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Neutral Mutations and Punctuated Equilibrium in Evolving Genetic Networks
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Boolean networks may be viewed as idealizations of biological genetic networks, where each node
is represented by an on-off switch which is a function of the binary output from some other nodes.
We evolve connectivity in a single Boolean network, and demonstrate how the sole requirement
of sequential matching of attractors may open for an evolution that exhibits punctuated equilibrium.
[S0031-9007(98)06567-3]

PACS numbers: 87.10.+e, 02.70.Lq, 05.40.+]

Evolution of life is presumably a random processconnected to the episodic punctuations observed on the
with selection [1]. It has been discussed whether thiscosystem level. The crucial element of such an extrapo-
process can be viewed as some hill climbing procestation is that the environment of each species depends on
[2], or whether evolution mostly happens as a randonspecies which are ecological neighbors, thereby allowing
walk where changes do not influence the phenotype, angunctuations to propagate across the ecosystem.
thus are neutral [3]. Originally, the case of evolution as In the present paper we propose to evolve a single ge-
adaptation in an externally imposed fitness landscape haetic network, ideally representing a single species. The
been proposed by Wright [2], and later formed the basi®volution is driven by a noisy environment. The evolu-
for models of punctuated equilibrium by Newman [4] tionary step consists of random mutations combined with
and Lande [5]. The case for neutral evolution has beeselection of mutants preserving the phenotype with re-
presented by Kimura [3], and is experimentally supportedspect to a given environment. Thus, the only requirement
on the microlevel by the observation that there are manyn this minimalistic model is continuity in phenotype.
functionally identical variants of most of the important Other changes in genotype are allowed, creating a path
macromolecules of life. of neutral mutations. We will discuss how this require-

The observation of punctuated equilibrium in the fossilment of continuity in evolution may constrain and guide
record, recently discussed by Gould and Eldredge [6]the evolution of an individual species in the face of a con-
may be taken as an indication that evolution of a speciestantly changing environment.
consists of exaptations of jumping from one hilltop to Our fundamental constituents are the genes of the or-
another nearby in some fitness landscape. Naturally sudmnism, and the evolution we consider is on the genetic
jumps will be rare, separated by large time intervals wher@etwork level. Although genetic networks consist of bio-
species are located at a fithess peak, and the resultimipemical switches [9], it has been proposed that the on-
evolutionary pattern will show punctuations as indeedoff nature of these switches can be well approximated by
seen in the fossil record. This picture of single specie®oolean functions [10—12], eventually with asynchronous
evolution in a given fixed landscape has been modeledpdating [13]. We here consider networks of random
explicitly by Newman [4] and Lande [5]. Boolean functions, idealized by synchronized updating.

However, neutral evolution also may show punctu-The functionality we test for is attractors of these net-
ations as, for example, might be visualized by finding theworks [11]. Boolean networks are known to exhibit a
exit in a labyrinth or from finding a golf hole by means rich dynamical behavior, including fixed points, periodic
of a random walk in a flat landscape. The picture herattractors, and long transients. Further, the number of
is that genetic changes always take place, but that thattractors, their length, and the length of the transients
phenotypic changes only rarely occur. This has recentlgtrongly depend on the connectivity number [14]. In this
been demonstrated by modeling the evolution of RNApaper we do not address any question about the time scale
secondary structure by Schuster and co-workers [7]. Foof these attractors. Instead we consider a longer evolu-
these molecules, mutating a single nucleotide often doe#onary time scale connected to the change in geometry of
not induce any changes in their secondary structure, arthe networks under mutation.
the mutation is considered neutral. Occasionally, how- We implement continuity in evolution by testing for
ever, one mutation can lead to a complete readjustment eéaching a given attractor on subsequent steps, but allow-
the structure, usually accompanied by a major change img changes that modify attractors that are not tested from
its functionality. the actual initial condition. In subsequent steps, the ini-

