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Adaptive Frequency Model for Phase-Frequency Synchronization in Large Populations
of Globally Coupled Nonlinear Oscillators
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Phase models describing self-synchronization phenomena in populations of globally coupled oscilla-
tors are generalized including “inertial” effects. This entails that the oscillator frequencies also vary
in time along with their phases. The model can be described by a large set of Langevin equations
when noise effects are also included. Also, a description of such systems can be given in the ther-
modynamic limit of infinitely many oscillators via a suitable Fokker-Planck-type equation. Numerical
simulations confirm that simultaneous synchronization of phases and frequencies is possible when the
coupling strength goes to infinity. [S0031-9007(98)07062-8]
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A number of phase models have been proposed ov
the recent years to describe the dynamic behavior of lar
populations of nonlinear oscillators subject to a variety o
coupling mechanisms. A major phenomenon that can
observed is the possibility of self-synchronization amon
the members of the population. These can represent fi
flies, pancreatic beta cells, heart pacemaker cells, and n
rons [1,2], as well as circuit arrays and other things (se
[3,4] for further references). Such models concern pop
lations ofN ¿ 1 as well as of infinitely many members,
and noise terms accounting for random imperfection
may also be included. However, doubt in the poss
bility of effectively synchronizing an entire population
of oscillators in practice, both in phase and frequenc
has been cast by a recently found “uncertainty prin
ciple,” in the mean-field coupling model (the Kuramoto
Sakaguchi model [5,6]). Indeed, it was shown in [7] tha
the Kuramoto-Sakaguchi model with noise terms doesnot
allow for simultaneous synchronization in both phase an
frequency.

In a more recent paper, Ermentrout [1] revisited th
special problem of self-synchronization in populations o
fireflies of a certain kind (the Pteroptyx malaccae). The
Kuramoto-Sakaguchi model yields a too fast approach
the synchronized state (compared to the observed beh
ior), and also requires an infinite value of the couplin
parameter to achieve full phase synchronization. Ther
fore, Ermentrout proposed, rather, an adaptive frequen
model in terms ofN ¿ 1 nonlinearly coupledsecond-
order differential equations for the phases, which ca
handle both problems. Such a model differs from th
Kuramoto-Sakaguchi formulation in that the natural fre
quency of each oscillator is allowed to vary in time, thu
leading to a new set of model equations.

It may be of some interest to stress that also certa
aftereffects in alterations of circadian cycles in mam
malians may be explained by Ermentrout-type model
cf. [1]. Other applications have also been pointed ou
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for instance, to power systems described by the swi
equations [8], and also to extend the analysis of certa
Hamiltonian systems [9]. Moreover, several instances
Josephson junctions arrays have been described in s
plified versions [10,11], where nonlinear first-order pha
equations govern the dynamics of zero temperature c
cuits. Nonzero temperature effects could be include
however, adding suitable noise terms, and second-or
time derivatives might yield a physically more satisfac
tory picture.

Tanakaet al. [12], on the other hand, considered abou
the same problem described by Ermentrout, but within t
mean-field coupling framework and with sinusoidal non
linearities. In the light of a kind of uncertainty principle
[7], which governs phase-frequency synchronization pr
cesses in the Kuramoto-Sakaguchi models, here we ext
the Ermentrout-Tanakaet al. analysis proposing a new
model. This consists of a system ofN ¿ 1 (but N ,

`) second-order Langevin equations subject to a mea
field interaction with a sinusoidal nonlinearity. Also, in
the thermodynamic limitN ! `, we propose a certain
nonlinear partial integro-differential (Fokker-Planck-type
equation. The latter yields the time evolution of the on
oscillator probability density of the system. As a just
fication of our assumptions, we stress that the sinusoi
nonlinearity can indeed be representative of more gene
types of nonlinearities as long as the natural frequenc
fall within the range of the adaptive frequency [1,12]. O
the other hand, a mean-field model can be adopted a
reasonable one, as pointed out by Ermentrout [1], as lo
as we are concerned with rather compact populations
fireflies lying on nearby trees. Also, in case of Josephs
junctions arrays [11], the all-to-all coupling (correspond
ing to the mean-field model) can indeed be justified by c
cuit analysis, rather than because of a merely simplifyi
approximation. In addition, however, here we introduc
some noise terms, so as to account for unavoidable
perfections of various natures. Therefore, the model w
© 1998 The American Physical Society 2229
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propose is given by

