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Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing
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We report the pattern formation of degenerate optical parametric mixing—a system with the real-
valued order parameter. The phenomena have similarities with and extend those of chemical and
hydrodynamic systems described by real order parameter equations, and are different from laser-type
pattern formation, where the order parameter is complex. The structure formation is based on a phase
bistability. Structures are dominated by fronts separating domains of opposite phase. The domains
expand or shrink depending on resonator detuning. Small circular domains, however, are stable and
constitute the localized structures of the system. The phenomena are demonstrated experimentally
using degenerate four-wave mixing as a prototype process in a resonator of a large Fresnel number.
[S0031-9007(98)07079-3]

PACS numbers: 42.65.Sf, 42.65.Yj, 47.54.+r

The light generated by nonlinear optical systems cafSHE) [16]:
have a free_: phase as in lasers, or_there are pr_eferred phase G A=A— A — (V2 + A)PA 1)
values as in degenerate wave mixing. The first class of N _ _
nonlinear optical systems is described by complex ordewith the real-valued order parameté(r), defined in 2D
parameter equations, while for the second class the ordéPacer = (x,y) and evolving in time.
parameter is real valued. The pattern formation in the Turing patterns occur for large positive detuningof
first class of systems has been studied in detail recentl{1), €.g., in the form of striped(7) = \/4/3cogk - F)
theoretically [1,2] and experimentally [3,4], so that awith a resonant wave numbék| = +/A. This limit of
reasonably coherent picture of its structure formationarge detuning is characteristic, e.g., for Rayleigh-Benard
exists. The second class has so far been investigatenvection, where convective rolls have a defined size.
only theoretically. Stripe patterns (Turing structures)The zero detuning limit of SHE (1) describes paramet-
were predicted for degenerate optical parametric osrically excited systems [11,12], for which solutions of
cillators [5], along with the quantum properties of the homogeneous amplitude and phaseggf= 0 or 7 are
generated fields [6]. Recently, the existence of blackcharacteristic. Optical parametric oscillators allow us to
fronts separating phase domain has been discussed [f@alize pattern formation for the whole detuning range.
and analyzed in detail [8]. It was shown in [8] that The patterns are contracting or expanding domains, and
the dynamics of the fronts depends on the detuning. Ithe spatial localized structures [8,9].

[8,9] it was shown that small circular domains are stable Familiar degenerate parametric systems in nonlinear
for a certain detuning range, thus constituting (bistablepptics are the degenerate four-wave-mixing oscillator
localized structures (“Ising” structures [10]) of the (DFWMO) and the degenerate optical parametric oscilla-
system. tor, both described by Eq. (1) [16]. For the experiments a

In this Letter we prove experimentally the structureDFWMO with a slow material (photorefractive BaTip
formation, the dynamics of the phase domains, and theas chosen. The characteristic time scale at the light
existence of the localized structures (spatial solitons), asitensities used is 1 s, permitting recording with or-
theoretically predicted in [8]. dinary video equipment. The experimental scheme is

A large class of pattern forming systems in physicsgiven in Fig. 1: Two counterpropagating pump beams
is described by real order parameter equations, e.g., thgingle frequency Ar laser at 514.5 nm, beam width of
periodically forced Belousov-Zhabotinsky reaction [11],20 mm, typical intensities of00 mW/cn?) illuminate the
driven space charge wave fields [12], and Rayleighphotorefractive BaTi® crystal (of4.3 X 4.3 X 4.6 mm
Benard convection [13]. For these Turing patterns (rollsdimensions) mounted inside a near-self-imaging resonator.
hexagons) [14,15] are characteristic. The results reportelh the limit of precise self-imaging such a resonator has an
here are therefore characteristic not only for optics, but foinfinite Fresnel number (within the limits of the paraxial
a large class of systems in physics and nature. We notproximation), and all transverse modes are exactly
that the mentioned systems [11-13] represent particulategenerate, allowing the resonance of arbitrary images
cases for the detuning parameter. As opposed, opticdd]. Increasing the resonator length with respect to the
systems constitute the general case as they permit us self-imaging length by makes the resonator equivalent to
work at arbitrary detuning values. a plane-plane resonator of length In the experiment

The spatiotemporal dynamics in these systems cawas 30 mm, which corresponds to a characteristic spatial
be described by the real Swift-Hohenberg equatiorscaleAxy = 100 um (Axo = +/Al [4]). The degeneracy
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FIG. 1. Near self-imaging resonator used for experiments. M:

mirrors, f: focal lengths of lenses/: deviation from self- =150 —
imaging length, D: diaphragm, filtering high transverse modes. '\ a 3

Al
of generated waves is achieved by propagation in the same . — f\\\g

resonator. To control the resonator tuning the optical
length of the resonator was actively stabilized to the pumgr!G. 3. Evolution of domains, depending on the detuning as
frequency in a manner described in [17]. obtained numerically by solving SHE (1) with zero boundary
. . __conditions. The initial distribution for calculations with differ-
The variation of the resonator length on an O_pt'calent detunings (different columns) was the same (top plot). The
wavelength scale allows us to choose the detuning paows correspond to times= 15, ands = 150. The size of
rameter. The pump intensity was fixed to approximatelythe integration region idx = Ay = 45. This corresponds to
70% above generation threshold. Only the detuning wag Fresnel numbeF =2 X 10°. Details for computation can
varied. Typically we observe emission, as predictedP® found in [8].