In any case, as demonstrated by Bak and Sneppen [8]al condition (modeling the environment) assumes new
punctuated equilibrium on the organism level might berandom values which subsequently allow previous neutral
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mutations to surface in the phenotype. The philosophy In Fig. 1la we show how the connectivitK] of this
of this subdivision between initial state and function issystem evolves with time in a network of si2é = 16.
that while the Boolean functions are manifested by vari-One observes that the typicklof the network is confined
ous DNA binding proteins, the initial state of the systemto lower values than of random networks. This is further
is set by the chemical composition of the environmentquantified in Fig. 2 where the distributions of average
This environment changes due to conditions beyond theonnectivities are displayed in the statistically stationary
control of the Boolean gene regulatory circuit. state. Notice that there are two distributions: one counting
Consider a genetic network wifti genes. Each of these the frequency of connectivities for all new “species,” and
genes can be assigned a Boolean variahle= 0 or 1.  one counting the time averaged distribution. These two
For each of theV genes we define an updating matrix in distributions diverge strongly for higlk, because the
the form of a lookup table which determines its output forfew species with highk have very long lifetimes, i.e.,
each of the possib2" input states from th&/ genes in the
system. This Boolean updating matrix is assigned random
values, all rules ara priori equally possible. The matrix is 16

effectively quenched on evolutionary time scales. Finally, | @ connectivity in time —
we define which gene is actively connected to which, by I
a matrixw;; that defines the input to gene numbédrom 12}
gene numbey asw;;o;. The entry value of the connec- 10
tivity matrix w;; can take value$, if i is not connected I
to j, andl, if i is connected tg. Typically only a frac- v 8f
tion of the connectivity matrix entries is in use, and the
average number of connected inputs per gene is called the o
connectivityK. It varies betweei® and N, meaning that 4
K may include self-couplings. Thus = 0 means that all |
is fixed to the output state specified by ing0f...,0) to 2 MJ m
all genes. 0 I
The system we evolve is the set of couplings in a 19107 1.5ex07 cexot
single Boolean network. The simulation starts with a low
but finite connectivity, here an initial average connectivity 16 "~ connectivity in time, dioseup
of K =1 per site. One evolutionary time step of the u ® ’
network is
(1) Select a random input state to the netwdok}. 124
Iterate the system, called the mother, from this state until 10l

a final attractor is determined.

(2) Create a daughter network by (a) adding, (b) remov- « 8}
ing, or (c) adding and removing a weight in the coupling
matrix w;; at random, each option occurring with probabil-
ity p = 1/3. lIterate the daughter system from the same 4t
initial state as that selected for the mother and test whether |
it reaches the same attractor as the mother system did. In 2]
case it does, then replace mother with daughter network 0

. 76+06  7.2e+06 7.4e+06 7.6e+06 7.8e+06  8e+06
and go to step 3. In case another attractor is reached, keep t

m0t3he_r”:letW?rk ﬁmd go to s:jep 3.b't f the total x 2V FIG. 1. Evolution of the Boolean network connectivity with

(3) Then, fina Yy, one random Dbit of the 10 . time (a) and close-up on a part of the connectivity evolution (b).

lookup table entries is flipped to another value. ThisNote that periods of approximate stasis and sudden punctuations

allows for a convenient self-averaging of the system, and@ppear on both time scales. A single network of size= 16

in fact represents a very slow change. has been simulated starting with an initial average connectivity
lterating these steps makes an evolutionary algorithn§f X = 1 active inputs per node. The connectivity matrix as

that s th | . t of HiNUity | well as the Boolean updating matrix were chosen completely
al represents the sole requirement ot continuily In €Vog,nqomly, with all possible Boolean rules allowed. Apart from

lution and how this may proceed under an environmenghe slow adjustment of Boolean rules under step 3 in the model,
that fluctuates. No selective pressure is applied. Step fBe system thus evolves in a quenched “landscape” of Boolean

rarely affects the active part of the network beca&Se rules. The connectivitk shown is directly measured from the
typically remains low compared ¥, and thu2X <« 2V, connectivity matrix of the network. The effective connectivity