m üj 1 Ùuj ­ Vj 1 K rN sinscN 2 ujd 1 jjstd ,

j ­ 1, . . . , N , (1)

or by the system
Ùuj ­ vj ,

Ùvj ­
1
m

f2vj 1 Vj 1 K rN sinscN 2 ujdg

1
1
m

jjstd, j ­ 1, . . . , N , (2)

whereuj , vj , Vj denote phases, frequencies, and natur
frequencies,m . 0 is an “inertial term,” andK sizes the
nonlinearity. The complex order-parameter, defined by

rN ei cN ­
1
N

NX
j­1

ei uj , (3)

measures the phase synchronization, and thejj ’s are
Gaussian white noises, withkjjl ­ 0, kjistdjjssdl ­
2Ddijdst 2 sd.

Typically, N must be large, but we are also intereste
in the limit of infinitely many oscillators. In this case
we obtain, for the one-oscillator probability density
rsu, v, V, td, the evolution equation

≠r

≠t
­

D
m2

≠2r

≠v2

2
1
m

≠

≠v
fsss2v 1 V 1 Kr sinsc 2 uddddrg

2 v
≠r

≠u
, (4)

which should be accompanied by initial and bound
ary data (2p periodicity in u, and decay to zero as
v ! 6`, with sufficiently high rate), and normalization,R

1`

2`

R2p

0 rsu, v, V, 0ddvdu ­ 1.
In Eq. (4),r andc are given by

reic ­
Z 1`

2`

dv
Z 2p

0
du

3
Z 1`

2`

dV gsVdeiursu, v, V, td , (5)

that is, the complexphaseorder-parameter, whose ampli-
tude measures the degree of the phase synchronizat
In (5), gsVd represents a given natural frequency distribu
tion. In order to study, in cases of both finitely and infin
itely many oscillators, simultaneous self-synchronizatio
in phaseandfrequency, it is convenient to introduce in ad
dition, as in [7], the complexfrequencyorder-parameter,

sN ei fN ­
1
N

NX
j­1

ei vj sN , `d , (6)

s eif ­
Z 1`

2`

dv
Z 2p

0
du

3
Z 1`

2`

dV gsVdeivrsu, v, V, td

sN ­ `d . (7)
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In the following, we take for simplicity identical oscil-
lators, gsVd ­ dsVd. In order to analyze the spread in
phase and frequency, we solve the stationary equation
sociated with (4). To this purpose, we look for solution
of the formrsu, vd ­ xsudhsvd. Thus,√

D
m2

d2h

dv2 1
1
m

v
dh

dv
1

1
m

h

!
x 2

1
m

Kr sinsc 2 udx
dh

dv
2 vh

dx

du
­ 0 . (8)

Numerical simulations show that the frequency distribu
tion hsv, td ­

R2p

0 rsu, v, tddu doesnot seem to depend
on the coupling strengthK; cf. the time evolution of the
frequency order-parameter,jsstdj, Fig. 1.

Therefore, looking for solutionshsvd independent of
K, we obtain from Eq. (8)

D
m2

d2h

dv2 1
1
m

v
dh

dv
1

1
m

h ­ 0 ,

2
1
m

Kr sinsc 2 udx
dh

dv
2 vh

dx

du
­ 0 . (9)

0.0 4.0 8.0 12.0 16.0
t

0.0

0.2

0.4

0.6

0.8

1.0

|r
(t

)|

K=6
K=10
K=20

(a)

0.0 4.0 8.0 12.0 16.0
t

0.0

0.2

0.4

0.6

0.8

1.0

|s
(t

)|

K=6
K=10
K=20

(b)

FIG. 1. Time evolution of the order-parameter amplitudes
jrstdj (a) andjsstdj (b). The parameterm is kept fixed to1, the
coupling strength isK ­ 6 (solid line), K ­ 10 (dotted line),
andK ­ 20 (dashed line), andD ­ 1.
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Using the normalization conditions and the bounda
condition,hsvd ! 0 asv ! 6`, the solution to Eq. (9)
is promptly obtained:

hsvd ­

r
m

2pD
e2smy2Ddv2

,

xsud ­
esKyDd r cossc2udR2p

0 esKyDd r cossc2uddu
. (10)

