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Membranes with Fluctuating Topology: Monte Carlo Simulations
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Much of the phase behavior observed in self-assembling amphiphilic systems can be understood in
the context of ensembles of random surfaces. In this article, it is shown that Monte Carlo simulations
of dynamically triangulated surfaces of fluctuating topology can be used to determine the structure and
thermal behavior of sponge phases, as well as the sponge-to-lamellar transition in these systems. The
effect of the saddle-splay modulug, on the phase behavior is studied systematically for the first time.
Our data provide strong evidence for a positive logarithmic renormalizatian thfis result is consistent
with the lamellar-to-sponge transition observed in experiments for decreasing amphiphile concentration.
[S0031-9007(98)07097-5]

PACS numbers: 64.70.—p, 68.10.—m, 82.70.—y

Since Scriven’s pioneering suggestion [1] more tharpredictions for the structure and phase behavior of these
twenty years ago that microemulsions are bicontinuousystems. In Refs. [10,11], the role of membrane undu-
structures, there has been considerable progress in undéations, which lead to a scale-dependent reduction of the
standing the structure and phase behavior of dilute anbending rigidity « [12], has been emphasized. The in-
phiphilic mixtures [2]. In particular, the bicontinuous fluence ofk on the phase behavior is difficult to incor-
structure of microemulsions has been confirmed [3,4], th@orate in this approach, and it is generally ignored. On
scattering intensity in both bulk [5] and film contrast [6] the other hand, the importance of the saddle-splay modu-
has been analyzed, and the similarities with sponge phaséss in promoting the irregular, bicontinuous structure of a
have been emphasized [7]. These studies have led to tmeicroemulsion or sponge phase was stressed in Ref. [13].
generally accepted picture that microemulsions in ternann fact, it has become increasingly clear recently thath
systems containing oil, water, and long-chain amphiphilegffects have to be taken into account in order to under-
consist of two multiply connected networks of oil and stand the lamellar-to-sponge transition [14—16]. This can
water channels which are separated by an amphiphilibe seen by rewriting Eq. (1)—fafy = 0—in the form
monolayer. Similarly, the sponge phase in binary mixtures
consists of an amphiphilic bilayer which separates two dis- 7 — f dS[K—+(c1 + o) + K_—(Cl _ 62)2} )
connected water networks. 2 2

In the long-chain limit, the molecular solubility of am- with ks = x + 2/2 and k_ = —&/2. The lamellar

phiphiles in oil and water is extremely low, and essentially hase is energetically stable only if both. and are
all amphiphiles are contained in supramolecular aggrepositive For 9 <0 ¥he flat hasye is unstable fo_the for-
gates consisting of extended, nearly incompressible, twd20SItve. Fork- P P

ation of infinite minimal surfaces—or sponge phases.

dimensional monolayer or bilayer membranes [8]. Thes or < 0. there is an instability to a vesicle phase
surfaces can be described as an ensemble of fluctuating sxg— K ’ y P :

faces whose shapes and fluctuation spectra are determin He effeqts of therma_l fluctuat!qns are mcor.porated [14]
by the continuum elastic energy [9] y replacing the elastic moduli in (2) by their renormal-

ized, scale-dependent values, where, to first orddt/ir
H = f dS[%(Cl + ¢ — 26‘0)2 + R0102i|, (1) [12,17],

. . aiT
where the integral is taken over the area of the membrane. k(€)= Kz — A In(¢/a) 3)
Here, « is the bending rigidity,x is the saddle-splay
modulus,c is the spontaneous curvature, and= 1/R;, with @y = 4/3 anda_ = 5/3. In Eq. (3),a is a mi-

with the principal radii of curvatureR, and R,. The  croscopic length scale anflis a characteristic structural
spontaneous curvature vanishes in binary systems due kength which is related to the amphiphile volume fraction
the symmetry of the bilayer; in ternary systems, it is zerog = (aS/V)by ¢ ~ a/£, whereS is the membrane area
for special choices of control parameters such as the tenandV is the volume. The lamellar-to-sponge instability is
perature or salt concentration. We willassume that 0 therefore predicted to occur when
throughout this paper.

