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Spike Train Dynamics Underlying Pattern Formation
in Integrate-and-Fire Oscillator Networks
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A dynamical mechanism underlying pattern formation in a spatially extended network of integrate-
and-fire oscillators with synaptic interactions is identified. It is shown how in the strong coupling regime
the network undergoes a discrete Turing-Hopf bifurcation of the firing times from a synchronous state
to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. The
separation of these orbits in phase space results in a spatially periodic pattern of mean firing rate
across the network that is modulated by deterministic fluctuations of the instantaneous firing rate.
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There has been much recent interest in studying the dytimes leads to a spatially regular pattern of network output
namics of pulse-coupledtegrate-and-firg IF) oscillators  activity whose time-averaged properties are consistent
with applications to a wide range of systems includingwith the behavior found in an analog version of the model.
flashing fireflies [1], cardiac pacemaker cells [2], biologi- Consider ad-dimensional network of IF oscillators.
cal neural networks [3—10], digital phase-locked loopsLet U(x,) denote the state variable of the oscillator
[11], and stick-slip models [12,13]. Most of the work has located ak € R at timer. Suppose thal/(x, t) satisfies
been concerned with the existence and stability of phasdhe equation
locked solutions in which all oscillators have the same JU(x, 1)
common frequency. A less well understood aspect of IF “ar Io — U(x,1)
oscillators concerns the dynamics of more complex firing
patterns. A number of studies of two-dim_en_sional IF net- n g/ W(lx — X/l)g(xl’ ndx' (1)
works have shown that spontaneous excitations can occur R

leading to the formation of synchronized waves of aCtiVitysupplemented by the reset conditioiix, 1*) = 0 when-

maton in sich networks has so far beon restroied to T €V U(X,1) = 1. HereE(x. ) represents the input from
mulations in which the output of each oscillator is takenthe oscillator _atx gnd lo is an external input that is

- : taken to be time independent and homogeneous. The
to be a mean fmn_g rate [18]. This leads to an an.""bg.netétrength of the interactions between oscillators is deter-
work model that is well known to undergo a Turing-like

. . . " mined by the coupling parametgr ¢ > 0, and the pat-
instability when there is competition between short-rang S - ; :
excitation and long-range inhibition [19]. However, the‘?ern of connectivity is specified by the weight function

ng: . \ . _ N4 2
mean-rate description does not include any informatiorV (Ix]) where |x| = 4/>_,xi. We shall assume that

concerning the dynamics on short time scales. It is likelylo > 1 so thatin the absence of any coupligg= 0, each
that the latter plays a significant role in the metastabilityoscillator fires at a rate/T, with To = In[1o/(Io — 1)].
of patterns, as has been illustrated by Uskerl.[18]  Neglecting the shape of an individual pulse, the output
in the case of noise-induced instabilities. Therefore, it isSPike train of each oscillator is represented as a sequence
important to understand the basic mechanism of patterfif Dirac delta functionsE(x, 1) = 3,;_ . 8(t = T;(x)),
formation in terms of the original spiking model without WhereT);(x) is the jth firing time of the oscillator ak,
recourse to any mean-rate approximation. that is, U(x, T;(x)) = 1 for all integers;j. Each spike
In this Letter we analyze pattern formation in a spatiallylS converted to a postsynaptic potential whose shape is
extended network of pulse-coupled IF oscillators withgiven by the so-calledr function J(r) = @’7e™*7 so
synaptic interactions. We begin by deriving conditionsthat E(x,7) = [, J(1)E(x,t — 7)d7. [One could also
for the oscillators to be synchronized. We then determinénclude other features such as axonal transmission de-
the local stability of the synchronous state by considerindays and dendritic delays into the definition of the delay
perturbations of the oscillator firing times. We show howkernel J(7).] Finally, we shall take the weight distribu-
the synchronous state can undergo a discrete Turing-Hofion to be the difference of Gaussiaié(r) = W,(r) —
bifurcation of the firing times to a state with periodic or W»(r), Wi(r) = Aie "/2% /(\27 o;)¢, with o1 < o>
quasiperiodic variations in the interspike interval. TheandA;o§ > A,o?. This combination of short-range ex-
resulting spatiotemporal modulation of the oscillator firingcitation and long-range inhibition is the most common
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form of architecture used to model pattern formation in0 = ¢+ < T. The periodic interaction functioki7(¢) can
neural systems. It will be convenient for our subse-be evaluated explicitly wheri(7) is an a function since
quent analysis to sed; = A, = 1 so that there is an j,(r) reduces to a geometric series. For more general
equal balance between excitation and inhibition, that isgelay kernels one can use Fourier series to determine
W = [y r¢"'W(r)dr = 0. (This condition is not nec- k(¢). After choosing some reference oscillator, Eq. (4)
essary, however, for pattern formation to occur.) determines the relative phases and the pefiodf the

