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Phase models describing self-synchronization phenomena in populations of globally coupled oscilla-
tors are generalized including “inertial” effects. This entails that the oscillator frequencies also vary
in time along with their phases. The model can be described by a large set of Langevin equations
when noise effects are also included. Also, a description of such systems can be given in the ther-
modynamic limit of infinitely many oscillators via a suitable Fokker-Planck-type equation. Numerical
simulations confirm that simultaneous synchronization of phases and frequencies is possible when the
coupling strength goes to infinity. [S0031-9007(98)07062-8]

PACS numbers: 05.45.+b, 05.20.-y, 05.40.+j, 64.60.Ht

A number of phase models have been proposed ovdor instance, to power systems described by the swing
the recent years to describe the dynamic behavior of largequations [8], and also to extend the analysis of certain
populations of nonlinear oscillators subject to a variety ofHamiltonian systems [9]. Moreover, several instances of
coupling mechanisms. A major phenomenon that can bdosephson junctions arrays have been described in sim-
observed is the possibility of self-synchronization amongplified versions [10,11], where nonlinear first-order phase
the members of the population. These can represent firequations govern the dynamics of zero temperature cir-
flies, pancreatic beta cells, heart pacemaker cells, and necuits. Nonzero temperature effects could be included,
rons [1,2], as well as circuit arrays and other things (sedowever, adding suitable noise terms, and second-order
[3,4] for further references). Such models concern poputime derivatives might yield a physically more satisfac-
lations of N > 1 as well as of infinitely many members, tory picture.
and noise terms accounting for random imperfections Tanakaet al.[12], on the other hand, considered about
may also be included. However, doubt in the possithe same problem described by Ermentrout, but within the
bility of effectively synchronizing an entire population mean-field coupling framework and with sinusoidal non-
of oscillators in practice, both in phase and frequencylinearities. In the light of a kind of uncertainty principle
has been cast by a recently found “uncertainty prin{7], which governs phase-frequency synchronization pro-
ciple,” in the mean-field coupling model (the Kuramoto- cesses in the Kuramoto-Sakaguchi models, here we extend
Sakaguchi model [5,6]). Indeed, it was shown in [7] thatthe Ermentrout-Tanakat al. analysis proposing a new
the Kuramoto-Sakaguchi model with noise terms dogs model. This consists of a system 8f> 1 (but N <
allow for simultaneous synchronization in both phase ande) second-order Langevin equations subject to a mean-
frequency. field interaction with a sinusoidal nonlinearity. Also, in

In a more recent paper, Ermentrout [1] revisited thethe thermodynamic limitv — «, we propose a certain
special problem of self-synchronization in populations ofnonlinear partial integro-differential (Fokker-Planck-type)
fireflies of a certain kindthe Pteroptyx malaccde The equation. The latter yields the time evolution of the one-
Kuramoto-Sakaguchi model yields a too fast approach tescillator probability density of the system. As a justi-
the synchronized state (compared to the observed behafieation of our assumptions, we stress that the sinusoidal
ior), and also requires an infinite value of the couplingnonlinearity can indeed be representative of more general
parameter to achieve full phase synchronization. Theretypes of nonlinearities as long as the natural frequencies
fore, Ermentrout proposed, rather, an adaptive frequencall within the range of the adaptive frequency [1,12]. On
model in terms ofN > 1 nonlinearly coupledsecond- the other hand, a mean-field model can be adopted as a
order differential equations for the phases, which canreasonable one, as pointed out by Ermentrout [1], as long
handle both problems. Such a model differs from theas we are concerned with rather compact populations of
Kuramoto-Sakaguchi formulation in that the natural fre-fireflies lying on nearby trees. Also, in case of Josephson
quency of each oscillator is allowed to vary in time, thusjunctions arrays [11], the all-to-all coupling (correspond-
leading to a new set of model equations. ing to the mean-field model) can indeed be justified by cir-

It may be of some interest to stress that also certaircuit analysis, rather than because of a merely simplifying
aftereffects in alterations of circadian cycles in mam-approximation. In addition, however, here we introduce
malians may be explained by Ermentrout-type modelssome noise terms, so as to account for unavoidable im-
cf. [1]. Other applications have also been pointed outperfections of various natures. Therefore, the model we
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propose is given by In the following, we take for simplicity identical oscil-
m; + 6, = Q; + Krysingy — 0,) + &), lators, g(€2) = 8(€2). In order to analyze the spread in
) phase and frequency, we solve the stationary equation as-
j=1...,N, (1) sociated with (4). To this purpose, we look for solutions

or by the system of the formp (6, w) = x(0)n(w). Thus,
éj = w;, D d’q 1 dn 1
) 1 _ ( 2 dw? m * de m 1 X
wj = —[—a)j + Qj + K}"NS|n(!ﬂN - OJ)] 1 d/\/
mn —KrSIﬂ(t//—H)X——wnﬁ: . (8)
1 _
+ —&;(1), j=1,...,N, (2)  Numerical simulations show that the frequency distribu-
m

Jjon n(w, 1) = J¥7 p(6, w,t)d6 doesnotseem to depend
on the coupling strengtly’; cf. the time evolution of the
frequency order-parametds,z)|, Fig. 1.