A theoretical analysis of this model is very difficult. | _ 27,

. e _ n = — (—k/T 4

Various approximations have therefore been used to obtain (&/¢0) a— (=&/T) 4)
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with k < 0, where ¢, is a constant of order unity. It in the case of periodic boundary conditions, whggeis
should be emphasized that, although these arguments hehe Euler characteristic, which is twice the number of dis-
explain the phase behavior of these systems, they proviganct membrane components minus the number of handles.
little insight into the structure of the sponge phase itself, The Euler characteristiqr characterizes the internal
e.g., the topology of its multiconnected membrane. structure of amphiphilic mesophases. For anideal lamellar
In this paper we report the results of the first systemphase without defectsyy = 0, while for a sponge and
atic Monte Carlo simulation study of the phase behaviowesicle phaseyr < 0 and yg > 0, respectively. In
of fluid membranes of fluctuating topology in which the fact, the Euler characteristic itself is not a good measure
fluctuations are controlled by the curvature energy (1). Irfor the connectivity of a sponge phase, since it is an
our model, the membranes are described using the samegtensivequantity. We therefore use the scaled Euler
dynamically triangulated networks which have been emcharacteristic [22]
ployed in simulation studies of the thermal behavior of _ 2 a3
fluid membranes of fixed topology [18,19]. The mem- Y= —QeVST. (7)
branes consist of a triangular network of beads of diame- Our results for the equation of state in the sponge phase
ter ag which are linked by flexible tethers of maximum for «/T = 1.0 and various values ok are shown in
extensionfy. In order to allow the topology to change, a scaled form in Fig. 1. With decreasing pressurethe
new kind of Monte Carlo step—in addition to bead movesamphiphile volume fractionp first decreases and then
and bond flips—has been introduced. When two differsaturates at a value which depends on the saddle-splay
ent membrane segments—which may or may not be parhodulus. This saturation indicates emulsification failure;
of the same membrane—come in close spatial proximitythe sponge phase can no longer be swollen by adding water,
an attempt is made to create a “minimal” neck (or passagdjut coexists at this point with an almost pure water phase.
by first removing a surface triangle from each membrand-igure 1 shows that the Monte Carlo data are very well
segment and then inserting six new surface triangles whictlescribed by an equation of state of the form
form a tubular connection between the holes in each seg-
ment. S_imilarly, whenever a minimal n_eck is present, anpa’ /T = 1 [pof/op — f]
attempt is made to remove six surface triangles in the neck. T
Special care has to be taken to guarantee detailed balance — [A(k/T,&/T) + B(x/T,&/T)In(¢)]d>, (8)
[20]. Our procedure for topology change implies that the
numberN of vertices remains constant during the simu-wWheref(¢) is the free-energy density. It has been argued
lation, but the numben, of tethers (or bonds) and the in Refs. [6,13] that the second equality in Eq. (8) follows
numberN, of triangles changes. Periodic boundary con-from the scale invariance of the curvature energy together
ditions are used in a cubic simulation box.
In order to avoid problems with two-phase coexistence

regions, we employ a constant pressure ensemble. Thishas ~ 1°
the additional advantage in that we have direct access to the
equation of state, since we can determine the amphiphile » 08
volume fraction as a function of the external pressure. E
Finally, the curvature energy (1) has_ to be discretized on mt 06
the triangulated surface. For the first, mean-curvature- "«
squared contribution, we use the discretized Laplacian & 04

K[ dS(C] + C2)2 —_ TZO’,-(AR)%, (5) 02 L j

1

whereR; is the position vector of vertex ando; is its ef- 0.0 LA . . . . .
fective area, as described in detail in Ref. [21]. The bend- -2 -1 -08 -06 -04 -02 00
ing rigidity « of the continuum model has been determined In(¢)

as a function o_fr [21]. One ﬁndSK =7 for 7/T > FIG. 1. Equation of statBp(¢)a’/T]é > vs In(¢b) of sponge
1, butk = 7/2 in the low-r regime studied here. More phases for /T = 1.0, with &/T = —0.4, &/T = —0.5,

precisely,x/T = 1.0 for 7/T = 2.0, and«/T = 1.7 for /T = —0.6, and/T = —0.7 (from right to left). Data are
7/T = 3.0, with an uncertainty of abow20%. For the shown for system size§ = 127 (¢), N = 247 (+), N = 407

second, Gaussian curvature contribution, the GauR-Bonng&t) andN = 607 (X). The solid lines are the fits to the data
theorem implies Iscussed in the text. In the analysis of the Monte Carlo data,

we identify the microscopic scale with the bead diametar,.