Define the spread in phase and frequency as

sDud2 ­ ksu 2 cd2l 2 sku 2 cld2,

sDvd2 ­ kv2l 2 skvld2, (11)

brackets denoting average with respect to the dens
distributionr. The symmetry properties of the stationar
solution to Eq. (4) can be exploited along with th
Laplace method to obtain, in the limit of large coupling
K ! `,

sDud2 ­

p
2 D
K

, sDvd2 ­
D
m

; (12)
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FIG. 2. Time evolution of the order-parameter amplitude
jrstdj (a) andjsstdj (b), for three different values ofm. The
coupling strength is kept fixed toK ­ 6, andD ­ 1.
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cf. [7], and, from these, the “uncertainty relation”

DuDv ­
21y4m21y2D

K
(13)

is obtained immediately.
Numerical simulations of the Monte Carlo type for

large number of oscillators (N ­ 30 000) were carried out
in the system of Langevin equations (2). The distributio
function and the amplitudes of both the order-paramete
rstd andsstd, have been computed for different values o
the parametersm, D, K, when the natural frequency dis
tribution is gsVd ­ dsVd. Note, in particular, in Fig. 1
that (partial) synchronization in phase is achieved fas
and better for larger values ofK, while synchronization
in frequency remains always constant, as we expect
In Fig. 2, however, (partial)phasesynchronization is ob-
served (for a fixed value ofK), to be independent of
m, while the frequencysynchronization decreases asm
gets smaller. This fact can also be observed in Fig.
where the phase and frequency distributions are show
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FIG. 3. Frequency (a) and phase (b) distributions for tw
different values ofm. Comparison between the analytical an
the numerical solutions is shown. The coupling strength is ke
fixed to K ­ 6, andD ­ 1. Details are shown in the inset.
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FIG. 4. Time evolution of the order-parameter amplitudes
jrstdj (a) and jsstdj (b) for two different values ofD. The
coupling strength is kept fixed toK ­ 6, andm ­ 1.

In Fig. 4, it is shown that the noise reduces the synchr
nization in both phase and frequency, as we expect
from analytical considerations. Setting (formally)m ­ 0
exactly, in Eq. (1), we recover the Kuramoto-Sakaguc
model with noise, described in the limit of infinitely many
oscillators by a Fokker-Planck-type equation for the dis
tribution rsu, V, td. In this case, the frequencyv, called
“drift velocity,” arises naturally in the problem as a de
pendent variable, and is given by

v ­ V 1 Kr sinsc 2 ud . (14)

The frequency distribution can be obtained from th
phase distribution [7], and the spread of both, phase a
frequency distributions, becomes

sDud2 ­

p
2 D
K

, sDvd2 ­
p

2 DK , (15)

and, consequently, the uncertainty relation is

DuDv ­
p

2 D . (16)
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It seemed natural to add a noise term in Eq. (1), whic
corresponds to add a noise independent of the inert
parameterm. One may consider, however, the possibility
to introduce such a noise term directly in Eq. (2), thu
scaling its effects in a rather different way. It may be
interesting to see that the ensuing results are as follow
Eqs. (12) and (13) become nowsDud2 ­

p
2 m2DyK,

sDvd2 ­ mD, andDuDv ­ 21y4m3y2DyK, sinceD has
to be replaced bym2D. The main difference is that
Du ! 0, Dv ! 0, as m ! 0, and hence the spread of
both phase and frequency, and thus the uncertainty, van
for vanishingm’s. All of this is in (qualitative) agreement
with what happens in the Kuramoto-Sakaguchi model fo
vanishing noise [cf. Eq. (15), and Eq. (1) withmjjstd
replacingjjstd].

In summary, we stress that anew model to better
explain synchronization phenomena in populations o
fireflies has been formulated. It has been emphasiz
in [1] that the same type of models should also yiel
an improved picture for the interaction among neuron
merely changing the time and space scales with respe
to the fireflies problem. The main feature of the prese
model seems to be, however, that no uncertainty occurs
synchronizing both phases and frequencies in the limit
infinite coupling strength; cf. Eq. (13) with Eq. (16).
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