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Low-Energy Sector of theS 5 1yyy2 Kagome Antiferromagnet
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Starting from a modified version of theS ­ 1y2 Kagome antiferromagnet to emphasize the role of
elementary triangles, an effective Hamiltonian involving spin and chirality variables is derived. A mea
field decoupling that retains the quantum nature of these variables is shown to yield a Hamiltonian
can be solved exactly, leading to the following predictions: (i) The number of low-lying singlet stat
increases with the number of sitesN like 1.15N ; (ii) a singlet-triplet gap remains in the thermodynamic
limit; (iii) spinons form bound states with a small binding energy. By comparing these properties w
those of the regular Kagome lattice as revealed by numerical experiments, we argue that this descri
captures the essential low-energy physics of that model. [S0031-9007(98)07095-1]

PACS numbers: 75.10.Jm, 75.40.Cx, 75.50.Ee
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Despite a very intense activity over the past te
years, the magnetic properties of theS ­ 1y2 Kagome
antiferromagnet remain an open problem. If a numb
of facts seem to be rather firmly established by no
thanks to the very extensive numerical simulations th
have been performed on that system [1–8], a simp
theoretical picture that accounts for the basic findings h
not emerged yet. The most striking feature is probab
the presence of many, low-lying singlet states [7,8
The first indication that this might be the case was th
appearance of a low temperature peak in the spec
heat. While the evolution of this peak with the size o
the system is not clear yet, the numerical determinati
of all the low-lying singlet states for systems with
up to 36 sites shows that their number increases li
1.15N , where N is the number of sites of the system
The best candidate to explain this proliferation of low
lying singlets is a short-range resonating-valence-bo
description of the low-energy sector based on dim
coverings of the Kagome lattice with nearest-neighb
singlets [9–11]. The main problem with this approach
that the number of dimer states increases like1.26N , i.e.,
much too fast [12], and no convincing criterion could b
found that allows one to select the relevant singlet stat
The other important, although less accurately establish
findings of the numerical simulations are the absence
a long-range magnetic order in the ground state and t
presence of a singlet-triplet gap in the thermodynam
limit [7,8]. Finally the role of spin 1y2 excitations,
as well as the consistency of the numerical resu
with some exotic types of order [13–16], is still unde
investigation.

In this paper, we propose a simple explanation of the
properties. We start from the following observation: Th
exponential increase of the number of these low-lyin
states suggests that they originate from the partial liftin
of a local degeneracy that would be present if some
the couplings were set to zero. Now the natural brick
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to construct the Kagome lattice are triangles, and spi
1y2 on a triangle lead to a fourfold degenerate groun
state: two doublets that differ by their chirality. So
let us investigate how this degeneracy is lifted if on
constructs the Kagome lattice by coupling triangles. Th
amounts to studying the modified Kagome lattice depicte
in Fig. 1 starting from the limitJ 0yJ ø 1. This can be
seen as a triangular lattice of triangles withNt ­ Ny3
sites, whereN is the number of sites of the Kagome
lattice.

The first step is to derive an effective Hamiltonian in
the subspace of the ground states of the triangles, as
Subrahmanyam’s block spin perturbation approach to t
nondimerized Kagome lattice [17]. Following Schulz’s
approach to the problem of three coupled Heisenbe
chains with periodic boundary conditions [18], we de
scribe the four ground states of a triangle with two Pau
matrices: $s for the spin of the doublet, the eigenstates o
sz being denoted" and#, and $t for its chirality, the eigen-
states oftz being denotedR for right andL for left. In

FIG. 1. Sketch of the dimerized Kagome lattice. Solid lines
J; dashed lines:J 0.
© 1998 The American Physical Society
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terms of the original spins$S, these states can be written

jaRl ­
1

p
3

sj 2 aaal 1 vja 2 aal 1 v2jaa 2 ald ,

(1)

jaLl ­
1

p
3

sj 2 aaal 1 v2ja 2 aal 1 vjaa 2 ald ,

wherev ­ exps2piy3d and a ­ " or #. ja1a2a3l rep-
resents a configuration of the original spins$S within one
triangle, the indices corresponding to the convention
Fig. 1. Note that the total spin is now given bys

P0
i $sid2,

where the prime means that the sum runs over the t
angular lattice. Each triangle has an energy23Jy4, and
energies will be measured with respect to the ground sta
energy2s3Jy4dNt of the J 0yJ ­ 0 case. Then, to the
first order inJ 0, the effective HamiltoniañH on the trian-
gular lattice is given by

