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Magnetic Anisotropy in Quantum Hall Ferromagnets
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We show that the sign of magnetic anisotropy energy in quantum Hall ferromagnets is determined by
a competition between electrostatic and exchange energies. Easy-axis ferromagnets tend to occur when
Landau levels whose states have similar spatial profiles cross. We report measurements of integer
quantum Hall effect (QHE) evolution with magnetic-field tilt. Reentrant behavior observed for the
v = 4 QHE at high tilt angles is attributed to easy-axis anisotropy. This interpretation is supported by
a detailed calculation of the magnetic anisotropy energy. [S0031-9007(98)06972-5]

PACS numbers: 73.40.Hm, 75.10.Lp, 75.30.Gw

In the quantum Hall effect (QHE) regime, two- regarded as easy-axis (Ising) ferromagnets. In this Letter
dimensional electron systems (2DES) can have ferwe report experimental data for a 43 nm wide unbalanced
romagnetic ground states in which electronic spingGaAs quantum well in which a loss of the QHE:at= 4
are completely aligned by an arbitrarily weak Zee-is observed over a finite range of magnetic-field tilt-
man coupling [1]. However, spin independence of theangles. We derive a general expression for the magnetic
electron-electron interaction leads to isotropic Heisenbergnisotropy energy and propose that its sign is responsible
ferromagnetism, and therefore to loss of ferromagnetidor this observation.
order at any finite temperature [2]. Richer physics occurs In a strong magnetic field, the single-particle states of
when the two Landau levels (LL’s) that are nearly de-a 2DES are grouped into LL’s with orbital degeneracy
generate differ by more than a spin index. For exampleN, = AB/®,, where A is the system areaB is the
double-layer QHE systems can be regarded as easy-plafield strength, andb, is the magnetic flux quantum. We
(XY) two-dimensional ferromagnets [3] and exhibit aconsider the case where the LL filling facter= N/N,
variety of effects which have received considerables an integer [7] and two different groups &f, orbitals
experimental [4] and theoretical [5] attention in recentare close to degeneracy. We assume that other LL's are
years. lIdealized single-layer QHE systems have a phadar enough from the Fermi energy to justify their neglect
transition [6] in tilted magnetic fields between unpolarized[8]. Using apseudospianguage [3] to represent the LL
and spin-polarized states, and as we show below, can bedex degree of freedom, the Hamiltonians we consider
| can be expressed in the form

H=—bo(G=0)+ iZ{vp,p@p(—a)p(c}) + Vou @ (=9)a(@) + Voo @ [p(=9)a(@) + o(=p@]}.
! 1)

In Eqg. (1), b is half the energy separation between the ) N +

nearly degenerate LL’s, and(g) and o(g) are, respec- IWla]) = l_[ cmal0)- (2)
tively, the sum and difference of the density operators m=l

[9] projected onto the up and down pseudospin LL's.Here m labels the orbital states within a LL and
Note thatb is half the single-particle energy differ- 7 denotes the pseudospinor aligned in the=
ence and does not include mean-field contributions fronhSin(f) cog¢), sin(6) sin(¢),cog#)]  direction.  This
Coulomb or exchange interactions with electrons in thenany-particle state is fully pseudospin polarized [10,11].
LL’s of interest. We have limited the present discus-For the dependence of energy on pseudospin orientation,
sion to cases for which the total number of electrongve find that

with each pseudospin index is conserved. The effec- . N
tive interactions that appear in Eq. (1) are related to the (VIAlHWTA] = —b"cod0) + Yoo cog(@). (3)
effective interactions between pseudospins by the fol- N 2
lowing relations:V, , = (Vi1 + Vy + 2Vy))/4, V,, = Hereb® =b — U, , and for all indices
(Vip + Viy — 2vip /4, andV, , = (Vi1 — Vi)/4. dg
Our calculation of the pseudospin anisotropy energy is Usy f o) [Vis (g =0) — Viu(q)]

based on the following single Slater determinant wave
function: X exp(—q*€%/2), (4)
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a) ‘ ‘ ' magnets can be written as [12]

-~ 2b*
-7 Aygp = Iy — 2U + , 5
» HF 11 o,0 COS(H) ( )
d 2
where It = [ ok exp(—¢*¢*/2)(V,, — Vo0). For
the easy-plane casAyr is a continuous function of the

cos(0)
=)
\
\

|
—_
1

3'3 effective fieldb*, decreasing linearly fob* /U, , < —1,

Q 20 constant for|b*|/U,, < 1, and increasing linearly for
:Zl b*/Us, > 1. In contrast, if the system has easy-axis
o | anisotropy, Agyr decreases td;; at the extremes of
g 5 ° o ) 5 the hysteresis loop b(/U,, = *1) before jumping

to Iy + 4|/U,,| when the pseudospin magnetization
b reverses. In Fig. 1(b) we summarize the above results by
FIG. 1. Pseudospin orientation (a) and Hartree-Fock quasipaplotting (Ayr — 11;)/2|U, | as a function ob*/|U, .