1 The tether lengtiy = 1.633a, is used in all simulation runs.
— | dScica=xe =N — N, + N, (6) The volume fraction is averaged over 20 to 100 million Monte
2 Carlo sweeps for each data point.
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with the logarithmic renormalization of and k. Some (a)
experimental evidence for the validity of this ansatz has
already been given in Ref. [13]. However, our simulations
provide the first direct demonstration that this relation is
correct in the curvature model. Furthermore, the depen-
dence ofdA andB on the saddle-splay modulus can now be
studied systematically for the first time. These functions
are intimately related to the structure of a sponge phase; for
example, the larger the multiple connectivity of the mem-
brane, the larger is the amplitude of tkedependence of
Ain Eq. (8). A simple linear ansatz for the data presented
in Fig. 1 gives A(k/T)/B(k/T) = —(a11 + apk/T),
with  a;; = 044 = 0.01, aj;; =246 £ 0.03, and
B(k/T) = 096 = 0.03 for x/T = 1.0. Our data for
x/T = 1.7 are considerably less reliable, since the
relaxation times are longer and the finite size effects
are more pronounced in a system with larger bending (b)
rigidity. In this case, least-squared fits to the data are
consistent with A(k/T)/B(k/T) = —(a»1 + a»k/T)
with  a>; = 0.59 = 0.06, ax»p =271 £0.11, and
B(k/T) = 0.90 = 0.10.

The negative sign of the amplitude of the/T term
in A(k/T) follows directly from Eq. (1) and the negative
Euler characteristic of a sponge phase. The fact that
B(k/T) does not depend or/T for x/T = 1.0 seems
to indicate that the internal structure of the sponge phase
remains unchanged—up to an overall rescaling. However,
the structural parameter does change; it decreases from
v =0.17 £ 001 at k/T = —04 to y = 0.12 = 0.01
at k/T = —0.7, where the error estimate includes the
weak pressure dependence yffor fixed k. A typical
configuration in the sponge phase is shown in Fig. 2a.

At sufficiently negative saddle-splay modulus, or at suf-FIG. 2. Typical membrane configurations (fof = 607 and
ficiently large pressure, the system may transform into 40 = 1.633a0). (a) Sponge phase fok/7T = 1.7, k/T =

il 3 = =
lamellar phase. Our data for the sponge-to-lamellar phaspgj;_(/e}nip_ao/g anglgg%'/T(E)oﬁ?wgﬁeptr\]/\?osiiégg/gf the

boundary fO"K/Y_"' = 1.7are compared with the prediption membrane are colored differently to emphasize the bicontinuous
(4) for the stability limit of the lamellar phase in Fig. 3. structure.

The agreement of the slopes is quite remarkable. Our data
therefore provide the first confirmation of a positive renor-
malization of the saddle-splay modulus. Furthermore, wehat they do not allow for a consistent interpretation of our
find that the (universal) amplitude—- = 5/3 is in good simulation data. In Ref. [24], emulsification failure re-
agreement with our simulation results. However, a factoquires a small, positive saddle-splay modulus, while our
¢o much larger than unity is required in Eq. (4) to fit the data show that it occurs for negatikgof order—«). The
data; this indicates that the transition to the sponge phaggaussian random-field approach of Ref. [25], on the other
occurs well before the stability limit of the lamellar phase hand, predicts emulsification failure at negatkeut pre-
is reached. The positive renormalization#fs very im-  dicts ¢ ~ (2k — 5&)~'/3, which is not supported by the
portant, since it provides a mechanism for the formatiordata presented in Fig. 3. See Refs. [16,26] for a critical
of cubic bicontinuous phases with a lattice constant of ordiscussion of these models.
der of several thousand angstroms [23]. We expect such For «/T = 1.0, the coexistence of the sponge phase
phases in our model at higher bending rigidities. with the vesicle phase of very low volume fraction can
Two other forms for the free energi(¢) have been sug- be seen explicitly foi /T = —0.8. For pa®/T = 0.003,
gested recently [24,25]. In both cases, the renormalizatiothe volume fraction decreases and the Euler characteristic
of k andk isnotconsidered. Althoughitis difficultto rule increases roughly linearly with Monte Carlo time in this
out these suggestions on the basis of the functional depenase. Forpa®/T = 0.01, the sponge phase is stable—
dence of the pressume(¢)—due to the limited range of a typical configuration is shown in Fig. 2b—but contains
¢ values that we are able to simulate—we have foundresicles embedded in a bicontinuous network. As can be
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