At least in the case of slow synapses (smg)l the IF phase-locked state.
model can be reduced to a mean firing-rate (analog) model One class of phase-locked solutions of Eq. (4) is guar-
since incoming spike trains are sampled over a relativelynteed to exist by the translational symmetry of the sys-
long time interval. This leads to the following integral tem, namely, rotating waves of the forgx) = k - x +

equation for the averaged currdik, ): &0 wherek is a wave vector ang, is an arbitrary con-
I(x.1) = w(lx — x'|) stant (which we shall set to zero). The particular solution
=8 R xoXx with k = 0 corresponds to the synchronous state. Substi-

o tution into Eq. (4) leads to a single independent equation
X / J(nfU(x',t — 7))drdx’, (2) that determines a dispersion relation for the collective pe-
0 P N riod, T = T(k). Itisimportant to realize that the rotating
where f(I) = {Twer + In[737=11"" is the mean firing wave solutions involve spatial modulations in the firing
rate and7yr is the absolute refractory period betweenphase of the oscillators under the assumption that there is
pulses. SinceV =0, it is clear that/(x,7) = 0 for all 1.1 frequency locking. However, the distribution of net-
x andr is a solution of Eq. (2). Linearizing Eq. (2) about work output activity across the network, as specified by
this zero solu.tio'n and sgttinﬁx, t) = Ipe®*™ leads to  the interspike intervald ;(x) = Tj+(x) — T;(x), is ho-
the characteristic equatzlon mogeneous sinca;(x) = T forall j € Z,x € R, We
AN shall establish in this Letter that a phase-locked homoge-
(1 * Z) =8/ OW(p), (3) neous state can undergal&crete Turing-Hopinstability
WhereVNV(p) — ¢ P*0l/2 — ,=P*3/2 ig the Fourier trans- Of the firing times to a state in which there is a spatial
form of W(r) and p2 = Zj=1 p2. It is then easy to variation in the average firing rate o_f the o_scnlators across
establish that the zero homogeneous state undergoesth¢ network. In the case of a one-dimensional network we
Turing-like instability [19] at a critical value of the Show that the resulting patterns are consistent with those
> generated via &uring instability in mean firing rate of
the analog version described by Eq. (2).

coupling where 1 = g.f'(0)W(p.) and W(p.) =

: _ 2 2
max, W(.p)' that_ IS, p? __4|n(‘f2/‘71)_/(02 - o). The linear stability of a phase-locked solution of
Depe_ndlng on the.m't'al conditions, one finds that beyonqu. (4) can be determined by considering perturbations
the bifurcation point large-scale spatial patterns develop i firing timesT;(x) = [j — ¢(x)]T + &,(x). This
whose wavelength close to the bifurcation point is ap{,athod was previéusly used by van Vree]swijk to study

proximately2z /p.. , lobally coupled IF networks [20]. In order for the
We shall now investigate the analogous mechanism fo nalysis to be tractable, we shall concentrate on the

pattern formation in the original IF model of Eq. (1). giapility of the synchronous stat(x) = 0 for all .
We pegm by restricting our attention to phase-lockedyp s we takeT;(x) = jT + 6;(x) and integrate Eq. (1)
solutions of Eqg. (1) in which every oscillator resets O from T;(x) to T;+1(x) using the reset condition. If the

f'r?St.W'th tlhe Same sielf-con3|s|tentt %ﬁ”oﬂ' (Such  rasuiting equation is expanded as a power series in the
solutions play an analogous roie 1o tn€ NOMOYeneouse v, hationss then to O (1) we recover Eq. (4) for

zero solution in the mean-rate model.) The state Of,e gynchronous state. Under the simplifying condition
each oscillator can then be characterized by a cong; _ 7y this reduces to — (1 — eIy, thatis,T = T,

stant phasep(x) € R \ Z such that thejth firing time
of the oscillator atx is T;(x) =[j — ¢(x)]T, inte-
ger j. We can now integrate Eg. (1) over the inter-
valt € [-T¢(x),T — T¢(x)] and incorporate the reset
condition by settingU[x, —¢(x)T] = 0 and U[x,T —

The O (8) term leads to a linear delay-difference equation
for the perturbationsd;(x) which, after substitution of
the solution §;(x) = e *PX  vyields the characteristic
equation [21]

¢(x)T] = 1. This leads to the set of integral equations (e* = D[y — 1] = gﬁ/(p)G()\,To) (5)
L= (1—=e N+ gfw W(lx — x']) with A € C,0 = Im A < 277, and
X K " — dx’, 2,-T[(] — + @2T)e1-aT
rl¢(x’) — ¢(x)]dx GOLT) a‘e”1[(1 a_T g a‘T)e 1]
R R (4) (1 —eaT" (1 — a)?
where K7 (¢p) = e~ T [§ e'Jr(t + ¢T)dr and J(z) is a Tale Temal=A[l-a)l _ q]
T-periodic function oft with J7(t) = 37_oJ (¢ + jT) for (1 — e 9T A2 —a) (6)
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Note that the functionG(A,T) has a pole atA =  at least one solutionw,g) to Egs. (7) and (8). The
—aT. Solutions of the characteristic Eq. (5) determinepositive solution branches f@r are plotted as a function