in domains separated by black lines of irregular shap : . . o
[Fig. 2(a)]. The domain boundaries can have quite a comggr;haeindgs:}r;:]n%ésl_n Fig. 3 we summarize qualitatively the

plicated structyre, including seIf-crossjngs, _anq MOVe 1N £or small detuning (first column in Fig. 3), where the
general. In Fig. 2(_b) a part of near fleld_dlstrlbutlon IS homogeneous states are strongly preferred, the domains
_shown, together .W'th an interferogram [F!g. 2()] ShOW'shrink, and disappear eventually. The domain boundaries
ing the phase difference be“.Nee” dom_alns. _The phas@ehave like elastic ribbons. Corresponding experimental
changes byr across the doma_ln boundaries, which ShOWSrecordings near zero detuning are given in Fig. 4, showing
the real-valued nature of the f'e.ld' . the shrinking of a domain boundary. The domain bound-
We use the results reported n .[8] as a guide for the ex; ies disappear finally, and the homogeneous field is the
periments, where domain dynamics was shown to depe al state (experimentally as well as numerically).

At large detunings the domains grow, and a labyrinth
structure develops, as shown in the third column of
Fig. 3. The dark lines behave like the antielastic ribbons
(negative elasticity coefficient). Reconnection of the
black lines is not observed in this region. Domains
neither disappear, nor do new domains nucleate; thus the
topology of the initial structure is preserved. Such a
topology-preserving expansion of domain boundaries, as
recorded experimentally, is shown in Fig. 5. The domains
expand until the space is filled, and the final state, the
“labyrinth” is reached [Fig. 5(d)].

The labyrinth structure is a Turing structure with a
characteristic spatial scale determined by the detuning.

1 mm

FIG. 2. Domains of complicated shape as obtained experi-
mentally: (@) The near field of the whole beam, (b) a small
section from the whole beam, and (c) interferogram, showing=IG. 4. A shrinking domain boundary; experimental; detuning
that the adjacent domains have opposite phase. near zero. Time between successive snapshots is 2 s.
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FIG. 7. Breaking and new connection of domains. Experi-
ment. Detuning is the same as that of Fig. 6. Time between
snapshots is 2 s.

FIG. 5. Expanding domain boundaries ending in a labyrinth S ] )
structure. Experiment. Detuning is around 0.7 (normalized tssecond column in Fig. 3 as obtained numerically, and by
the width of the resonator mode). Time between snapshiots Fig. 8 as recorded experimentally. Figure 8(a) is taken
b, cis 2 s. Time between snapshatandd is 10 s. in the transient phase in which the domains shrink and
i ) ) Fig. 8(b) when all domains have shrunk to their minimum
The labyrinth can also be considered as a stripe patteffiameter. We observe experimentally that the domains
with defects. Such kinds of Turing structures weréremain stable as long as the detuning is kept in a finite de-
extensively investigated outside optics [15]. One examplgyning parameter range. Consequently we conclude that
of such a structure in optics was shown in [18]. the circular domains shown in Fig. 8(b) are the supercriti-

_ For larger values of detuning the homogeneous solugaly pistable localized structures predicted in [8,9]
tion is modulationally unstable. Therefore domains not |, conclusion we have observed experimentally the

only grow, but nucleation of new domains, and also résrycture formation of a four-wave-mixing process pro-

connection of ?he _black lines is possible, as sho_vvn in th?otypical for optical parametric degenerate mixing, in
fourth column in Fig. 3. Such cases are shown in Figs. §3jitative agreement with the predictions of the Swift-
and 7 experimentally. In Fig. 6 the appearance of neWjohenberg equation describing parametric processes in
domains is clearly seen. Figure 7 shows reconnection Qjeneral. We show the change of domain structure with
domain boundaries. The pattern is roughly a stripe patdetuning as predicted in [8,9], and we observe the pre-
tern here with adjacent bright stripes having the oppositgjicted bistable localized structures. The observed local-
phase. From 7(a) to 7(d) the stripe in the middle of th&zeq structures are based on a supercritical bistability
picture splits into two separate domains, while the do(pnhase bistability), as opposed to the common subcriti-
mains to the left and to the right of the domain in thecy| pistapility. The relative simplicity of the field struc-
middle become connected. , _ ture with the order parameter being a real function, of this
_ For intermediate values of detuning, where the elasticz|ass of optical systems, allows us to obtain a relatively
ity of the domain boundaries is close to zero, the Sh”nk'complete understanding of its structure formation.
ing_/e_xpansion of_the_ domains can stop at a particul_ar All phenomena predicted by SHE (1) (which is strictly
(minimum) domain size so that a localized structure isy|ig near generation threshold) were observed in the ex-
formed [8,9]. One can interpret the phenomenon as a bajariment, where the gain was moderately above threshold.
ance between the surface tension (elasticity of the domaifiis does of course not exclude the existence of phenom-

boundary) and the internal pressure of a “bubble.” Thesna or structures additional to the ones of (1) under these
balance can also be understood considering that every segzyerimental conditions.

ment of a dark line interacts with the segment of the dark
line on the opposite side of the localized structure. For-
mation of these localized structures is illustrated by the

FIG. 8. Localized structures based on supercritical bistability:
(@) Transient shrinking of the domains and formation of

FIG. 6. Nucleation of new domains. Experiment. Detuninglocalized structures; (b) stable localized structures. Experiment.
is slightly larger than for Fig. 5. Time between snapshots isDetuning is in between that of Figs. 4 and 5. Time between
2s. snapshots is 10 s.
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