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Quantized Thermal Conductance of Dielectric Quantum Wires
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Using the Landauer formulation of transport theory, we predict that dielectric quantum w
should exhibit quantized thermal conductance at low temperatures in a ballistic phonon re
The quantum of thermal conductance is universal, independent of the characteristics of the ma
and equal top2k2

BTy3h where kB is the Boltzmann constant,h is Planck’s constant, andT is
the temperature. Quantized thermal conductance should be experimentally observable in sus
nanostructures adiabatically coupled to reservoirs, devices that can be realized at the presen
[S0031-9007(98)06477-1]
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During the last two decades, the physics of electr
transport in one dimension has attracted a great dea
attention. Some remarkable associated phenomena h
been the quantum Hall effect discovered by von Klitzin
Dorda, and Pepper [1] and the quantized conductan
of ballistic point contacts discovered by van Weeset al.
[2] and Wharamet al. [3]. Here the signature of one-
dimensional conduction has been the quantization of t
two-terminal and Hall electrical conductances in multiple
of the fundamental quantume2yh, as has been understood
within the framework of Landauer theory [4] and o
Büttiker-Landauer theory [5], respectively.

One-dimensional phonon transport should also be p
sible. However, despite the long-standing theoretical i
terest in this topic that goes back to the 1920s [6], t
question whether the phonon thermal conductance sho
be quantized in one dimension has to our knowledge n
been addressed either theoretically or experimentally. R
cent advances in nanotechnology have made experime
investigation of this question feasible; we note especia
the detection of nanowire phonon subbands by Seyler a
Wybourne [7] and the measurement of the thermal condu
tance of a suspended nanostructure by Tighe, Worlock, a
Roukes [8].

The purpose of this Letter is to demonstrate theoretica
that in a low temperature regime dominated by ballist
massless phonon modes the phonon thermal conducta
of a one-dimensional quantum wire is quantized, the fund
mental quantum of thermal conductance beingp2k2

BTy3h,
wherekB is the Boltzmann constant,h is Planck’s constant,
andT is the temperature. We also establish the conditio
that should be met for the experimental observation of th
novel phenomenon.

Our starting point is the Landauer energy flux

ÙQ ­
X
a

Z `

0

dk
2p

h̄vaskdyaskd shR 2 hLdzaskd (1)

carried by a quantum wire connecting two reservoirs l
beled R and L. Herevaskd andyaskd are the frequency
and velocity of normal modea of the quantum wire with
wave vectork, zaskd is the phonon transmission proba
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bility through the wire, andhisvd ­ 1ysehvykBTi 2 1d
represents the thermal distribution of phonons in the rese
voirs, assumed to be a Planck distribution at temperatu
Ti . The cross sectional area of the wire is assumed to
of the order of hundreds of nm2, so that the lateral confine-
ment produces finite gaps in the dispersion relation of th
phonon frequencies. Equation (1) transforms to

ÙQ ­
1

2p

X
a

Z `

vas0d
dv h̄vfhRsvd 2 hLsvdgzasvd (2)

since the phonon velocityyaskd ­ ≠vay≠k is canceled
by the 1D density of statesgsvad ­ ≠ky≠va .

The reservoir-to-reservoir thermal conductance of th
wire is k ­ ÙQyDT , where DT ­ TR 2 TL is the tem-
perature difference between the reservoirs. It follows th

k ­
1

2p

(
NaX
a

Z `

0
dv h̄v

√
hRsvd 2 hLsvd

DT

!
zasvd

1

Na0X
a0

Z `

va0 s0d
dv h̄v

√
hRsvd 2 hLsvd

DT

!
za0svd

)
.

(3)

We have separated Eq. (3) into two parts, so that the fir
term represents the conductance of the massless mo
with vas0d ­ 0 and the second is the contribution to
the thermal conductance due to the higher energy mod
which have a finite cutoff frequencyva0s0d fi 0.

