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Quantized Thermal Conductance of Dielectric Quantum Wires

Luis G. C. Rego and George Kirczenow

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
(Received 10 December 19097

Using the Landauer formulation of transport theory, we predict that dielectric quantum wires
should exhibit quantized thermal conductance at low temperatures in a ballistic phonon regime.
The quantum of thermal conductance is universal, independent of the characteristics of the material,
and equal t0772k123T/3h where kz is the Boltzmann constant; is Planck’s constant, and is
the temperature. Quantized thermal conductance should be experimentally observable in suspended
nanostructures adiabatically coupled to reservoirs, devices that can be realized at the present time.
[S0031-9007(98)06477-1]
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During the last two decades, the physics of electrorility through the wire, andn;(w) = 1/(e"@/%7i — 1)
transport in one dimension has attracted a great deal oépresents the thermal distribution of phonons in the reser-
attention. Some remarkable associated phenomena haveirs, assumed to be a Planck distribution at temperature
been the quantum Hall effect discovered by von Klitzing,T;. The cross sectional area of the wire is assumed to be
Dorda, and Pepper [1] and the quantized conductancef the order of hundreds of ninso that the lateral confine-
of ballistic point contacts discovered by van Wegsal.  ment produces finite gaps in the dispersion relation of the
[2] and Wharamet al.[3]. Here the signature of one- phonon frequencies. Equation (1) transforms to
dimensional conduction has been the quantization of the
two-terminal and Hall electrical conductances in multiples Q = — Z] do ho[nr(w) — n(0)]le() (2)
of the fundamental quantuet /A, as has been understood @a
within the framework of Landauer theory [4] and of sjnce the phonon velomtya(k) = dw,/dk is canceled
Buttiker-Landauer theory [5], respectively. by the 1D density of statef(w,) = 9k/dw..

One-dimensional phonon transport should also be pos- The reservoir-to-reservoir thermal conductance of the
sible. However, despite the long-standing theoretical inyjre is k = Q/AT, where AT = Tz — T, is the tem-
terest in this topic that goes back to the 1920s [6], thgerature difference between the reservoirs. It follows that
question whether the phonon thermal conductance should
be quantized in one dimension has to our knowledge ngf . [Z[ do o (nR(w) nL(w)>ga( )

v

been addressed either theoretically or experimentally. Re- AT

cent advances in nanotechnology have made experimental N oo

investigation of this question feasible; we note especially + Z] dw ﬁw<w>§a,(m].

the detection of nanowire phonon subbands by Seyler and o Y 0a(0) AT

Wybourne [7] and the measurement of the thermal conduc- 3)
tance of a suspended nanostructure by Tighe, Worlock, ar\ﬂ/e have separated Eq. (3) into two parts, so that the first

Roukes [8]. . . . term represents the conductance of the massless modes
The purpose of this Letter is to demonstrate theoretlcaII)(NIth (0) = 0 and the second is the contribution to
a

m:;sllre;‘sIg\;]vo;eorgpne;roacg:rsetgzgpl)rﬁgng(r)]n:rl]re?tnewgl k():)énbdi”('jg the thermal conductance due to the higher energy modes,
of a one-dimensional quantum wire is quantized, the funda- ich have a finite cutoff frequenay..(0) # 0. o
e For the moment let us assume perfectly adiabatic
mental ql_Jantum of thermal conduct_ance be’,ﬁ%T/%’ contact between the thermal reservoirs and the ballistic
Where.kB is the Boltzmann constarit,is Plaqck sconstant, ., anium wire, so thaf(w) = 1. For this idealized case
andT is the temperature. We also establish the condition tegration of Eq. (3) yields
that should be met for the experimental observation of this '
novel phenomenon. _ kgm? <TR + T )N
o

Our starting point is the Landauer energy flux K= 73 2

0= Z]O %hwa(k)va(k)(me — n)la(k) (1) k}g NZ{ <TR n TL>

carried by a quantum wire connecting two reservoirs la-

beled R and L. Herev, (k) andv,(k) are the frequency + 1 [T2 dilog(e*=') — T2 diIog(exLa’)]}
and velocity of normal mode of the quantum wire with AT TR t ’
wave vectork, £, (k) is the phonon transmission proba- 4)
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where dilog means the dilogarithm function and 4.0
XR.La = hwe(0)/kgTr 1), for the modes with finite
cutoff frequencies.

Equation (4) predicts a remarkable behavior for the
thermal transport properties of 1D phonon systems: Each
massless mode presentsigiversal thermal conductance
equal to the product of the averaged reservoir temperature
and the universal constakf72/3h. The higher energy
modes, on the other hand, show a dependence on thew
intrinsic properties of the material and on the geometrical z
parameters of the sample through the cutoff frequencies % 10

Kelvin)

3.0

~

NERGY
N
o

w,(0). However, their contribution ta is exponentially %
small at low temperatures. In the limitT — 0 we find a

kg2 ky Re(a2 X3 e 0.0 ©¥ . . . .
k=2 TNa+—BTZ{—+f(xo)+ . } 0 2 4 6 8 10

3h h <13 er — 1 K (105 Cm-l)

(5)
FIG. 1. Lowest energy acoustic modes of a quasi-2D system

with f(x) = 2dilog(e*) andxy = fiw,(0)/kgT. of thickness 50 nm and of a long wire of square cross

Expressions (4) and (5) represent an idealized case §fction50 nm X 50 nm. Thick solid (dashed) lines represent
which the transmission of phonons from one reservoir tdN€ Symmetric (antisymmetric) modes of the quasi-2D system.