H̃ ­ sJ 0y9d
X
ki,jl

0
H̃s

ij H̃t
ij , H̃s

ij ­ $si . $sj ,

H̃t
ij ­ f1 2 2saijt2

i 1 a2
ijt1

i dg f1 2 2sbijt2
j 1 b2

ijt1
j dg ,

(2)

whereki, jl denotes pairs of nearest neighbors. InH̃t
ij , aij

and bij are complex parameters that depend on the ty
of bond:aij (respectively,bij) equals1, v2, or v when
the original spin in trianglei (respectively,j) involved in
the bondsi, jd sits at site 1, 2, or 3 with the convention
of Fig. 1. In the basisjRRl, jRLl, jLRl, and jLLl the
eigenstates of̃Ht

ij can be easily calculated

jft
1 si, jdl ­

1
2

s1, 2bij , 2aij , aijbijd E1 ­ 9 ,

jft
2 si, jdl ­

1
2

s1, bij , aij , aijbijd E2 ­ 1 ,
(3)

jft
3 si, jdl ­

1
2

s1, 2bij , aij , 2aijbijd E3 ­ 23 ,

jft
4 si, jdl ­

1
2

s1, bij , 2aij , 2aijbijd E4 ­ 23 ,

while the eigenstates of̃Hs
ij are denotedjfs

S,msi, jdl with
energies23y4 for the singlet (S ­ 0, m ­ 0) and1y4 for
the triplets (S ­ 1, m ­ 0, 61).

It is useful to start with two triangles coupled by a
single link. In the spirit of the Majumdar-Ghosh solution
of the J1 2 J2 chain [19], the ground state wave function
in terms of the spin$S is obtained as the product of
three singlets involving, respectively, the link between th
triangles and the remaining two spins on each triangle (s
Fig. 2), and its energy is26Jy4 2 3J 0y4. In that simple
case, the effective HamiltoniañHij is the product of a spin
part H̃s

ij and a chirality partH̃t
ij , and its eigenvalues are

the products of the eigenvalues ofH̃s
ij with those ofH̃t

ij .
The ground state energy ofH̃ij is thus23J 0y4: The exact
ground state energy is recovered, as it should be, since
depends linearly onJ 0.

In the general case of Eq. (2), the Hamiltonian i
not the product of a spin part and a chirality part, an
of

ri-

te

pe

e
ee

it

s
d

FIG. 2. Solution of the two-triangle problem. Singlets a
represented as double lines.

its solution is, in principle, as difficult as the origina
problem. However, we note that the Hamiltonian
Eq. (2) is formally similar to the Kugel-Khomskii mode
that was introduced in the context of orbitally degenera
magnets [20], and a mean-field decoupling of the spin a
orbital degrees of freedom is known to give an accur
picture of the physics when the asymmetry between s
and orbital degrees of freedom is strong enough [21].
our case, the asymmetry between spin and chiral variab
in Eq. (2) is clearly very strong, and such a decoupli
amounts to the replacement of̃H with the mean-field
Hamiltonian defined on the triangular lattice,

HMF ­
X
ki,jl

0
sat

ijH̃s
ij 1 as

ijH̃t
ij 2 as

ijat
ijd , (4)

where the parametersat
ij ; kH̃t

ijl andas
ij ; kH̃s

ij l have to
be determined self-consistently. Note that this mean-fi
problem is still very complicateda priori since it involves
S ­ 1y2 Heisenberg-like models on a triangular lattice.

Remarkably enough, the low-energy solutions of th
problem can be determined analytically. Let us conce
trate for the moment on clusters with an even numb
of sites and with periodic boundary conditions, and
us consider a dimer covering of the triangular latti
by nearest-neighbor dimers. Denoting byD the set of
nearest-neighbor pairs that enter this covering, we c
construct a wave functionjF0sDdl in the following way:

jF0sDdl ­
Y

ki,jl[D

jft
1 si, jdl ≠ jfs

0,0si, jdl . (5)