For the moment let us assume perfectly adiabat
contact between the thermal reservoirs and the ballis
quantum wire, so thatz svd ­ 1. For this idealized case
integration of Eq. (3) yields

k ­
k2

Bp2

3h

µ
TR 1 TL

2

∂
Na

1
k2

B

h

Na0X
a0

Ω
p2

3

µ
TR 1 TL

2

∂

1
1

DT
fT2

R dilogsexRa0 d 2 T2
L dilogsexLa0 dg

æ
,

(4)
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where dilog means the dilogarithm function an
xsR,Lda0 ­ h̄va0s0dykBTsR,Ld, for the modes with finite
cutoff frequencies.

Equation (4) predicts a remarkable behavior for th
thermal transport properties of 1D phonon systems: Ea
massless mode presents auniversal thermal conductance
equal to the product of the averaged reservoir temperat
and the universal constantk2

Bp2y3h. The higher energy
modes, on the other hand, show a dependence on
intrinsic properties of the material and on the geometric
parameters of the sample through the cutoff frequenc
va0s0d. However, their contribution tok is exponentially
small at low temperatures. In the limitDT ! 0 we find

k ­
k2

Bp2

3h
TNa 1

k2
B

h
T

Na0X
a0

Ω
p2

3
1 fsx0d 1

x2
0ex0

ex0 2 1

æ
,

(5)

with fsxd ­ 2 dilogsexd andx0 ­ h̄va0s0dykBT .
Expressions (4) and (5) represent an idealized case

which the transmission of phonons from one reservoir
the other happens without reflections. A more realist
model has to incorporate the effects of the reflectio
caused by the contacts between the reservoirs and
1D wire. The remainder of this paper is devoted to th
study of realistic physical systems in which the univers
thermal conductance of phonons could be observed. T
systems we consider are similar to the experimental dev
of Tighe, Worlock, and Roukes [8] where a quasi-1D
quantum wire connects quasi-2D reservoirs.

We begin our analysis by examining the dispersion r
lations of low energy phonons in a quasi-2D system. A
low temperatures of the order of a few degrees Kelvi
the dominant phonon wavelength is much larger than t
lattice parameter, and the model of an elastic continuu
can be used. We assume an isotropic crystal, which c
represent Si or GaAs at low temperatures to a good a
proximation. The optical phonons are not considered b
cause of their high energy. In this model Rayleigh-Lam
modes [9] describe the quasi-2D acoustic phonons. F
ure 1 shows the frequency spectra of the lowest ener
symmetric (solid lines) and antisymmetric (dashed line
modes of a quasi-2D system of 50 nm thickness. T
parameters used are those of GaAs. The symmetries
the modes refer to atomic displacements in thez direc-
tion, perpendicular to the quasi-2D system. The ener
scale is Kelvin, so that one may estimate the temperatu
at which the modes with finite cutoff frequency begin t
contribute to thermal transport. These cutoff frequenci
increase as the sample thickness is reduced. Together w
the 2D modes of the reservoirs we have plotted in Fig. 1 t
lowest energy branches of the longitudinal (circles), tran
verse (squares), shear (diamonds), and torsional modes
angles) of a quasi-1D quantum wire with a square cro
section of 50 nm 3 50 nm. The fundamental torsional
mode is given by the simple beam theory, which is we
justified by the fact that numerical calculations [10] show
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FIG. 1. Lowest energy acoustic modes of a quasi-2D syste
of thickness 50 nm and of a long wire of square cros
section50 nm 3 50 nm. Thick solid (dashed) lines represen
the symmetric (antisymmetric) modes of the quasi-2D system
Thin lines with circles, squares, diamonds, and triangle
represent the longitudinal, transverse, shear, and torsio
modes of the wire, respectively. The elastic parameters a
for GaAs.

that its phase velocity is practically constant for all fre
quencies. The transverse and shear modes are coup
by the Timoshenko equation [11]. These quasi-1D mod
agree very well at low energies with the 2D modes of th
reservoirs. Therefore they should propagate readily fro
the reservoirs to the wire. Since expressions (4) and (
do not depend on the phonon velocity, but only on the cu
off frequencies, the modes shown in Fig. 1 represent t
system very well up to temperatures of the order of 1 K.