. : ... Thin lines with circles, squares, diamonds, and triangles
the other happens without reflections. A more realistiGepresent the longitudinal, transverse, shear, and torsional
model has to incorporate the effects of the reflectionsnodes of the wire, respectively. The elastic parameters are
caused by the contacts between the reservoirs and tlier GaAs.
1D wire. The remainder of this paper is devoted to the
study of realistic physical systems in which the universal . o .
thermal conductance of phonons could be observed. THEat its phase velocity is practically constant for all fre-

systems we consider are similar to the experimental devicBU€NCies. The transverse and shear modes are coupled

of Tighe, Worlock, and Roukes [8] where a quasi-lDby the Timoshenko equatlon_[ll]._These guasi-1D modes

quantum wire connects quasi-2D reservoirs agree very well at low energies with the 2D modes of the
We begin our analysis by examining the dispersion re_reservoirs. Therefore they should propagate readily from

lations of low energy phonons in a quasi-2D system. athe reservoirs to the wire. Since expressions (4) and (5)

low temperatures of the order of a few degrees Kerin,do hot deper_ld on the phonon veloci_ty, b.Ut only on the cut-
ff frequencies, the modes shown in Fig. 1 represent the

the dominant phonon wavelength is much larger than th@

lattice parameter, and the model of an elastic continuurfYStem very well up to temperatures of the order of 1 K.
can be used. We assume an isotropic crystal, which can Nevertheless, there still remains the question of how

represent Si or GaAs at low temperatures to a good aF{_eflectlons would change the results given in Egs. (4) and

proximation. The optical phonons are not considered bel®)- We will discuss this here in detail for the case of

cause of their high energy. In this model Rayleigh-Lambthe longitudinal modes. For a quasi-1D wire whose cross
sectional dimensions are much smaller than its length, the

modes [9] describe the quasi-2D acoustic phonons. Fi ) X

ure 1 shows the frequency spectra of the lowest energ ransmitted modes are well described by the normal modes

symmetric (solid lines) and antisymmetric (dashed lines fa long bea!“- Let us Suppose that the cross section of
he beam varies along its length, assumed to be incthe

modes of a quasi-2D system of 50 nm thickness. The ~ - . . L
parameters used are those of GaAs. The symmetries gfrectlon. The equation of motion of a longitudinal plane
wave traveling along the direction is given by [11]

the modes refer to atomic displacements in thdirec-
tion, perpendicular to the quasi-2D system. The energy 92u 1 0A(x) du 1 92u
scale is Kelvin, so that one may estimate the temperature o2 TAW ox ax oo (6)

. . o . v; df
at which the modes with finite cutoff frequency begin to
contribute to thermal transport. These cutoff frequenciegi(x) is the cross sectional area of the beam ands the
increase as the sample thickness is reduced. Together witielocity of the longitudinal mode; = /Y /p, whereY is
the 2D modes of the reservoirs we have plotted in Fig. 1 th&oung’s modulus ang is the density. To solve Eqg. (6)
lowest energy branches of the longitudinal (circles), transwe must specifyA(x), so that the transmission coefficients
verse (squares), shear (diamonds), and torsional modes (ttitw) are determined by the shape of the contacts between
angles) of a quasi-1D quantum wire with a square crosthe reservoirs and the 1D wire. We consider two contact
section of 50 nm X 50 nm. The fundamental torsional geometries: conical, for which(x) = Aptan(d) (x + x'),
mode is given by the simple beam theory, which is welland catenoidal wherd(x) = AjcosH(x/A). These are
justified by the fact that numerical calculations [10] showillustrated in Fig. 2 by scheme% and B, respectively. 6
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1.0 The catenoidal contacts present a better response for
lower values ofk. In this case the equations that define
0.8 the transmitted wave are
92 1 02
S Mt s S CEY
06 ax2 v} a2
'S
N 82u11 n 2tan|’(x/)x) duyy . L 82u11 (12)
0.4 9x2 A ax vl o’
0.2 with solutions
. M](X,l‘) _ Bei(th—wt)’ (13)
o1 . 1 | un(x,1) = Ce'™*"[costc/ NI (14)

5 -1
k (10" cm7) The transmission coefficients obtained in this case are il-

FIG. 2. Transmission coefficients vs longitudinal wave vectorlustrated by the dashed curve in Fig. 2. Substitution of
k. (A) Conical contact = 7/6; the quasi-1D wire at the the functionu,; in Eq. (12) results in the frequency spec-
center of the structure has cross sectihnm X 50 nm and trum w? = v,z[kz + (1/)\)2] for a wave traveling along

lengthlw. (B) Finite catenoidal contact of characteristic length . .
A = 086u. (C) Infinite catenoidalcontact of A = 0.86. the catenoidal contact, which has a cutoff at frequency

The straight portions at the ends of structufesaind B have @0 = vi/A. For o < wg th? wave is evanescent, but
width 2 u. a resonance guarantees unitary transmissionkfer 0.