Clearly jF0sDdl will be a solution of the problem if
at

ij ­ as
ij ­ 0 as soon aski, jl ” D. This turns out to

be true thanks to the following properties:

kft
1 si, jdft

1 sk, ldjH̃t
jkjft

1 si, jdft
1 sk, ldl ­ 0 ,

kfs
0,0si, jdfs

0,0sk, ldjH̃s
jk jfs

0,0si, jdfs
0,0sk, ldl ­ 0 ,

(6)

which can be easily checked directly with the expressio
of the wave functions. SojF0sDdl is a solution charac-
terized byat

ij ­ 9, as
ij ­ 23y4, if ki, jl [ D and 0 oth-

erwise; its energy is given byE0sS ­ 0d ­ 2s3J 0y8dNt,
and it is a singlet [22]. To prove that it minimizes th
energy of Eq. (4), we have solved the mean-field pro
lem numerically on small clusters with up to3 3 4 sites.
2357
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This has been done by iteration starting from random va
ues ofas

ij and at
ij , and we found that the lowest energy

is always equal to2s3J 0y8dNt. In fact, solutions such as
F0sDd exist most of the time for such mean-field Hamil
tonians, but they are usually significantly higher in en
ergy than uniform solutions. In the present case, howev
other solutions involvingjft

2 si, jdl are very bad energeti-
cally becauseE2 ­ E1y9. Note that the wave function
jf

t
1 si, jdl corresponds neither to ferromagnetic nor ant

ferromagnetic ordering of the chiral variables since it
a linear combination of the four basis statesjRRl, jRLl,
jLRl, andjLLl. So there is no chiral ordering of the type
discussed by Baskaran [23] for the triangular lattice eve
locally.

Similarly, triplet solutions can be constructed for
given dimer covering of the triangular lattice. Choose tw
neighboring sitessi0, j0d, and consider a dimer covering
Dsi0, j0d of the remaining sites. The wave function with
lowest energy is of the form

jF0fDsi0, j0dgl fjft
n si0, j0dl ≠ jfs

1,msi0, j0dlg . (7)

In this expression,m ­ 0, 61 and n can take the values
of 3 or 4 [24]. The energy of this state isE0sS ­ 1d ­
E0sS ­ 0d 1 s2y3dJ 0. Again it was checked numerically
on a3 3 4 cluster that this is indeed the lowest energy i
the triplet sector. So this mean-field approach predic
that there is a singlet-triplet energy gapD equal to
s2y3dJ 0.

Another class of low-lying states exists in the triple
sector. It can be constructed in the following way: Choos
two sites sk, ld that are not nearest neighbors, denote
by Dsk, ld a dimer covering of the remaining sites, an
consider the wave function

jF0sssDsk, lddddl jsktkl jsltll , (8)

wherejsktkl (respectively,jsltll) can be any configura-
tion at sitek (respectively,l). Then similar arguments
show that this is a solution with energyE1sS ­ 1d ­
E0sS ­ 1d 1 J 0y12. Each unpaired site corresponds t
a S ­ 1y2 excitation and can be interpreted as a spino
This mean-field approach predicts that spinons form tripl
bound states on neighboring sites with a binding ener
equal toJ 0y12. In fact, if we consider a cluster with an odd
number of sites, the ground state can be shown to con
of one unpaired site—i.e., one spinon—timesjF0sDdl,
whereD is a dimer covering of the remaining sites.

Now let us turn to the very interesting question of th
ground state degeneracy. The energyE0sS ­ 0d does not
depend on the particular dimer coveringD of the trian-
gular lattice used to construct the wave functionjF0sDdl.
So, for a given cluster, the degeneracy is controlled by t
number of dimer coverings. This number can be calculat
using standard techniques [25,26]. For the triangular la
tice, we found that it increases with the number of sitesNt
like aNt with ln a ­

1
16p2

R2p

0

R2p

0 lns4 1 4 sinx siny 1

4 sin2 yddx dy. A numerical integration yields lna ­
0.4286, or a ­ 1.5351. Translated into the language o
the original Kagome lattice, this corresponds to a degen
2358
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acy that increases likesa1y3dN ­ 1.1536N , whereN is the
number of sites of the Kagome lattice sinceNt ­ Ny3.

How good is this mean-field approach? One argume
in its favor is that it is qualitatively correct in the case o
three coupled chains with periodic boundary condition
Schulz’s analysis based on the renormalization gro
argument predicts a dimerized, twofold degenerate grou
state with gapped spin excitations [18,27], and this
exactly the physics of the mean-field solution adapt
to that case [28]. Besides, one can compare me
field and exact results for the effective Hamiltonian o
small clusters. We have done this on rings ofn sites
with diagonal bonds up ton ­ 6. The details will be
given elsewhere, but the answer is unambiguous: T
number of degenerate mean-field ground states alw
corresponds to the number of low-lying singlets of th
exact solution. To go beyond, the mean field is expec
to partially lift the degeneracy within the ground sta
manifold but not to change the number of low-lyin
singlets.