ticle gap minus exchange energy in units of2|U, ,| (b) asa  In the Hartree-Fock approximation this quantity depends
f_unct|on of the effective fleld)*_/ U,.| for the easy-axis (full only on the sign of the anisotropy energy.
line) and easy-plane (dashed line) broken symmetry states. For concreteness. we now mention idealized models

which have easy-plane and easy-axis anisotropy. For two

where ¢ = \/hc/eB is the magnetic length. In Eq. (3) arbitrarily narrow quantum wells separated by a distahce
we have dropped terms in the energy that are independewith full polarization of the true electron spin, we let pseu-
of pseudospin orientation. The right-hand side of thisdospin represent the layer index. The “pseudospin”
equation is independent af because thé component Zeeman fieldb is then proportional to the bias electric
of total pseudospin is a good quantum number. field E,, created by a gate external to the electron system:

For each effective field strength®, the pseudospin b = eE,d/2. On the other hand, for a single arbitrarily
orientation is determined by minimizing the total energy.narrow quantum well withv = 2m in which the real-
ForU, , > 0, easy-plane anisotropy, d@3 = O atb* =  spin Zeeman coupling has been increased [6] so as to
0 and the pseudospin evolves continuously with effectivédring the up-spinn = m LL close to degeneracy with
field as illustrated in Fig. 1(a), reaching alignment forthe down-spinn = m — 1 LL, we let the pseudospin
p*| > U, ,. ForU,, <0, easy-axis anisotropy, local represent the spin index of the LL close to the Fermi
minima occur at both c¢8) =1 and co$d) = —1  energy. The pseudospin Zeeman coupling for this model
for |b*| < |U,,|. If only global pseudospin rotation is b = (g*ugB — hw. + Iy)/2. Here the first term is
processes were possible, macroscopic energy barrietie real-spin Zeeman coupling, the second term is the
would separate these two locally stable states, resultingyclotron energy, and the last term is the contribution to
in hysteretic behavior [see Fig. 1(a)]. The signiof, b from exchange interactions with frozen LL’s lying well
is determined by competition between the two terms irbelow the Fermi energyl{/(v/7/2e?/ef) = 1/2, 5/16,
square brackets on the right-hand side of Eq. (4). Thand31/128 form = 0, 1, and 2, respectively [6,13]]. The
Vso(qg = 0) term is an electrostatic energy which is effective Coulomb interaction energies for the two models
present when the two pseudospin states have differemre summarized in Table |. For the ideal double-layer
charge density profiles perpendicular to the electrormodel, the electrostatic tern¥, (¢ = 0) dominates,
layers. This term favors easy-plane anisotropy. Thé/, ,(g) is @ monotonically decreasing function @f and
V.o (q) term is the exchange energy which favors easyU, . is positive. On the other hand, for the ideal tilted-
axis anisotropy. Easy-axis anisotropy will always occurfield model, the pseudospin wave functions differ only
whenV, ,(¢) is an increasing function of wave vector. in the plane of the 2DES, the electrostatic term is conse-

Transport measurements in the QHE regime are exguently absent, and the exchange term produces easy-axis
tremely sensitive to the energy gap for charged excianisotropy U,../(J7/2e*/ef) = —3/16, —33/256,
tations. Generally, large energy gaps give rise to weland—107/1024 for m = 0, 1, and 2, respectively].
developed Hall plateaus and deep minima in the dis- Now we turn to the discussion of the measured QHE
sipative resistivity. In the Hartree-Fock approximation,evolution with tilted field, shown in Fig. 2 [14]. In finite
the quasiparticle energy gap of anisotropic QHE ferrowidth quantum wells, the large tilt angles necessary to

TABLE I. Effective Coulomb interactions in units @fre?€/e as a function of wave vectay in units of £~ for ideal double-
layer and tilted-field models.L,(x) is the Laquerre polynomial.

Model Voo Voo Voo
Double-layer (1 + e 1)/2q (1 — e 9)/2q 0
Tilted-field (L (q®/2)+Ln-1(g*/2)F [Ln(g*/2)=Ln-1(g*/2)P (L (g* /2P (L1 (q* /DT

4q 4q 44
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[15]. These orbital effects can be incorporated [11]
by adjusting the effective interactions appropriately. In
particular, for real finite-width quantum wells, the per-

] pendicular charge density profiles of the two pseudospin
. LL’s differ, and the electrostatic contribution @, , is

no longer zero. The sign of the anisotropy energy depends
in detail on the quantum well geometry, the tilt angle,

W -35 0 35 and the filling factor. The insets in Fig. 2(b) show
L z (nm) i

charge-density profiles in the quantum well studied for
s | 1 the relevant orbitals at high tilt angles obtained from
W IZ kQ | self-consistent LDA calculations [15) = 0,| andn =
I,Taty =2;n =1,]andn = 2,Tatv = 4. From these
orbitals we see that, far = 2, the Hartree contribution to

|
EY N
i 'g) | | ] U, is significant at highe. HenceU, , increases sub-
W ] stantially with tilt angle and becomes positive at large
|
|
|
|
|
|
|
|
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W so, referring to the quasiparticle gap predictions summa-
- ] rized in Fig. 1, a strong QHE may be expected throughout
W the region of tilt angles where the relevant LL's are close
to degeneracy. The experimental data of Fig. 2 show a
0 1 2 3 4 5 strong minimum aty = 2 at all angles nean = 72°

