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Low-Energy Sector of theS = 1/2 Kagome Antiferromagnet
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Starting from a modified version of th& = 1/2 Kagome antiferromagnet to emphasize the role of
elementary triangles, an effective Hamiltonian involving spin and chirality variables is derived. A mean-
field decoupling that retains the quantum nature of these variables is shown to yield a Hamiltonian that
can be solved exactly, leading to the following predictions: (i) The number of low-lying singlet states
increases with the number of sitaslike 1.15Y; (ii) a singlet-triplet gap remains in the thermodynamic
limit; (iii) spinons form bound states with a small binding energy. By comparing these properties with
those of the regular Kagome lattice as revealed by numerical experiments, we argue that this description
captures the essential low-energy physics of that model. [S0031-9007(98)07095-1]

PACS numbers: 75.10.Jm, 75.40.Cx, 75.50.Ee

Despite a very intense activity over the past tento construct the Kagome lattice are triangles, and spins
years, the magnetic properties of the= 1/2 Kagome 1/2 on a triangle lead to a fourfold degenerate ground
antiferromagnet remain an open problem. If a numbestate: two doublets that differ by their chirality. So
of facts seem to be rather firmly established by nowlet us investigate how this degeneracy is lifted if one
thanks to the very extensive numerical simulations thatonstructs the Kagome lattice by coupling triangles. This
have been performed on that system [1-8], a simpleamounts to studying the modified Kagome lattice depicted
theoretical picture that accounts for the basic findings ham Fig. 1 starting from the limit/’/J < 1. This can be
not emerged yet. The most striking feature is probablyseen as a triangular lattice of triangles with = N/3
the presence of many, low-lying singlet states [7,8].sites, whereN is the number of sites of the Kagome
The first indication that this might be the case was thdattice.
appearance of a low temperature peak in the specific The first step is to derive an effective Hamiltonian in
heat. While the evolution of this peak with the size ofthe subspace of the ground states of the triangles, as in
the system is not clear yet, the numerical determinatiotsubrahmanyam’s block spin perturbation approach to the
of all the low-lying singlet states for systems with nondimerized Kagome lattice [17]. Following Schulz’'s
up to 36 sites shows that their number increases likapproach to the problem of three coupled Heisenberg
1.15Y, where N is the number of sites of the system. chains with periodic boundary conditions [18], we de-
The best candidate to explain this proliferation of low-scribe the four ground states of a triangle with two Pauli
lying singlets is a short-range resonating-valence-bondnatrices:a for the spin of the doublet, the eigenstates of
description of the low-energy sector based on dimeir, being denoted and|, and7 for its chirality, the eigen-
coverings of the Kagome lattice with nearest-neighboistates ofr, being denoted® for right andL for left. In
singlets [9—11]. The main problem with this approach is
that the number of dimer states increases liks", i.e.,

much too fast [12], and no convincing criterion could be 3 3 iij

found that allows one to select the relevant singlet states. 1 2 12

____________________

findings of the numerical simulations are the absence of K N K N
a long-range magnetic order in the ground state and the X \ A \
presence of a singlet-triplet gap in the thermodynamic A 3 8 A
limit [7,8]. Finally the role of spin 12 excitations, 2\,

as well as the consistency of the numerical results NS Ny N
with some exotic types of order [13—16], is still under N N N

investigation. 3 3
In this paper, we propose a simple explanation of these

properties. We start from the following observation: The T ; T ;
exponential increase of the number of these low-lying N N
states suggests that they originate from the partial lifting

of a local degeneracy that would be present if some OF|G. 1. Sketch of the dimerized Kagome lattice. Solid lines:
the couplings were set to zero. Now the natural bricks/; dashed linesy’.
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terms of the original spin§ , these states can be written

