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Neutral Mutations and Punctuated Equilibrium in Evolving Genetic Networks
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Boolean networks may be viewed as idealizations of biological genetic networks, where each n
is represented by an on-off switch which is a function of the binary output from some other nod
We evolve connectivity in a single Boolean network, and demonstrate how the sole requirem
of sequential matching of attractors may open for an evolution that exhibits punctuated equilibriu
[S0031-9007(98)06567-3]
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Evolution of life is presumably a random proces
with selection [1]. It has been discussed whether th
process can be viewed as some hill climbing proce
[2], or whether evolution mostly happens as a rando
walk where changes do not influence the phenotype, a
thus are neutral [3]. Originally, the case of evolution a
adaptation in an externally imposed fitness landscape h
been proposed by Wright [2], and later formed the bas
for models of punctuated equilibrium by Newman [4
and Lande [5]. The case for neutral evolution has bee
presented by Kimura [3], and is experimentally supporte
on the microlevel by the observation that there are ma
functionally identical variants of most of the importan
macromolecules of life.

The observation of punctuated equilibrium in the foss
record, recently discussed by Gould and Eldredge [6
may be taken as an indication that evolution of a speci
consists of exaptations of jumping from one hilltop to
another nearby in some fitness landscape. Naturally su
jumps will be rare, separated by large time intervals whe
species are located at a fitness peak, and the result
evolutionary pattern will show punctuations as indee
seen in the fossil record. This picture of single specie
evolution in a given fixed landscape has been model
explicitly by Newman [4] and Lande [5].

However, neutral evolution also may show punctu
ations as, for example, might be visualized by finding th
exit in a labyrinth or from finding a golf hole by means
of a random walk in a flat landscape. The picture he
is that genetic changes always take place, but that t
phenotypic changes only rarely occur. This has recen
been demonstrated by modeling the evolution of RN
secondary structure by Schuster and co-workers [7]. F
these molecules, mutating a single nucleotide often do
not induce any changes in their secondary structure, a
the mutation is considered neutral. Occasionally, how
ever, one mutation can lead to a complete readjustment
the structure, usually accompanied by a major change
its functionality.

In any case, as demonstrated by Bak and Sneppen
punctuated equilibrium on the organism level might b
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e

connected to the episodic punctuations observed on
ecosystem level. The crucial element of such an extra
lation is that the environment of each species depends
species which are ecological neighbors, thereby allowi
punctuations to propagate across the ecosystem.

In the present paper we propose to evolve a single
netic network, ideally representing a single species. T
evolution is driven by a noisy environment. The evolu
tionary step consists of random mutations combined w
selection of mutants preserving the phenotype with
spect to a given environment. Thus, the only requireme
in this minimalistic model is continuity in phenotype
Other changes in genotype are allowed, creating a p
of neutral mutations. We will discuss how this require
ment of continuity in evolution may constrain and guid
the evolution of an individual species in the face of a co
stantly changing environment.

Our fundamental constituents are the genes of the
ganism, and the evolution we consider is on the gene
network level. Although genetic networks consist of bio
chemical switches [9], it has been proposed that the o
off nature of these switches can be well approximated
Boolean functions [10–12], eventually with asynchrono
updating [13]. We here consider networks of rando
Boolean functions, idealized by synchronized updatin
The functionality we test for is attractors of these ne
works [11]. Boolean networks are known to exhibit
rich dynamical behavior, including fixed points, period
attractors, and long transients. Further, the number
attractors, their length, and the length of the transie
strongly depend on the connectivity number [14]. In th
paper we do not address any question about the time s
of these attractors. Instead we consider a longer evo
tionary time scale connected to the change in geometry
the networks under mutation.

We implement continuity in evolution by testing fo
reaching a given attractor on subsequent steps, but all
ing changes that modify attractors that are not tested fr
the actual initial condition. In subsequent steps, the i
tial condition (modeling the environment) assumes ne
random values which subsequently allow previous neut
© 1998 The American Physical Society
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mutations to surface in the phenotype. The philosop
of this subdivision between initial state and function
that while the Boolean functions are manifested by va
ous DNA binding proteins, the initial state of the syste
is set by the chemical composition of the environmen
This environment changes due to conditions beyond t
control of the Boolean gene regulatory circuit.