B, (T) whereb* = 0 occurs. No clear evidence for the disap-

pearance of the QHE is observed up to the highest ac-
cessible tilt angles for = 2, consistent with easy-plane

|

|
| 747 ! | [see Fig. 2(b)]. This result demonstrates that easy-plane

73.% | anisotropy can occur in realistic single quantum wells. If

I |

|

|

|

0.04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ anisotropy. We note that the calculatéq, , becomes
0.02 positive ata slightly higher than72°; we attribute this
small discrepancy to the local density approximation for
0.00 exchange and correlation, used in the self-consistent field
= -0.02 calculations for the LL orbitals.
S .0.04 At v = 4, our calculations predict thdt* = 0 occurs
o at « = 79°, and that the density profiles of the two
o -0.06 pseudospin states are similar even at high tilt angles,
-0.08 as illustrated in Fig. 2. Hencel/,, is only weakly
-0.10 angle dependent and is still strongiggativearounda =
' 79°. We attribute the clear degradation of the measured

“0.42 Lo - i i -axi
0 10 20 30 40 50 60 70 80 90 QI—_IE atvy =4 to p_henomena ass?mated with easy-axis
anisotropy. The tilt anglex = 80° where thev =4
o QHE disappears is in a good quantitative agreement
FIG. 2. (a) Measured longitudinal resistance vs perpendiculawith the theoretically predicted angke = 79° at which
component of the magnetic field for different tilt angles 6  the pseudospin Zeeman field® vanishes. We expect
measured from the normal to the plane of the 2DEST'at  yrangport properties inside the hysteresis loop in the easy-

i?zangog?ﬁv’(,”Z %SHE ésnlgsigséoéfihSeOQanEdi;e(;a\g)speersgsd axis case, to have a complicated disorder dependence.

neara = 72°. The inset shows calculated charge distribution SPatially random potentials couple differently to different
at « = 0 for the unbalanced GaAs quantum well studied hereLL’s and will produce a random pseudospin magnetic
The front-gate and back-gate voltages and the 2DES densitfield. This is expected [16] to lead to the formation
(N = 1.57 X 10" cm?) were fixed during the experiment. of |arge domains with particular pseudospin orientations.

(b) Anisotropy energies calculated for the geometry of this . . - SUNR
sample aty = 2 and 4. The two Landau levels which are The dynamics of pseudospin reorientation is likely to be

brought close to degeneracy by applying in-plane componerfgontrolled by barriers to domain wall motion. If these are
of the magnetic field are indicated in the insets together withcomparable td&z7, the pseudospin will achieve alignment
calculated density profiles for up (dashed line) and down (solidwith the effective field on laboratory time scales, @s
line) pseudospin orbitals at high tilt angles. will change from —1 to 1 at »* = 0, and the energy
gap will have a cusp. This scenario appears to apply for
recent experiments which study analogous LL crossings
bring the up and down pseudospin LL'’s close to degenerin the valence band of GaAs [17] and to some tilted field
acy result in substantial coupling of the in-plane compo-driven transitions at fractional LL filling factors [14]. On
nent of the magnetic field to orbital degrees of freedonthe other hand, when some domain wall motion barriers
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are much larger thakgT we expect that all physical
properties will exhibit hysteretic behavior, and that the
electronic state will have domain structure fbf close

to zero. Dissipation due to mobile charges created in[>
domain walls [11] can then lead to a breakdown of the
QHE, observed in our data at= 4 (Fig. 2). We expect

that dissipative and Hall resistances will then depend
on measuring current and sample history, as well as on
temperature. In our experiment, however, we have not
found clear evidence of hysteresis, possibly because the
base temperature (300 mK) is too large.

In the disorder free limit, easy-axis anisotropy in two [6]
dimensions leads to a finite temperature continuous phase
transition in the Ising universality class and stronger ther- [7]
modynamic anomalies than for the Kosterlitz-Thouless
phase transition of easy-plane systems. The transition
temperature can be estimated [11] by balancing energy
and entropy terms in the free energy of long domain walls:

ksT. ~ Uy o (WR/€?), (6)

wherew is the domain wall width and is the domain

wall orientation correlation length. The domain wall
physics of these easy-axis ferromagnets is unconventional
because the spin stiffness is negative [11]. Preliminary|[8]
results from work presently in progress suggest that
wR /€? is substantially larger than one and that the critical
temperature should typically exceed K.
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Note added—A recent experimental study [18] we [10]
learned of after this work was completed finds hysteretic
behavior in a narrow (25 nm) GaAs quantum well in
vicinity of » = 2/5 and4/9 fractional QHE’s which cor-
respond to integer QHE’s at composite fermion filling
factorsy = 2 and 4, respectively. In these experiments,
Zeeman coupling strength was controlled both by apply-
ing hydrostatic pressure and by tilting the field. We be-
lieve that the theory developed in this paper explains th
origin of the hysteresis found in Ref. [18] at very low
temperaturesi{ = 200 mK).
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