Nevertheless, there still remains the question of ho
reflections would change the results given in Eqs. (4) an
(5). We will discuss this here in detail for the case o
the longitudinal modes. For a quasi-1D wire whose cro
sectional dimensions are much smaller than its length, t
transmitted modes are well described by the normal mod
of a long beam. Let us suppose that the cross section
the beam varies along its length, assumed to be in thex
direction. The equation of motion of a longitudinal plane
wave traveling along thex direction is given by [11]

≠2u
≠x2

1
1

Asxd
≠Asxd

≠x
≠u
≠x

­
1

y
2
l

≠2u
≠t2

. (6)

Asxd is the cross sectional area of the beam andyl is the
velocity of the longitudinal modeyl ­

p
Yyr, whereY is

Young’s modulus andr is the density. To solve Eq. (6)
we must specifyAsxd, so that the transmission coefficients
z swd are determined by the shape of the contacts betwe
the reservoirs and the 1D wire. We consider two conta
geometries: conical, for whichAsxd ­ A0 tansud sx 1 x0d,
and catenoidal whereAsxd ­ A0 cosh2sxyld. These are
illustrated in Fig. 2 by schemesA andB, respectively. u
233
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FIG. 2. Transmission coefficients vs longitudinal wave vecto
k. (A) Conical contact,u ­ py6; the quasi-1D wire at the
center of the structure has cross section50 nm 3 50 nm and
length1m. (B) Finite catenoidal contact of characteristic lengt
l ­ 0.86m. (C) Infinite catenoidal contact of l ­ 0.86m.
The straight portions at the ends of structuresA and B have
width 2m.

is the angle of flare of the conical contact, andl is the
characteristic length of the catenoid. The broad regio
at both extremes of the structures are 40 times wider th
the 1D channel (50 nm wide). The thickness (in the dire
tion perpendicular to the plane of the figure,z) is constant
along the whole structure and chosen to be 50 nm. Co
sidering initially the case of conical contacts, two distinc
wave equations result for the straight (I) and conical (I
parts of the structure

≠2uI

≠x2 ­
1

y
2
l

≠2uI

≠t2 , (7)

≠2uII

≠x2 1
1

x 1 x0

≠uII

≠x
­

1

y
2
l

≠2uII

≠t2 , (8)

with solutions

uI sx, td ­ Beis6kx2wtd, (9)

uII sx, td ­ ChJ0fksx 1 x0dg 6 iN0fksx 1 x0dgje2iwt .
(10)

These solutions are matched at the interfaces betwe
the conical and straight regions, where the continuity of th
particle velocitiesÙusx, td and stressess ­ AsxdY ≠usx,td

≠x are
required. These boundary conditions lead us to a syst
of coupled equations that is solved for the transmissio
coefficients of plane waves traveling along the structur
Figure 2 shows the transmission coefficientz skd as a
function of the longitudinal wave vectork of a structure
with conical contacts in whichu ­ py6 (solid line). The
peaks are resonances associated with reflections at the e
of the conical regions and of the 1D wire. Fork ­ 0
the transmission coefficient is equal to one. The over
behavior ofz skd is determined by the conical shape o
the contact that guarantees a finite transmission for all fr
quencies, but is inefficient for a wide range of frequencie
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The catenoidal contacts present a better response
lower values ofk. In this case the equations that defin
the transmitted wave are

≠2uI

≠x2 ­
1

y
2
l

≠2uI

≠t2 , (11)

≠2uII

≠x2 1
2 tanhsxyld

l

≠uII

≠x
­

1

y
2
l

≠2uII

≠t2 , (12)

with solutions

uI sx, td ­ Beis6kx2wtd, (13)

uII sx, td ­ Ceis6kx2wtdfcoshsxyldg21. (14)

The transmission coefficients obtained in this case are
lustrated by the dashed curve in Fig. 2. Substitution
the functionuII in Eq. (12) results in the frequency spec
trum v2 ­ y

2
l fk2 1 s1yld2g for a wave traveling along

the catenoidal contact, which has a cutoff at frequen
v0 ­ ylyl. For v , v0 the wave is evanescent, bu
a resonance guarantees unitary transmission fork ­ 0.
However, the cutoff frequency becomes smaller as t
parameterl that characterizes the length of the cateno
increases. The efficiency of transmission of longitudin
waves in this system is also limited by reflections that ha
pen on passing between the straight region and the cur
one. These reflections can be avoided for a catenoi
contact that is not laterally limited. This type of con
tact is exemplified by the structureC in Fig. 2, theinfinite
catenoidalcontact. The transmissionz skd for this case is
1 for all wave vectorsk, but the cutoff atv0 ­ ylyl still
affects the overall transmission.