Consider a genetic network withN genes. Each of these
genes can be assigned a Boolean variablesi ­ 0 or 1.
For each of theN genes we define an updating matrix i
the form of a lookup table which determines its output fo
each of the possible2N input states from theN genes in the
system. This Boolean updating matrix is assigned rando
values, all rules area priori equally possible. The matrix is
effectively quenched on evolutionary time scales. Finall
we define which gene is actively connected to which, b
a matrixwij that defines the input to gene numberi from
gene numberj aswijsj. The entry value of the connec-
tivity matrix wij can take values0, if i is not connected
to j, and1, if i is connected toj. Typically only a frac-
tion of the connectivity matrix entries is in use, and th
average number of connected inputs per gene is called
connectivityK . It varies between0 andN , meaning that
K may include self-couplings. ThusK ­ 0 means that all
is fixed to the output state specified by inputs0, . . . , 0d to
all genes.

The system we evolve is the set of couplingswij in a
single Boolean network. The simulation starts with a lo
but finite connectivity, here an initial average connectivi
of K ­ 1 per site. One evolutionary time step of th
network is

(1) Select a random input state to the networkhsij.
Iterate the system, called the mother, from this state un
a final attractor is determined.

(2) Create a daughter network by (a) adding, (b) remo
ing, or (c) adding and removing a weight in the couplin
matrixwij at random, each option occurring with probabi
ity p ­ 1y3. Iterate the daughter system from the sam
initial state as that selected for the mother and test whet
it reaches the same attractor as the mother system did.
case it does, then replace mother with daughter netw
and go to step 3. In case another attractor is reached, k
mother network and go to step 3.

(3) Then, finally, one random bit of the totalN 3 2N

lookup table entries is flipped to another value. Th
allows for a convenient self-averaging of the system, a
in fact represents a very slow change.

Iterating these steps makes an evolutionary algorith
that represents the sole requirement of continuity in ev
lution and how this may proceed under an environme
that fluctuates. No selective pressure is applied. Ste
rarely affects the active part of the network becauseK
typically remains low compared toN , and thus2K ø 2N .
It is included in order to obtain a self-averaging of th
system, that elsewise tends to have small effective sta
tics even for the smallN we can simulate.
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In Fig. 1a we show how the connectivity (K) of this
system evolves with time in a network of sizeN ­ 16.
One observes that the typicalK of the network is confined
to lower values than of random networks. This is furthe
quantified in Fig. 2 where the distributions of averag
connectivities are displayed in the statistically stationa
state. Notice that there are two distributions: one countin
the frequency of connectivities for all new “species,” an
one counting the time averaged distribution. These tw
distributions diverge strongly for highK, because the
few species with highK have very long lifetimes, i.e.,
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FIG. 1. Evolution of the Boolean network connectivity with
time (a) and close-up on a part of the connectivity evolution (b
Note that periods of approximate stasis and sudden punctuati
appear on both time scales. A single network of sizeN ­ 16
has been simulated starting with an initial average connectiv
of K ­ 1 active inputs per node. The connectivity matrix a
well as the Boolean updating matrix were chosen complete
randomly, with all possible Boolean rules allowed. Apart from
the slow adjustment of Boolean rules under step 3 in the mod
the system thus evolves in a quenched “landscape” of Boole
rules. The connectivityK shown is directly measured from the
connectivity matrix of the network. The effective connectivity
[15], defined asK minus the number of connected inputs
that do not contribute due to specific Boolean updating matr
entries, has somewhat lower values but shows similar over
behavior.
237
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FIG. 2. Distributions of connectivityK in the statistically
stationary state, obtained from the same simulation as
Fig. 1. The frequency of connectivities of the new “species”
shown (“new K”), as well as the time averaged distribution o
connectivities of all mutated “species.” Note that for highe
values of K, a mutant network is less likely to match the
phenotype of its parent.

for high K it is difficult to find mutations which do not
change the activity pattern of the networks. In our cas
the activity pattern consists of the transient and the fin
periodic attractor following the given initial state. The
time scale of these patterns becomes large for netwo
with high K , making it more difficult to keep the exac
dynamic pattern under the mutation of a weight. I
popular terms, an increased complexity of the netwo
makes further evolution difficult. One may speculate th
this is the reason for real genetic networks to keep th
connectivity low: It will be easier to evolve by increasing
the number of genesN at a fairly low connectivity level
(the present model, however, does not consider va
ableN).

