interspike intervals due to a compl
conjugate pair of eigenvalues crossing the imaginary ax
Substituting l ­ iv, v fi 0 into Eq. (5) and equating
real and imaginary parts leads to the pair of simultaneo
equations

H0sv, ĝd ; fcossvd 2 1g sI0 2 1d 2 ĝCsvd ­ 0 , (7)
H1sv, ĝd ; sinsvd sI0 2 1d 1 ĝSsvd ­ 0 , (8)

where ĝ ­ g eWspd and Csvd ­ ReGsiv, T0d, Ssvd ­
2Im Gsiv, T0d. The latter can be calculated explicitly
using Eq. (6) [21]. We find that for alla there exists

FIG. 1. The solutions of Eqs. (7) and (8) forĝ are plotted
as a function of a with I0 ­ 1.5. For a given a, the
branch with the smallest̂g determines the critical coupling
ĝc for desynchronization via a Turing-Hopf bifurcation in th
firing times.
2386
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at least one solutionsv, ĝd to Eqs. (7) and (8). The
positive solution branches for̂g are plotted as a function
of the inverse rise timea in Fig. 1. It follows that a
Hopf bifurcation in the firing times occurs at a critical
coupling strengthgc such thatgc

eWspcd ­ ĝc, whereĝc

is the smallest solution for̂g and eWspcd ­ maxp
eWspd.

Since pc fi 0, the instability will involve spatially in-
homogeneous perturbations with wave vectors satisfyin
p2 ø p2

c . Hence, the firing times can be said to underg
a discreteTuring-Hopfinstability.

The occurrence of such an instability leads to th
creation of closed periodic or quasiperiodic orbits (in
variant circles) for the interspike intervals. We denote
these invariant circles byMsxd. Define the long-term
average firing rate according toasxd ­ Dsxd21 where
Dsxd ­ limM!`

PM
j­2M Djsxdys2M 1 1d. Then spatial

(x-dependent) variations in the firing ratesasxd will oc-
cur if there is a corresponding spatial distribution of the
invariant circlesM sxd in phase space. This is illustrated
in Figs. 2 and 3 for a one-dimensional (d ­ 1) network
of IF oscillators just beyond the Turing-Hopf bifurca-
tion point. Figure 2 shows that the invariant circles ar
separated from each other in phase space (although th
remain small relative to the natural time scales of the sy
tem). The resulting long-term average behavior of th
system is characterized by spatially regular patterns
output activity as shown in Fig. 3a. These patterns ar
found to be consistent with those observed in the an
log version of the model, Eq. (2), and such agreeme
holds over a wide range of values ofa that includes both
fast and slow synapses. However, the IF model has a
ditional fine structure associated with the dynamics on th

FIG. 2. Separation of the (projected) invariant circles in
phase space for a 1D network ofN ­ 50 IF oscillators (with
periodic boundary conditions) close to a Hopf bifurcation point
The discretized interaction kernel is taken to beW snd ­
A expf2n2ys2s

2
1Ndg 2 B expf2n2ys2s

2
2Ndg for n fi 0 with

A ­ s2ps1d21 and B chosen so that
P

m W smd ­ 0. We
also setW s0d ­ 0. The attractor of the embedded interspike
interval ( ISI) with coordinates,sssDk21snd, Dksndddd, is shown for
all N oscillators with a ­ 2, g ­ 0.4, I0 ­ 1.5, s1 ­ 0.3,
ands2 ­ 0.5.
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FIG. 3. (a) Regular spatial variations in the long-term avera
firing rate asnd ­ Dsnd21 for the IF network considered in
Fig. 2 (dashed curve). There is good agreement with t
corresponding patterns found in an analog version of t
network (solid curve) in whichasnd ­ fsssIsndddd with Tref ­ 0.
(b) Variation of inverse ISIsDkd21 of the oscillatorn ­ 1 as a
function of k.

invariant circles, which is not resolved by the analo
model. This is illustrated in Fig. 3b where we plot tem
poral variations in the instantaneous firing rate of o
of the oscillators shown in Fig. 3a. The relative size
the deterministic fluctuations in the mean firing rate
found to be an increasing function ofa, approaching zero
asa ! 0.

In conclusion, we have identified a basic dynamic
mechanism for pattern formation in IF oscillator network
This involves desynchronization via a Turing-Hopf bifur
cation to a state with periodic or quasiperiodic variatio
of the interspike intervals on invariant circles separated
phase space. We have also shown that in the case of o
dimensional networks such patterns are consistent w
those of a corresponding analog model. Numerical
sults by Usheret al. [18] suggest that this result also hold
for two-dimensional networks. A much more detaile
analysis of two-dimensional networks will be presente
elsewhere [21] where we shall also consider the more b
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logically realistic case of two populations of IF oscillators
one excitatory with short-range interactions and the oth
inhibitory with long-range interactions.
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