1
laR) = —= (| — aaa) + w|la — aa) + 0?*|laa — a)),
v3 (1)

laL) = % (|- aaa)+ o’la —aa)+ wlaa — a)),

wherew = expl27i/3) anda = 1 or |. Icglaza3> rep-
resents a configuration of the original spifisvithin one
triangle, the indices corresponding to the convention ofIG. 2. Solution of the two-triangle problem. Singlets are
Fig. 1. Note that the total spin is now given By ;)2, ~ represented as double lines.
where the prime means that the sum runs over the tri-
angular lattice. Each triangle has an energ/ /4, and its solution is, in principle, as difficult as the original
energies will be measured with respect to the ground stateroblem. However, we note that the Hamiltonian of
energy —(3J/4)N, of the J'/J = 0 case. Then, to the Eq. (2) is formally similar to the Kugel-Khomskii model
first order inJ’, the effective Hamiltoniart/ on the trian-  that was introduced in the context of orbitally degenerate
gular lattice is given by magnets [20], and a mean-field decoupling of the spin and
. , Do - orbital degrees of freedom is known to give an accurate
H = (/9 Z Hj;Hjj, ij ' picture of the physics when the asymmetry between spin
@) (2 and orbital degrees of freedom is strong enough [21]. In
H,’, = [1 —2(a;j7i + aiZjTl_*)] [1- z(BijT]i + ,3,'2,-7;)], our case, the asymmetry between spin and chiral variables
] i ~ in Eq. (2) is clearly very strong, and such a decoupling
where(i, j) denotes pairs of nearest neighbors HIf, @i;  amounts to the replacement &f with the mean-field

and g;; are complex parameters that depend on the typgjgmiltonian defined on the triangular lattice,
of bond: «;; (respectively,3;;) equalsl, w?, or @ when

the original spin in triangleé (respectively,) involved in Hyr = Z/(aiTin; + agﬁif, — afal)), (4)
the bond(i, j) sits at site 1, 2, or 3 with the convention i s
of Fig. 1. In the basidRR), |RL), |LR), and|LL) the _ _
eigenstates of/;; can be easily calculated where the parameters; = (H];) anda;; = (H;}) have to
o 1 be determined self-consistently. Note that this mean-field
o7 ) = 5 (L= Bijs —aij, @i Biy) Er =9, problem is still very complicated priori since it involves
S = 1/2 Heisenberg-like models on a triangular lattice.
.. 1 Remarkably enough, the low-energy solutions of that
T —_ . . . . — ’
|66, 2 (L By ijs i Bij) B2 = 1, 3) problem can be determined analytically. Let us concen-

| trate for the moment on clusters with an even number
|p3(i, j)) = > (1, = Bij @ij, —a;;Bij) E3 = =3, of sites and with periodic boundary conditions, and let
us consider a dimer covering of the triangular lattice

o 1 by nearest-neighbor dimers. Denoting By the set of
lps (i, 7)) = E(LBij’_aij»_aijBij) Ey = -3, nearest-neighbor pairs that enter this covering, we can

) . ~ . construct a wave functio D)) in the following way:
while the eigenstates d@i;; are denotedés,, (i, j)) with o(D)) g way

energies—3/4 for the singlet § = 0, m = 0) and1/4 for _ T(i s o (i

the (iolets § = 1 m = 0. =1). Do) = [] 167G, 1) ® 1561 (5)
It is useful to start with two triangles coupled by a

single link. In the spirit of the Majumdar-Ghosh solution Clearly |®¢(D)) will be a solution of the problem if

of theJ; — J, chain [19], the ground state wave function a/; = af; = 0 as soon asi, j) &€ D. This turns out to

in terms of the spinS is obtained as the product of be true thanks to the following properties:

three singlets involving, respectively, the link between the _

triangles and the remaining two spins on each triangle (see (1, o]k, DIH | T, j)d{(k, 1)) =0,

Fig. 2), and its energy is-6J /4 — 3J'/4. In that simple O (: AT FrO| 40 (i D\ 4O _

case, the effective Hamiltoniaf,; is the product of a spin (@ao(E. )baolk, DIFGil bioli. biolk. D) =0,

part 7 and a chirality partd];, and its eigenvalues are which can be easily checked directly with the expressions

the products of the eigenvalues Bf; with those ofA{;.  of the wave functions. S¢P,(D)) is a solution charac-