With a knowledge ofz svd it is possible to obtain re-
alistic results for the 1D thermal conductance. Initiall
we analyze the case of ideal transmission for all mod
which is a very good approximation for the largek acous-
tic waves that dominate the thermal transport betwe
100 mK and 1 K. Six distinct modes contribute to th
thermal transport through the wire below 1 K: a longitu
dinal mode, 2 transverse modes, a torsional mode, an
shear modes. Among these only the shear modes prese
cutoff (h̄v0 ­ 1.62 K) that is the result of lateral confine-
ment (see Fig. 1). It was verified that the higher branch
of these modes do not contribute significantly to the the
mal transport at temperatures lower than 1 K. We co
sidered the limitDT ! 0 of Eq. (5) and calculated the
ideal thermal conductance divided by temperature of t
quantum wire. The result is shown in Fig. 3 (refer t
the left scale). For the ideal contact, at low temperatur
this yields the quantized thermal conductancek2

Bp2y3h
times the number of massless modes (Na ­ 4). As the
temperature approaches 1 K the shear modes begin to c
tribute to the process (increasing the thermal conductan
and the plateau that is the signature of quantized therm
conductance terminates. Now considering the transm
sion coefficient of the longitudinal mode, we have plo
ted its contribution to the thermal conductance for vario
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FIG. 3. Left scale: Thermal conductance of a quantum wi
with ideal contacts divided by temperature. Right scal
Contribution to thermal conductance due to the longitudin
mode for various contact shapes;infinite catenoidfor l ­ 4.6m
(solid line), finite catenoid forl ­ 4.6m (dot-dashed line),
catenoid with l ­ 0.86m (long-dashed line), and conic for
u ­ py6 (solid line with circles). k

l
ideal ­ k2

Bp2Ty3h.

contact shapes (refer to the right scale of Fig. 3). In th
case the plateau is modified at the low temperature side
reflections at the contacts and, to a smaller extent, by
cutoff of the frequency spectrum of the catenoidal contac
Nonetheless for the catenoidal contacts a very distinct
plateau characteristic of quantized thermal conductance
clearly visible over a wide range of temperatures. Ther
fore based on the behavior of the longitudinal mode, a s
nature of the quantized thermal conductance of dielect
quantum wires can be expected between 30 and 300 m
We note that the principle of adiabatic matching that unde
lies our discussion of the longitudinal mode is very gener
and applies to the other massless modes as well. The
fore these should exhibit qualitatively similar behavior, in
cluding universal quantized thermal conductance over
similar range of temperatures. Since adiabatic wave pro
gation does not require an isotropic medium, our pred
tions apply even if there is phonon focusing due to crys
anisotropy. Similar results also apply to wires with cylin
drical symmetry which admit analytic solutions for all o
the modes, but will be more difficult to fabricate.

In this study we did not consider the effects of surfac
roughness [8] and other defects that may limit the tran
mission of phonons through the quantum wire. Howeve
these are technological limitations that should be overco
with improved control of the growth process. They shou
also be of less concern at lower temperatures [12]. F
thermore, studies of 1D electron transport have shown t
quantization plateaus can exist in the presence of def
scattering under certain conditions [13].

In summary, we predict the existence in 1D systems o
universal quantum of thermal conductance due to phono
that is equal tok2

Bp2y3h times the temperature, for the
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lowest energy modes. The conductance of the highe
energy modes is influenced by the geometrical and intrins
parameters of the system through the gaps in the frequen
spectrum. Realistic structures were investigated, and
was found that contacts with catenoidal shape should b
those that better represent the ideal case in experimen
Finally, we note that the Wiedemann-Franz law applies
in 1D [14,15] and has been tested experimentally fo
ballistic point contacts [16]. It predicts [15] that the 1D
thermal conductance of ballisticelectronsshould also be
quantized in multiples ofk2

Bp2Ty3h. Thus we arrive at the
surprising conclusion that the low temperature 1D therma
conductance of ballistic phonons and electrons is describe
by the same universal quantum even though bosons a
fermions obey different statistics.
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