However, the cutoff frequency becomes smaller as the
is the angle of flare of the conical contact, ahds the ~Parameteri that characterizes the length of the catenoid

characteristic length of the catenoid. The broad region¥icreases. The efficiency of transmission of longitudinal
at both extremes of the structures are 40 times wider thayyaves in this system is also limited by reflections that hap-
the 1D channel (50 nm wide). The thickness (in the direcPen on passing between the straight region and the curved
tion perpendicular to the plane of the figurg,s constant ©One. These .reflect|ons can _be_ av0|ded. for a catenoidal
along the whole structure and chosen to be 50 nm. Corfontact that is not laterally limited. This type of con-
sidering initially the case of conical contacts, two distincttact is exemplified by the structu@in Fig. 2, theinfinite
wave equations result for the straight (1) and conical (||)caten0|dalcontact. The transmissiaf(k) for this case is

parts of the structure 1 for all wave vectorg, but the cutoff atwy = v;/A still
92 | 82 affects the overall transmission.
—”2’ - = —”21 ) With a knowledge of(w) it is possible to obtain re-
dx vi dt alistic results for the 1D thermal conductance. Initially
02uyy 1 uy 1 02uy we analyze the case of ideal transmission for all modes,
> ; =35 > (8)  which is a very good approximation for the largecous-
dx x +x' dx v; Ot . .
) ) tic waves that dominate the thermal transport between
with solutions 100 mK and 1 K. Six distinct modes contribute to the
u(x, ) = Be!R 1) (9) thermal transport through the wire below 1 K: a longitu-

. / . AL —iwt dinal mode, 2 transverse modes, a torsional mode, and 2
upy(x,1) = Cllolklx + 2] = iNolk(x + 2 re . shear modes. Among these only the shear modes present a
(10)  cytoff (Fwo = 1.62 K) that is the result of lateral confine-
These solutions are matched at the interfaces betweenent (see Fig. 1). It was verified that the higher branches
the conical and straight regions, where the continuity of thef these modes do not contribute significantly to the ther-
particle velocities:(x, t) and stresses = A(x)Y% are mal transport at temperatures lower than 1 K. We con-
required. These boundary conditions lead us to a systesidered the limitAT — 0 of Eq. (5) and calculated the
of coupled equations that is solved for the transmissiondeal thermal conductance divided by temperature of the
coefficients of plane waves traveling along the structurequantum wire. The result is shown in Fig. 3 (refer to
Figure 2 shows the transmission coefficiefitk) as a the left scale). For the ideal contact, at low temperatures,
function of the longitudinal wave vectdr of a structure this yields the quantized thermal conductariger?/3h
with conical contacts in which = 7 /6 (solid line). The times the number of massless mod#s, (= 4). As the
peaks are resonances associated with reflections at the endmperature approaches 1 K the shear modes begin to con-
of the conical regions and of the 1D wire. Fbr= 0 tribute to the process (increasing the thermal conductance)
the transmission coefficient is equal to one. The overaland the plateau that is the signature of quantized thermal
behavior of {(k) is determined by the conical shape of conductance terminates. Now considering the transmis-
the contact that guarantees a finite transmission for all fresion coefficient of the longitudinal mode, we have plot-
quencies, but is inefficient for a wide range of frequenciested its contribution to the thermal conductance for various
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lowest energy modes. The conductance of the higher
energy modes is influenced by the geometrical and intrinsic
parameters of the system through the gaps in the frequency
spectrum. Realistic structures were investigated, and it
was found that contacts with catenoidal shape should be
those that better represent the ideal case in experiments.
Finally, we note that the Wiedemann-Franz law applies
in 1D [14,15] and has been tested experimentally for
ballistic point contacts [16]. It predicts [15] that the 1D
thermal conductance of ballistelectronsshould also be
quantized in multiples of3 727 /3h. Thus we arrive at the
surprising conclusion that the low temperature 1D thermal
conductance of ballistic phonons and electrons is described

' by the same universal quantum even though bosons and
0.1 1 . . .

fermions obey different statistics.
TEMPERATURE (K) We thank Michael Roukes for stimulating discussions.

FIG. 3. Left scale: Thermal conductance of a quantum wireT his work was supported by NSERC of Canada.
with ideal contacts divided by temperature. Right scale:
Contribution to thermal conductance due to the longitudinal
mode for various contact shapésfinite catenoidor A = 4.6
(solid line), finite catenoid forA = 4.6u (dot-dashed line),
catenoid with A = 0.86u (long-dashed line), and conic for
6 = /6 (solid line with circles). 'sai = kzm2T/3h.
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