The ground state energy éf;; is thus—3J'/4: The exact terized bya]; = 9, af; = —3/4, if (i, j)) € D and 0 oth-

ground state energy is recovered, as it should be, since érwise; its energy is given bky(S = 0) = —(3J'/8)N;,

depends linearly od’. and it is a singlet [22]. To prove that it minimizes the
In the general case of Eg. (2), the Hamiltonian isenergy of Eq. (4), we have solved the mean-field prob-

not the product of a spin part and a chirality part, andem numerically on small clusters with up 80X 4 sites.
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This has been done by iteration starting from random valacy that increases likex'/>)V = 1.1536", whereN is the
ues ofa;; andaj;, and we found that the lowest energy number of sites of the Kagome lattice singge= N /3.
is always equal te-(3J//8)N;. In fact, solutions such as  How good is this mean-field approach? One argument
(D) exist most of the time for such mean-field Hamil- in its favor is that it is qualitatively correct in the case of
tonians, but they are usually significantly higher in en-three coupled chains with periodic boundary conditions:
ergy than uniform solutions. In the present case, howeveSchulz’'s analysis based on the renormalization group
other solutions involvinde; (i, j)) are very bad energeti- argument predicts a dimerized, twofold degenerate ground
cally becausek, = E|/9. Note that the wave function state with gapped spin excitations [18,27], and this is
|1 (i, j)) corresponds neither to ferromagnetic nor anti-exactly the physics of the mean-field solution adapted
ferromagnetic ordering of the chiral variables since it isto that case [28]. Besides, one can compare mean-
a linear combination of the four basis stat&R), |[RL), field and exact results for the effective Hamiltonian on
|[LR), and|LL). So there is no chiral ordering of the type small clusters. We have done this on ringsmofsites
discussed by Baskaran [23] for the triangular lattice evenvith diagonal bonds up t@ = 6. The details will be
locally. given elsewhere, but the answer is unambiguous: The

Similarly, triplet solutions can be constructed for anumber of degenerate mean-field ground states always
given dimer covering of the triangular lattice. Choose twocorresponds to the number of low-lying singlets of the
neighboring sitegiy, jo), and consider a dimer covering exact solution. To go beyond, the mean field is expected
D(iy, jo) of the remaining sites. The wave function with to partially lift the degeneracy within the ground state
lowest energy is of the form manifold but not to change the number of low-lying

I T(: o s o (i s singlets.
. lq)O[D(lD’.]O)D[Id)”(lo’m» ® [¢Tulio.jol. - (7) Now, let us come to the most important question: What

In this expressiong = 0, *1 and_n can take the values can we learn from this approach concerning the regular
of 3 or 4 [24]. ‘The energy .Of this state (S = 1)_= (nondimerized) Kagome lattice? The first issue to address
Eo(S = 0) + (2/3)J'. Again it was checked numerically

A ._is whether the present picture, developed in the limit
on a3 X 4 cluster that this is indeed the lowest energy in P P P

. . ) J'/J <« 1, can remain a good one for the original model
the triplet sector. _So thl§ mean-field approach predmt%orresponding tol'/J = 1. A necessary and sufficient
that there is a singlet-triplet energy gap equal to

/ condition for this to be true is that the singlet sector of the
@2/3)J". . L . model of Fig. 1 evolves smoothly as a function8fJ
Another class of low-lying states exists in the triplet '

