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We have shown here that the sharp peaks in thee 1 H2 vibrational excitation cross section indicate
the existence of transition states of H2

2 which have lifetimes 2–3 times larger than the lifetimes of
individual overlapping H22 autoionization resonances. Each one of these transition states is associ
with a collective ensemble of overlapping broad resonances of H2

2 and therefore does not necessarily
decay exponentially in time. The structure in the experimental cross section is shown to be a resu
the quantum interference between the overlapping resonances of H2

2 . [S0031-9007(98)07092-6]
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Sharp resonant structures in the energy depende
of vibrational excitation of H2 by electron impact were
predicted by theoretical calculations of Mündelet al. [1].
This structure appearing in the cross section for th
excitations to higher vibrational levels of H2 (n $ 2) was
experimentally confirmed by Allan [2]. The result was
a surprising one since it is known that the2

S1
u resonance

of H2
2 , responsible for the vibrational excitation in the low

energy region is an extremely short-lived resonance with
lifetime comparable with the duration of the nonresona
scattering [3].

Domcke and Cederbaum proposed that vibrational d
grees of freedom of H2 are responsible for narrowing the
width of the resonances of an intermediate state H2

2 [4].
However, to the best of our knowledge, no attempt wa
made to calculate the actual positions and widths of the
resonances without the separation of electronic and vib
tional motion.

The most usual method that allows the coupling betwe
electronic and vibrational degrees of freedom of molecu
is the Born-Oppenheimer (BO) approximation. Within th
framework of this approximation electronic energy leve
are found for fixed nuclei configuration. The electroni
energy obtained as a function of nuclei distance serv
later as a potential energy surface for vibrational motio
of nuclei.

The BO approximation is applicable whenever the e
ergy distance between the electronic states is larger th
the coupling term between them. In such a case nuc
move on a single electronic potential surface, and the co
pling to the others can be neglected. However, H2

2 inter-
mediate for fixed internuclear distancesR , 3.2 a.u. has
no bound states. Because of the autoionization proces
supports only continuum states. The distance between
electronic states of continuum is zero, hence the usual B
approximation would require dealing with an immens
number of electronic potential surfaces strongly couple
with each other.

For a fixed H-H distance the H22 molecule decays
exponentially with a rate depending on that distance. Th
exponential decay can be described by a single resona
0031-9007y98y81(11)y2221(4)$15.00
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state possessing acomplexelectronic “energy.” The real
part of the complex eigenvalue is the energy position of th
resonance state, and the imaginary part is proportional
its decay rate (inverse lifetime).From here it follows that
instead of using many real coupled electronic potentia
surfaces within the BO approximation we can solv
the nuclear Schrödinger equation with a single comple
potential energy surface.

In this Letter we will show that the sharp structures
appearing in the vibrational excitation cross section desp
the large width of the overlapping resonances are du
to the interference effect between them. It is know
that the structure in the cross section can be obtained
two overlapping resonances interfere with each other wi
desirable phases. The case of H2

2 is more complicated, and
interference involves a large number of resonances. T
key point, however, is the relatively large interaction of th
discrete, vibrationally bound autoionization states of H2

2
with the slightly above the threshold states of H2

2 which are
continuum states of nuclear motion but resonances beca
of the autoionization process.

In order to calculate the vibrational excitation cross sec
tion, sL

n , we used the expression derived by Cederbau
and Domcke within the framework of the local complex
potential approximation [5]:

sL
n sEd ~

µ
E 2 En

E

∂1y2

jknjVRsE 2 bHd21VR j0lj2. (1)

This expression describes an incident electron of ener
E hitting the H2 molecule in its ground vibronic state and
preparing the wave packet with entry amplitudeVRj0l
on the potential energy surface of the H2

2 intermediate.
The prepared wave packet is propagated via the nucle
Born-Oppenheimer H22 Hamiltonian bH with the complex
potential,

bH ­ bTN 1 V sRd 2
i
2

GsRd . (2)

Finally, an electron with the energy ofE 2 En leaves
the H2 molecule in a vibrationally excited state. The
© 1998 The American Physical Society 2221
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probability amplitude to obtain a specific vibrational stat
n of H2 is determined by the exit amplitudeVRjnl.

The scope of our work is to explain the existence of th
structures in the vibrational excitation cross section rath
than to obtain its correct numerical value. Therefore w
will use a simplified expression for the cross section,

snsEd ­ jknjsE 2 bHd21j0lj2. (3)

The expression given above produces qualitatively t
same structural phenomena as Eq. (1) does; however
gives us a better physical insight into the problem.