Now, let us come to the most important question: Wh
can we learn from this approach concerning the regu
(nondimerized) Kagome lattice? The first issue to addre
is whether the present picture, developed in the lim
J 0yJ ø 1, can remain a good one for the original mod
corresponding toJ 0yJ ­ 1. A necessary and sufficien
condition for this to be true is that the singlet sector of th
model of Fig. 1 evolves smoothly as a function ofJ 0yJ,
i.e., that the low-lying singlets of the regular Kagom
model can be reached adiabatically from those of t
modified one. As a first step in this direction, we hav
studied the evolution of the spectrum of the two-triang
problem of Fig. 2. The results are quite interesting: T
hierarchy of the low-lying states is exactly the same f
J 0yJ ­ 0.1 and J 0yJ ­ 1. In particular, cranking upJ 0

does not pull down singlet states of higher energy ev
when J 0 ­ J, i.e., when the coupling between triangle
is already a significant fraction of the gap of an isolate
triangle (3Jy2). To see whether the same is true for th
Kagome lattice itself is a numerical task far beyond th
scope of the present paper. However, the previous re
is quite encouraging, and it is the author’s hope that t
present paper will indeed motivate such a calculation.

Finally, let us translate our results in terms of the orig
nal spins $S. We know from the analysis of the two-
triangle problem that the basic brick of our mean-fie
wave function, namely, a two-site wave function of th
type jf

t
1 si, jdl ≠ jf

s
0,0si, jdl, corresponds to a dimer map

ping of the two-triangle problem (see Fig. 2). So, th
wave functions of Eq. (5) correspond to a certain subse
the dimerized wave functions of the Kagome lattice us
by Zeng and Elser [11]. Besides, the number of states
lected with this criterion increases roughly like1.15N , in
agreement with the numerical results for even clusters [
This is probably the most interesting result of the prese
approach since it provides a simple but neverthele
quantitative explanation of the very numerous low-lyin
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singlet states of theS ­ 1y2 Kagome antiferromagnet:
Their number scales with the number of dimer covering
of the underlying triangular lattice of triangles. The fac
that one can choose triangles pointing upwards or dow
wards to build the wave function means that the actu
low-lying states can have domains with different orienta
tions of the triangles. Elementary energy consideratio
suggest that these domains are large, however, so that t
can only marginally contribute to the increase of the num
ber of singlet states with the size of the system. Inte
estingly enough we can also explain the apparent d
crepancy between odd and even clusters in the resu
of Ref. [8]. For odd clusters, there is an unpaired sit
and according to the present theory, the degeneracy is
pected to scale likeN 3 1.15N . Omitting this prefactor
in the fit leads to an overestimate ofa (see Fig. 3).

To summarize, we have studied a dimerized versio
of the S ­ 1y2 Kagome antiferromagnet by performing
a mean-field analysis of the effective Hamiltonian tha
describes its low-energy sector. This approach leads
a transparent picture of the low-energy properties whic
turns out to bear remarkable similarities to those report
for the regular Kagome lattice [7,8], e.g., the numbe
of low-lying singlets or the presence of a singlet-triple
gap. Besides, these results lead to natural subspace
dimer wave functions to describe the low-energy singl
and triplet sectors of the regular Kagome model.
variational study of this model using these wave function
is in progress to make more precise statements about
accuracy of this description of the low-energy sector o
the regular Kagome antiferromagnet. It is expected
give useful information concerning the structure of th
low-lying singlet sector, for instance, the low temperatur
specific heat, and to allow one to make more preci
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t
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FIG. 3. Logarithm of the number of dimer coverings of th
triangular lattice as a function of the number of sitesNt for
small systems with periodic boundary conditions. The slop
of lnsNoddd is 1.18, while the slope of both lnsNevend and
lnsNoddyNtd is 1.15.
s
t
n-
al
-

ns
hey
-

r-
is-
lts

e,
ex-

n

t
to
h

ed
r
t
s of
et
A
s
the
f

to
e
e

se

e

e

predictions concerning the persistence of the singlet-trip
gap and the binding of spinons in the thermodynam
limit.
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