L . . . [15], defined asK minus the number of connected inputs
It is included in orQer to obtain a seIf—averaglng of th(?that do not contribute due to specific Boolean updating matrix
system, that elsewise tends to have small effective statigmtries, has somewhat lower values but shows similar overall
tics even for the smalV we can simulate. behavior.
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FIG. 2. Distributions of connectivityk in the statistically 16406
stationary state, obtained from the same simulation as in o 0<=K<2 »
Fig. 1. The frequency of connectivities of the new “species” is ;..o s 2<=K<4 -
“« » . PSR . 3 $ 4<=K<6 o A4
shown (“new K”), as well as the time averaged distribution of o, 6<=K<8 x
connectivities of all mutated “species.” Note that for higher 10000 °=el
values of K, a mutant network is less likely to match the i ggn;
henotype of its parent. LY
phenotyp P 1000 | G
E x XX X X oo * e
. o iepe . . . Z Ko, B
for high K it is difficult to find mutations which do not 100 ¢ i e
change the activity pattern of the networks. In our case, .
the activity pattern consists of the transient and the final 10¢ ° s %y
periodic attractor following the given initial state. The 1l R . &
time scale of these patterns becomes large for networks b) o : °ax,
with hlgh K, making it more dlfflcu!t to keep th(_e exact 0.1ly - SR 1008 000
dynamic pattern under the mutation of a weight. In T

popular terms, an increased complexity of the networlﬁ

: . IG. 3. Stasis time distribution in the neutral evolution of net-
makes further evolution difficult. One may speculate thaf, o (a) and the decomposition into stasis time distributions

this is the reason for real genetic networks to keep theifor different intervals of the average connectivity (b). The
connectivity low: It will be easier to evolve by increasing simulation is the same as in Fig. 1. While the average over all

the number of gened at a fairly low connectivity level networks approximately follows a power law, the distributions
(the present model, however, does not consider varif" Networks with restricted do not. One observes that large
ableN). connectivity typically implies a lower degree of evolvability.

In Fig. 1la we further see that marked punctuations
occur, where long periods of nearly fixed average conlaw behavior then comes about by averaging over the
nectivity sometimes are interrupted by a sudden change irange of allK values.
connectivity. This interplay between long waiting times In order to test for the robustness of our model we
and short times for actual changes is in fact observettied other mutation rules (again without any evolution-
in the fossil record. The phenomenon has been coinedry pressure, i.e., symmetric in adding and removing
“punctuated equilibrium” by Gould and Eldredge [6]. As weights). In one variant a daughter network was created
also seen from Fig. 1b, the periods of stasis show a simildsy (a) adding or (b) removing a weight in the coupling
structure on shorter time scales as they do on longer timmatrix at random, withp = 1/2 each, thus allowing for
scales. This is explored further in Fig. 3a where we showK-changing mutations only. In another variant a daugh-
this distribution averaged over the simulation. Approxi-ter network was created by independently adding a ran-
mately the distribution of stasis times dsl/¢>. Periods dom weight withp = 1/2 and removing a random weight
of stasis at high values df can become long, which in with p = 1/2. We also tested a scenario where we de-
practice calls for very long equilibration times. manded complete match between attractors of mother and

In Fig. 3b we decompose the stasis time distributiondaughter for two different initial configurations. Also, we
into times obtained for different values of the averageconsidered this case with demanding only partial overlap
connectivity. Again we observe that high&r typically = between mother and daughter, i.e., match in at least one
shows longer stasis times. Remarkably, when lookingf the two tested environments, only. Finally, we tested
at the statistics of a small interval of low values, we networks with weightsy;; € {—1,0, 1} such that the sig-
observe exponentially distributed stasis times. The powenal transmitted from an inactive node can differ from the
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