Since our explanation of the phenomena is based
the vibrational eigenstates of the intermediate H2

2 we will
use the spectral representation of the Green operatorsE 2bHd21 in Eq. (3):

snsEd ­

É X
a

snjad saj0d
E 2 Ea

É2
, (4)

where the sum is made over the vibrational eigensta
jal of the Hamiltonian defined in Eq. (2).Ea are the
corresponding complex eigenvalues.s· · · j · · ·d is the gen-
eralization of the inner product for the non-Hermitian
Hamiltonians [6]. The complex probability amplitude to
populate the resonance statea is given bysaj0d, whereas
the complex probability amplitude to decay from this reso
nance to a vibrational leveln is snjad. (On the complex
probability amplitude see Ref. [7].)

In Fig. 1a we represent the energy levels of H2
2 when

the autoionization process is neglected; i.e.,GsRd ­ 0
in the Hamiltonian given in the Eq. (2). There are
infinite-lifetime vibrational bound states of H2

2 . In Fig. 1b
we show the results obtained when the complex nonl
cal Hamiltonian of H2

2 is diagonalized [i.e.,GsRd fi 0 in
Eq. (2)]. The complex nonlocal potential,V sRd 2

i
2 GsRd,

was taken from Ref. [8]. As one can see when the imag
nary part of the potential is taken into account, each vibr
tional state of H22 acquires a finite width. The vibrationally
bound states become discrete resonance states, and the
sociative continuum now becomes a dissociative conti
uum of resonances. The discretization of the continuum
due to the usage of the finite basis set. The actual situat
is of a branch cut. That is, a continuum of singular poin
of the scattering matrix.

Eigenstates of the H22 used in the calculation of the
cross sections were obtained by diagonalization of t
Hamiltonian matrix in the discrete variable representatio
(DVR) basis. Complex scaling (CS) of the H-H coordinate
(R ! Reiu) which is equivalent to the usage of absorbin
boundary conditions in that coordinate was employed [9
Application of CS enabled us to get rid of nonphysica
weak oscillations in the cross section above the thresho
energy to dissociation obtained in previous calculation
[8]. We used only 200 grid points in the interval of 20 a.u
while the CS parameteru ­ 0.25 turned out to be the
2222
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FIG. 1. The vibrational eigenstates of H2
2 obtained: (a) Ig-

noring the imaginary part of the potential, (b) with the full
complex potential. The arrows stand for the threshold ener
to dissociation atEthreshold ­ 0.1467 a.u.

optimal one for our calculations (resonance positions we
insensitive to the variation ofu).

Cross sections for vibrational excitationsn ­ 0 !
n ­ 1, 2, . . . , 4 calculated using Eq. (4) are represente
in Fig. 2. The structures appearing under the dissociati
threshold are in a good qualitative agreement with prev
ous results obtained for the nonlocal theory [1,8]. Sinc
the electronic resonance state of H2

2 decays byp waves,
nonlocal effects will influence the scattering cross sectio
but not the quality of the interference effects due to nucle
dynamics. For discussion of local versus nonlocal effec
see [5]. No structure is seen in then ­ 0 ! n ­ 1 cross
section. However, peaks below the dissociation thresho
energy first appear forn ­ 0 ! n ­ 2 cross section
and become even more pronounced for the excitations
higher vibrational levels.

The absence of the structure for then ­ 0 ! n ­ 0, 1
excitation and formation of it for higher ones could sugge
that the structure of the final state introduces the structu
in the cross section. This effect is known as the refle
tion principle [10]. This possibility, however, was ruled
out by the following numerical experiment. The cross se
tion for then ­ 0 ! n ­ 0 vibrational “excitation” was
calculated, when the H22 Born-Oppenheimer potential was
shifted in such a way that its minimum coincides with
minimum of the neutral H2 molecule. The shift affected
only the shape of the broad background line leaving th
fine structure in the cross section the same as obtain
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FIG. 2. Vibrational excitation cross sectionsn ­ 0 ! n ­
1, 2, . . . , 4.

in Figs. 2b–2d. The conclusion is obvious: peaks in th
cross section are unrelated to the structure of the initia
or the final states and cannot be explained by the refle
tion principle.

Another possible explanation would be to relate th
structure appearing in the vibrational excitation cross se
tion to the discrete resonance states of H2

2 appearing at en-
ergies below the dissociation threshold energy. Howeve
resonance positions do not coincide with the peak positio
in the cross section.Moreover the widths of the peaks ap
pearing in the cross section are 2 to 3 times smaller tha
the widths of the resonances calculated before.The struc-
ture appears in the cross section although the resonan
are broad and overlapping. This effect can be achieved
the overlapping resonances interfere with each other w
an appropriate phase. We have illustrated this pheno
ena for the case of two overlapping resonances followin
closely discussion given by Bohm [11].