In Fig. 1a we further see that marked punctuatio
occur, where long periods of nearly fixed average co
nectivity sometimes are interrupted by a sudden change
connectivity. This interplay between long waiting time
and short times for actual changes is in fact observ
in the fossil record. The phenomenon has been coin
“punctuated equilibrium” by Gould and Eldredge [6]. A
also seen from Fig. 1b, the periods of stasis show a sim
structure on shorter time scales as they do on longer ti
scales. This is explored further in Fig. 3a where we sho
this distribution averaged over the simulation. Approx
mately the distribution of stasis times is~1yt2. Periods
of stasis at high values ofK can become long, which in
practice calls for very long equilibration times.

In Fig. 3b we decompose the stasis time distributio
into times obtained for different values of the averag
connectivity. Again we observe that higherK typically
shows longer stasis times. Remarkably, when looki
at the statistics of a small interval of lowK values, we
observe exponentially distributed stasis times. The pow
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FIG. 3. Stasis time distribution in the neutral evolution of ne
works (a) and the decomposition into stasis time distributio
for different intervals of the average connectivity (b). Th
simulation is the same as in Fig. 1. While the average over
networks approximately follows a power law, the distribution
for networks with restrictedK do not. One observes that larg
connectivity typically implies a lower degree of evolvability.

law behavior then comes about by averaging over
range of allK values.

In order to test for the robustness of our model w
tried other mutation rules (again without any evolutio
ary pressure, i.e., symmetric in adding and removi
weights). In one variant a daughter network was crea
by (a) adding or (b) removing a weight in the couplin
matrix at random, withp ­ 1y2 each, thus allowing for
K-changing mutations only. In another variant a daug
ter network was created by independently adding a r
dom weight withp ­ 1y2 and removing a random weigh
with p ­ 1y2. We also tested a scenario where we d
manded complete match between attractors of mother
daughter for two different initial configurations. Also, w
considered this case with demanding only partial over
between mother and daughter, i.e., match in at least
of the two tested environments, only. Finally, we test
networks with weightswij [ h21, 0, 1j such that the sig-
nal transmitted from an inactive node can differ from th
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value of a disconnected input node. In all cases our
sults were robust.

Let us briefly discuss the meaning of the stasis tim
and punctuations observed here. According to the defi
tion of our model, we quantify the waiting time in term
of the number of times mutant networks are exposed
new environments before a neutral mutation occurs th
fulfills continuity. Thus they are not to be confused wit
the “neutral evolution” introduced by Kimura [3] which
leads to waiting times consisting of a number of neutr
mutations. The genetic networks are formally defining
species and the length of the waiting times indicates t
“genetic flexibility” of a species.

Associating the interconnectedness of the networ
with the genetic flexibility of real organisms, one ma
attempt to understand a puzzling decomposition of lif
times of species in the fossil record. First, it was note
by Van Valen [16] that each group of closely relate
species has exponentially distributed lifetimes. Secon
an analysis of the overall distribution of genera lifetime
tabulated by Raup and Sepkoski [17], showed that th
is rather distributed as~1yt2 [18] for genera lifetimes
exceeding10 3 106 yr. It is tempting to speculate that
groups of closely related species are associated to
same genetic flexibility, and thus evolve, and event
ally get extinct, with a frequency given by this geneti
flexibility. This would explain the exponential distribu-
tion of Van Valen’s. Averaging over all genetic flexi-
bilities is then an average over different characteris
lifetimes, and our simplified evolution scenario demon
strates how such an averaging can give an overall1yt2

distribution.
The obtained1yt2 scaling may be an inherent part o

our neutral evolution scenario [19]. In comparison, fo
evolution on fitness landscapes one typically obtains
distribution~1yt corresponding to a sampling of waiting
times for passing over barriers [18,20], although a1yt2

distribution can be obtained by supplementing a h
climbing concept with the assumption that extinctio
of a given species is determined by evolutionary rat
of older species [21]. Abandoning fitness landscape
the ecological network model of Refs. [22,23] instea
determines the fate of a species through an ecologi
connectivity matrix. When this evolving network o
species is assigned a connectivity that is comparable
(eco)system size, it shows a1yt2 distribution of genera
lifetimes. In contrast to these macroevolutionary mode
our study of Boolean networks considers only one speci
with a comparison to species extinction data that
based on an extrapolation of the obtained evolutiona
clock.

In conclusion, we have studied evolution of Boolea
networks in the absence of any competition. This sim
plification allowed us to discuss how the requirement
evolving robust networks in itself may lead to an evolu
tion which exhibits punctuated equilibrium.
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