a dispersion relatiom = A(p). The invariance of the of the inverse rise timer in Fig. 1. It follows that a
dynamics with respect to uniform shifts in the firing times, Hopf bifurcation in the firing times occurs at a critical
T;(x) — T;(x) + 8, is reflected by the identitx(0) = 0. coupling strengthg, such thatg.W(p.) = 3., whereg,
Thus yhe condition for linear stability of the synchronousig the smallest solution fog and VNV(pC) — max, VNV(p).
state is ReA(p) < Ofor all p # 0. _ _Since p. # 0, the instability will involve spatially in-

For sufficiently small coupling, solutions to Eq. (5) in homogeneous perturbations with wave vectors satisfying

the complexi plane will be either in a neighborhood of 2 p2. Hence, the firing times can be said to undergo
the real solutiod = 0 or in a neighborhood of the pole 5 discréteTuring-HopfinstabiIity.

atA = —aT. Since the latter has a negative real part, the The occurrence of such an instability leads to the
stability pf the phase-locked soluti(_)n_ will be _determi”e_dcreation of closed periodic or quasiperiodic orbits (in-
by the eigenvalues close to the origin. To first order inyariant circles) for the interspike intervals. We denote
g we can setA = 0 on the right-hand side of Eq. (5) these invariant circles byM (x). Define the long-term
so that the spectrum close tg the origin is determlnegl:“,erage firing rate according ta(x) = A(x)~! where
by the equationA(ly — 1) = gW(p)G(0,To) + O (g%).  A(x) = limy—- SY A (x)/2M + 1). Then spatial
One finds thatG(0,7o) <0 for all @. Hence, the (x-dependent) variations in the firing rate&) will oc-
synchronous state is stable sin&¢p) > Oforall p # 0.  cur if there is a corresponding spatial distribution of the
It is also easy to establish that the synchronous stat@variant circles’M (x) in phase space. This is illustrated
cannot undergo a static bifurcation (with one or more reain Figs. 2 and 3 for a one-dimensional & 1) network
eigenvalues crossing the origin) into another phase-lockedf IF oscillators just beyond the Turing-Hopf bifurca-
solution asg increases. (For convenience, we restricttion point. Figure 2 shows that the invariant circles are
ourselves in this Letter to solutions that are spatiallyseparated from each other in phase space (although they
periodic so that the spectrum associated with Eq. (3) oremain small relative to the natural time scales of the sys-
(5) is discrete.) tem). The resulting long-term average behavior of the
However, it is possible for the synchronous state tosystem is characterized by spatially regular patterns of
undergo a Hopf bifurcation to a state with periodic output activity as shown in Fig. 3a. These patterns are
or quasiperiodic interspike intervals due to a complexfound to be consistent with those observed in the ana-
conjugate pair of eigenvalues crossing the imaginary axidog version of the model, Eg. (2), and such agreement
Substituting A = iw,® # 0 into Eq. (5) and equating holds over a wide range of values @fthat includes both
real and imaginary parts leads to the pair of simultaneoufast and slow synapses. However, the IF model has ad-
equations ditional fine structure associated with the dynamics on the

Ho(w,8) = [codw) — 1](Iy — 1) = gC(w) =0, (7)
Hi(w,8) = sin(o)(lp — 1) + gS(w) =0, (8)

~ 0.8 r
where g = gW(p) and C(w) = ReG(iw, Ty), S(w) =
—Im G(iw,Ty). The latter can be calculated explicitly 0.7
using Eq. (6) [21]. We find that for alk there exists )
20 —— . Ax(m) 06
15 0.5
g 10 oale . . .
patterns patterns 0.4 0.5 0.6 0.7 0.8
3 ‘ Ag-1(m)
0 synchrony FIG. 2. Separation of the (projected) invariant circles in
phase space for a 1D network 8f = 50 IF oscillators (with
0 1 2 3 4 5 6 periodic boundary conditions) close to a Hopf bifurcation point.
o The discretized interaction kernel is taken to Bé&n) =

Aexd—n?/(2oiN)] — Bexd—n%/(2a3N)] for n # 0 with
FIG. 1. The solutions of Egs. (7) and (8) f@r are plotted A = (27o;)”! and B chosen so thad, W(m) = 0. We
as a function ofa with Iy = 1.5. For a given «, the also setW(0) = 0. The attractor of the embedded interspike
branch with the smallesg determines the critical coupling interval (I1SI) with coordinates(A—;(n), Ay(n)), is shown for
&. for desynchronization via a Turing-Hopf bifurcation in the all N oscillators witha =2, ¢ = 0.4, Iy = 1.5, o; = 0.3,
firing times. ando, = 0.5.
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logically realistic case of two populations of IF oscillators,
one excitatory with short-range interactions and the other
inhibitory with long-range interactions.
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