Let us assume thatE1 ­ E1 2
i
2 G1 and E2 ­ E2 2

i
2 G2 are two poles such thatG1 ­ G2 ­ G, E1 ­ 0, and
E2 ­ DE. The cross section similar to Eq. (4) in the
neighborhood of the poles is given by

ssEd ­

É
1

E 2 DE 1
i
2 G

1
C

E 1
i
2 G

É2
(5)

or

ssEd ­ s1sEd 1 s2sEd 1 s12sEd , (6)
e
l
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wheres1sEd ands2sEd are the first and the second pol
contributions to the cross section:

s1sEd ­
1

E2 1 G2y4
,

s2sEd ­
C2

sE 2 DEd2 1 G2y4
.

(7)

The last term in Eq. (6),s12sEd, stands for the interfer-
ence effect between the two poles:

s12sEd ­
2CEsE 2 DEd 1 2CG2y4

sE2 1 G2y4d fsE 2 DEd2 1 G2y4g
. (8)

For C ­ 21 and for DE # G there is a single peak in
the cross section atE ­ DEy2. However, forC ­ 1 and
DE ­ G the interference terms12sE ­ DEy2d gives a
zero contribution to the cross section and consequen
we obtain two well separated peaks in the cross secti
As one can see, the widths of the peaks inssEd are de-
creased due to the quantum interference effects.Follow-
ing the Heisenberg uncertainty principle the uncertainty
energy times the lifetime of the system is larger thanh̄y2.
Therefore we may say that by narrowing the widths of t
peaks inssEd one increases the lifetime of the system
Note that the usual concept of the lifetime as inverse
the decay rate is applicable only for isolated resonan
and not in our case where there is a large overlap betw
the different resonances.

The same mechanism as described above introduces
structure below the threshold energy to dissociation in t
case of H2

2 . Since the only states existing below thi
energy are the discrete resonances, one would expect
these states give the main contribution to the cross sec
below the threshold energy to dissociation. Howeve
when the sum in Eq. (4) was truncated to include only t
discrete resonancesno structure at all was obtained.

The reason for that is the surprisingly large contributio
of the continuum resonance states to the cross section
Fig. 3 we present the population of the H2

2 states versus
its energy positions.

One can clearly see that in addition to the large prob
bility to populate the discrete resonances states, th
is also a large probability to populate the continuu
resonances at about0.156 a.u. which are located slightly
above the threshold to dissociation. If the imaginary pa
of the potential is ignored, the maximum in populatio
of continuum states is located at different energy and
much smaller compared to the population of the discre
states. In order to explain this phenomena we plotted
wave functions of the continuum resonances correspond
to the maximum of population. It turned out that th
amplitude of the wave function was two orders larg
than the amplitude of the discrete resonance states. (N
that since the Hamiltonian is non-Hermitian the norma
ization of the wave functions is by thec product [6].) The
2223
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FIG. 3. Population of the H22 states by the initial wave
packet. Filled circles represent the vibrationally discre
autoionization resonance states. Open circles represent
vibrational continuum of autoionization resonances.

unusually high amplitude of the continuum wave function
can be explained using the quasiclassical approximatio
The quasiclassical continuum wave functions are of th
form [12]

CcontinuumsRd ­
C1
p

p
eiy h̄

R
p dR

1
C2
p

p
e2siy h̄d

R
p dR ,

(9)

where psRd ­
p

2mhE 2 fV sRd 2
i
2 GsRdgj. Since the

potential in the case of H22 has a negative imaginary
part, i

2 GsRd, the momentumpsRd acquires a positive
imaginary component. Consequently, the second part
the expression given in Eq. (9) will be by some exponenti
factor larger than in the case of entirely real potential. No
thatGsRd ! 0 asR ! ` and thereforeCcontinuumsRd does
not diverge exponentially as in the case of vibration
predissociation resonances.

High amplitudes of the dissociative continuum autoion
ization resonance states wave functions lead to larger ov
lap of these states with the ground vibronic state of H2.
The interference of the discrete resonance states with
continuum of autoionization resonances (i.e., branch c
of resonances) results in a sharp structure in the vibratio
excitation cross section. The peaks obtained in the cro
section are much narrower than the width of the individu
resonance states, and their positions depend on the vib
tional exit channel.
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Assuming that the sharp peaks in the cross sectiondo not
reflect the structure of the initial state(as in the present
case) we can associate the peaks with delay times in
propagation of the initial wave packet. On this ground w
can say that we have shown that the sharp peaks in
e 1 H2 vibrational excitation cross section indicates th
existence of transition states of H2

2 which have lifetimes 2–
3 times larger than the lifetimes of individual overlappin
H2

2 autoionization resonances. Each one of these tra
tion states (referred to as vibrationally resolved resonan
in Ref. [13]) is associated with a collective ensemble
overlapping broad resonances of H2

2 and, therefore, does
not necessarily decay exponentially in time. The sha
structure in the cross section and its dependence on
vibrational exit channel is obtained due to the quantum
terference between the vibrationally bound autoionizat
states of H22 and the branch cut of dissociative continuu
autoionization states of H22 .
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