. . ) i.e., that the low-lying singlets of the regular Kagome
sector. Itcan be constructed in the follovx_/lng way: Choos odel can be reached adiabatically from those of the
two sites (k,[) that are not nearest neighbors, denote

by D(k.1) a di . f th 2 it dmodified one. As a first step in this direction, we have
y DI, 1) a dimer covering of the remaining sies, and gy gieq the evolution of the spectrum of the two-triangle
consider the wave function

problem of Fig. 2. The results are quite interesting: The
|Do(D(k, D)) lowri) loi71), (8) hierarchy of the low-lying states is exactly the same for
where|o; 7,) (respectively)o;7,)) can be any configura- J'/J = 0.1 andJ’/J = 1. In particular, cranking up’
tion at sitek (respectively,/). Then similar arguments does not pull down singlet states of higher energy even
show that this is a solution with energy, (s = 1) = WhenJ' = J, i.e., when the coupling between triangles
Eo(S = 1) + J'/12. Each unpaired site corresponds to is already a significant fraction of the gap of an isolated
a S = 1/2 excitation and can be interpreted as a spinontriangle ¢J//2). To see whether the same is true for the
This mean-field approach predicts that spinons form tripleKagome lattice itself is a numerical task far beyond the
bound states on neighboring sites with a binding energgcope of the present paper. However, the previous result
equal taJ’/12. Infact, if we consider a cluster with an odd IS quite encouraging, and it is the author’s hope that the
number of sites, the ground state can be shown to consigtesent paper will indeed motivate such a calculation.
of one unpaired site—i.e., one spinon—timds (D)), Finally, let us translate our results in terms of the origi-
whereD is a dimer covering of the remaining sites. nal spinsS. We know from the analysis of the two-
Now let us turn to the very interesting question of thetriangle problem that the basic brick of our mean-field
ground state degeneracy. The enekgysS = 0) does not wave function, namely, a two-site wave function of the
depend on the particular dimer coveridiy of the trian-  typel¢ (i, j)) ® |pgo(i, j)), corresponds to a dimer map-
gular lattice used to construct the wave functjdn(D)).  ping of the two-triangle problem (see Fig. 2). So, the
So, for a given cluster, the degeneracy is controlled by th&vave functions of Eq. (5) correspond to a certain subset of
number of dimer coverings. This number can be calculatethe dimerized wave functions of the Kagome lattice used
using standard techniques [25,26]. For the triangular latby Zeng and Elser [11]. Besides, the number of states se-
tice, we found that it increases with the number of sNes  lected with this criterion increases roughly likel 5V, in
like o™ withIna = o= [o7 [37 In(4 + 4sinxsiny +  agreement with the numerical results for even clusters [8].
4sir’ y)dx dy. A numerical integration yields la =  This is probably the most interesting result of the present
0.4286, or « = 1.5351. Translated into the language of approach since it provides a simple but nevertheless
the original Kagome lattice, this corresponds to a degeneguantitative explanation of the very numerous low-lying

2358



VOLUME 81, NUMBER 11 PHYSICAL REVIEW LETTERS 14 B,TEMBER 1998

singlet states of the& = 1/2 Kagome antiferromagnet: predictions concerning the persistence of the singlet-triplet
Their number scales with the number of dimer coveringggap and the binding of spinons in the thermodynamic
of the underlying triangular lattice of triangles. The fact limit.
that one can choose triangles pointing upwards or down- | thank Claire Lhuillier, Maurice Rice, and Heinz
wards to build the wave function means that the actuaSchulz for very interesting discussions. | also acknowl-
low-lying states can have domains with different orienta-edge the hospitality of the ETH Zirich where this project
tions of the triangles. Elementary energy considerationstarted. The numerical simulations were performed on the
suggest that these domains are large, however, so that th€yay supercomputers of the IDRIS (Orsay, France).
can only marginally contribute to the increase of the num-
ber of singlet states with the size of the system. Inter-
estingly enough we can also explain the apparent dis-
crepancy between odd and even clusters in the results
of Ref. [8]. For odd clusters, there is an unpaired site,
and according to the present theory, the degeneracy is extl] C. Zeng and V. Elser, Phys. Rev. 42, 8436 (1990).
pected to scale lik&v x 1.15Y. Omitting this prefactor  [2] J.T. Chalker and J.F. Eastmond, Phys. Revi314 201
in the fit leads to an overestimate @f(see Fig. 3). (1992).