Therefore, looking for solutions;(w) independent of

whered;, w;, {); denote phases, frequencies, and natur
frequenciesyn > 0 is an “inertial term,” andk sizes the
nonlinearity. The complex order-parameter, defined by

N
ryel = 1 Z elfr, (3) K, we obtain from Eqg. (8)
N = D dn 1 dy 1
measures the phase synchronization, and gfie are m? dw? + m d_a) + m T 0,
Gaussian white noises, witké;) = 0, (£:(1)&;(s)) =
_ 1 dyx
2D§;;8(t — ). ——Kr sin(y — 0),\/ — —wn—=0. (9
Typically, N must be large, but we are also interested do
in the limit of infinitely many oscillators. In this case
we obtain, for the one-oscillator probability density, 10 @ T LB EEE LR
p(0,w,Q,1), the evolution equation
dp _ D Pp o8t S -
i m? dw? - k=20
1 06 Co ]
———[( o+ Q + Krsin(y — 0))p] _ b
m dw g P
ap 04 b 1
90’ (4) ”\ /
which should be accompanied by initial and bound- .
ary data 27 periodicity in 6, and decay to zero as 0.2 1 1
w — =*oo, with sufficiently high rate), and normalization,
5T p(6, 0, Q,0dwdd = 1. 0o L, ‘ ‘
In Eq. (4),r andy are given by 0.0 40 80 12.0 16.0
+o0 2
re'V = ] do [ de
— 0 1.0
+e0 , (b) — ks
[ a0 @ p6.0.0.0. @ e
that is, the compleyhaseorder-parameter, whose ampli- o8
tude measures the degree of the phase synchronization.
In (5), g(Q)) represents a given natural frequency distribu- 06 T e
tion. In order to study, in cases of both finitely and infin- =
itely many oscillators, simultaneous self-synchronization = Vo '
in phaseandfrequency, it is convenient to introduce in ad- 04r |
dition, as in [7], the compIef«equencwrder—parameter, b
sye' = — Z e (N<=),  (6) - LY
27T 0.0 o * :
s€l¢ — j dw/ do 0.0 4.0 8'.[0 12.0 16.0
FIG. 1. Time evolution of the order-parameter amplitudes,
X [ ) dQ g(Q)e'“p(8, w,Q,1) |#(#)] (@) and|s(r)| (b). The parameten is kept fixed tol, the

coupling strength ik = 6 (solid line), K = 10 (dotted line),
(N =0o). (7) andK = 20 (dashed line), and = 1.
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Using the normalization conditions and the boundarycf. [7], and, from these, the “uncertainty relation”

condition,n(w) — 0 asw — =*o, the solution to Eq. (9)

is promptly obtained:

— m —(m/2D)w?
n(w) 1/—271) e .

o(K/D) r codyy—6)

x(0) =

Define the spread in

f(z)” eK/D)reody—0) g9

phase and frequency as

(A0 =6 — )"y — (0 — ¥))*,

(Aw)* = (0?) = (o)),

(10)

(11)

21/47’1’171/21)

AOAw =
0Aw %

(13)
is obtained immediately.

Numerical simulations of the Monte Carlo type for a
large number of oscillatorsM = 30 000) were carried out
in the system of Langevin equations (2). The distribution
function and the amplitudes of both the order-parameters,
r(t) ands(z), have been computed for different values of
the parameters:, D, K, when the natural frequency dis-
tribution is g(Q2) = 5§(2). Note, in particular, in Fig. 1
that (partial) synchronization in phase is achieved faster

brackets denoting average with respect to the densitgnd better for larger values @, while synchronization
distributionp. The symmetry properties of the stationaryin frequency remains always constant, as we expected.
solution to Eq. (4) can be exploited along with the In Fig. 2, however, (partialphasesynchronization is ob-
Laplace method to obtain, in the limit of large coupling Served (for a fixed value oK), to be independent of

K—»oo,

(A9)* =

V2D
K

L Ger =
m
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m, while the frequencysynchronization decreases as
gets smaller. This fact can also be observed in Fig. 3,
where the phase and frequency distributions are shown.
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FIG. 3. Frequency (a) and phase (b) distributions for two

FIG. 2. Time evolution of the order-parameter amplitudes,different values ofn. Comparison between the analytical and

|7()] (@) and|s(z)| (b), for three different values afi. The

coupling strength is kept fixed tki = 6, andD = 1.

the numerical solutions is shown. The coupling strength is kept
fixed toK = 6, andD = 1. Details are shown in the inset.
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10 It seemed natural to add a noise term in Eg. (1), which
@) corresponds to add a noise independent of the inertial

parameterz. One may consider, however, the possibility
to introduce such a noise term directly in Eq. (2), thus
scaling its effects in a rather different way. It may be
interesting to see that the ensuing results are as follows:
Egs. (12) and (13) become no®d)> = /2m?D/K,
(Aw)? = mD, andA6Aw = 2'/*m32D /K, sinceD has
to be replaced byn’D. The main difference is that
AO — 0, Aw — 0, asm — 0, and hence the spread of
both phase and frequency, and thus the uncertainty, vanish
for vanishingm’s. All of this is in (qualitative) agreement
with what happens in the Kuramoto-Sakaguchi model for
0.0 o0 0 200 vamsh_lng noise [cf. Eq. (15), and Eq. (1) withé&;(r)

¢ replacingé&;()].

In summary, we stress that mew model to better
explain synchronization phenomena in populations of
fireflies has been formulated. It has been emphasized
in [1] that the same type of models should also yield
an improved picture for the interaction among neurons,
merely changing the time and space scales with respect
to the fireflies problem. The main feature of the present
model seems to be, however, that no uncertainty occurs in
synchronizing both phases and frequencies in the limit of
infinite coupling strength; cf. Eq. (13) with Eq. (16).
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