To summarize, we have studied a dimerized version[3] P-W. Leung and V. Elser, Phys. Rev.4, 5459 (1993).
of the S = 1/2 Kagome antiferromagnet by performing [# R-P-. Singh and D. Huse, Phys. Rev. L&#, 1766 (1992).
a mean-field analysis of the effective Hamiltonian that [5] N. Elstner and A.P. Young, Phys. Rev.38, 6871 (1994).

. . . 6] T. Nakamura and S. Miyashita, Phys. Rev.5, 9174
describes its low-energy sector. This approach leads to[ ] (1995). 4 4

a transparent picture of the low-energy properties which(7; p "~ echeminant, B. Bernu, C. Lhuillier, L. Pierre, and
turns out to bear remarkable similarities to those reported ~ p. Sindzingre, Phys. Rev. 85, 2521 (1997).

for the regular Kagome lattice [7,8], e.g., the number [8] C. Waldtmann, H.-U. Everts, B. Bernu, C. Lhuillier,
of low-lying singlets or the presence of a singlet-triplet P. Sindzingre, P. Lecheminant, and L. Pierre (to be
gap. Besides, these results lead to natural subspaces of published).

dimer wave functions to describe the low-energy singlet [9] V. Elser, Phys. Rev. Let62, 2405 (1989).

and triplet sectors of the regular Kagome model. A[10] S. Sachdev, Phys. Rev.45, 12377 (1992).

variational study of this model using these wave functiong!1l C. Zeng and V. Elser, Phys. Rev.H#, 8318 (1995).

is in progress to make more precise statements about tilﬂaz] For 36 sites, this subspace is already larger than the actual

. - ] low-lying singlet subspace by a factor of 25.
accuracy of this description of the low-energy sector of 13] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Leig, 2095

the regular .Kagome' antiferroma}gnet. It is expected t (1987): Phys. Rev. B9, 11879 (1989).
give useful information concerning the structure of the[14] J.B. Marston and C. Zeng, J. Appl. Phgs, 5962 (1991).
low-lying singlet sector, for instance, the low temperaturg15] K. Yang, L. K. Warman, and S. M. Girvin, Phys. Rev. Lett.
specific heat, and to allow one to make more precise 70, 2641 (1993).
[16] P. Chandra, P. Coleman, and I. Ritchey, J. Phy3, 591
(1993).
20 . . . [17] V. Subrahmanyam, Phys. Rev.32, 1133 (1995).
[18] Proceedings of the XXXIst Rencontres de Moricettited
by T. Martin, G. Montambaux, and J. Tran Thanh Van
(Editions Frontieres, Gif-sur-Yvette, France, 1996).
[19] C.K. Majumdar and D. Ghosh, J. Math. Phys. (N.Y0,
1388 (1969).
N(N ewe) [20] K. 1. Kugel and D.I. Khomskii, Usp. Fiz. Nauk36 621
(1982) [Sov. Phys. Us®5, 231 (1982)].
[21] C. Castellani, C.R. Natoli, and J. Ranninger, Phys. Rev. B
18, 4945 (1978):18, 4967 (1978):18, 5001 (1978).
IN(Ng4a/N) [22] Note that, although this mean-field energy has already
been derived in Ref. [17], no attempt was made to discuss
the degeneracy of the singlet manifold or to study the
triplet sector, which are clearly the most important results
of the present work.
%9 0 2 o 20 [23] G. Baskaran, Phys. Rev. Le@3, 2524 (1989).
[24] The argument is slightly more involved though than for
t the singlet ground states since the order paramefgro

FIG. 3. Logarithm of the number of dimer coverings of the not necessarily vanish. It will be reproduced elsewhere.
triangular lattice as a function of the number of sitésfor  [25] M.E. Fisher, Phys. Rei24, 1664 (1961).

small systems with periodic boundary conditions. The slopd26] S. Samuel, J. Math. Phys. (N.Y2]L, 2806 (1980).

of INn(Nyyq) is 1.18, while the slope of both (N..,) and [27] K. Kawano and M. Takahashi, cond-mat/9709271.
IN(Nogq/N;) is 1.15. [28] F. Mila (unpublished).

IN(N o0

10

N

2359



