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Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems
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We simulated site dilute Ising models th= 3 dimensions for several lattice sizés For each
L singular thermodynamic quantitieéé were measured at criticality and their distributiaR6X) were
determined for ensembles of several thousand random samples.L +oro the relative width of
P(X) tends to a universal constant: there is no self-averaging. The width of the distribution of
the sample(i) dependent pseudocritical temperatuesi, L) scales ass7.(L) ~ L~'/* and not as
~L~42 The sample dependence &f(T,L) enters dominantly, but not exclusively, Vi (i, L).
[S0031-9007(98)06491-6]
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Phase transitions in systems with quenched disordesriticality self-averaging does hold). The numerical work
are of considerable theoretical and experimental interesin which this claim was based has been backed up with
and have been the subject of intensive investigationsa finite-size scaling ansatz [4] which seemed to fit the
Nonetheless, there are only a few general exact result$ata quite well. Subsequently the issue has been investi-
on such systems and some of these raised questiogsted by Aharony and Harris (AH) [5], who provided a
which were left unanswered for more than a decadetheoretical understanding of the absence of self-averaging
For example, the Harris criterion [1], which states thein critical random ferromagnets. The central point of
condition for stability of a pure fixed point against AH was that a random fixed point is characterized by
disorder asl/vp. = d/2, was derived assuming that a distribution of nonzero widthof some measurable
fluctuations of the local critical temperatufg.; of a  quantities (such as energies, susceptibilities, etc.), and

region of size ¢ scaled aséT, ~ fzd/zl Another hence if an ensemble of systems flows to this fixed point,

result by Chayeset al.[2] stated thatl/» < d/2 for its properties must also be distributed in a similar way.
any disordered system. This is identical with the HarrisThe argument was supported by a renormalization group
criterion for disordered systems governed by a pure fixegalculation ind = 4 — e dimensions. The AH work led

point. For Systems governed by a random fixed poinio several pred|Ct|OnS, some of which were in clear dis-

it raised the question as to whether the relatiih. ~  agreement with the scaling theory [4]. Since neither the
£74/2 holds in this case as well. general arguments nor the results obtained lexpansion

Another important and relevant issue concerns thé&an be viewed as definitive, independent confirmation is
meaning of measurements done on disordered systerfi§sired. Furthermore, recently claims were made [6] to
at or near their transition points. All measurementsthe effect that the manner, in which the sample-to-sample
(experimental and numerical) are obtained for finitefluctuations of the pseudocritical temperature scale with
systems; moreover, each such system constitutes a p&iz€, governs one’s ability to observe the “true” critical
ticular realization of the quenched randomness. Hencé&Xponents of random systems, quantum and classical.
while taking the infinite system limit, increasing system In order to investigate these fluctuations, the extent to
size L, we also move between different realizations ofWhich our finite-size scaling ansatz holds and to test the
the randomness. Thus the only meaningful objects foAH results, we carried out extensive simulations of the
finite-size scaling arelistributions of various properties 3 — d Ising model with site dilution. For the pure model
in ensembles of random systems. Usually, measuremenffde exponenty, = 0.11 > 0 [7], randomness is relevant,
(experimental and numerical) are taken on a single (or &nd the critical behavior is governed by a random fixed
few) large system, and it is important to ascertain to whaPoint. Various aspects of the critical properties of this
extent are the results obtained for a single system reprénodel have been measured very carefully [8]. In particu-
sentative of the general class to which it belongs. Théar @, the specific heat exponent of the random model, is
answer hinges on the important issue of self-averaginglegative [8], consistent with [2].

If a quantity is not self-averaging, increasifgdoes not We start by recapitulating a few definitions. Consider
improve the statistics of its measurement (sample-to@n ensemble of systems of linear sizedenoting a par-
sample fluctuations remain large). Whereas it has beelicular realization of the randomness hy For each such
known that for (spin and regular) glasses [3] there is ndystem we measure, at temperatdtevarious thermo-
self-averaging in the ordered phase, the discovery [4] th&dynamic densities(;(T', L) (such as the susceptibility per
there is no self-averaging for randoferromagnetsat ~ Site X = x, magnetizationV/, etc.). Denote byl.(i, L)

their critical point came as somewhat of a surprise (offthe pseudocritical temperatures of each of these samples
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[obtained, for example, by locating the maximum pf
(see Fig. 1)].
peratureT.(L) = [T.(i,L)] approaches, fol. — o, the
asymptotic limit7.(L) — T.. Our main results can be
summarized as follows:

(i) Lack of self-averaging—The values ofy, measured
at 7. for many samples of sizé&, are distributed with
mean[ y(L)] and variance/, (L). The normalized square
width

R, =V, /[x}—CasL— o,

i.e., goes to a constant, for largé, as predicted by
AH, in contradiction to our predictiolR ~ L%/ The

rule out the possibility thatsT.(L) ~ L~/ as was

The sample-averaged pseudocritical temassumed by us [4] and listed by others [6] as “the

most likely scenario.” The latter behavior occurs only in
systems governed by a pure fixed point [1]. Note that the
critical concentration in percolation [11] behaves as in (1)
(see also a similar phenomenon in the random-field Ising
model [12]).
(iv) The finite-size scaling form assumed in [4],
X{(T,L) = L Q;(i;L""), (2)
ii = [T - TC(l’L)]/Tcs (3)

where ; is a sample-dependent reduced temperature, is

distributions of various thermodynamic quantities do notcorrect. The sample dependenceXofis predominantly
become sharp in the thermodynamic limit and the systerflue to the sample dependenceof

is not self-averaging.
(ii) Universality—We studied different dilutions and
two random ensembles, one with a fixedncentration

(v) Different realizations with the same and L still
have slightly differenfX;; the scaling functiorQ;(x) does
depend on the realizatianvia some intrinsic variable not

of magnetic sites (grand canonical) and the other wittyet understood.

a fixed number of spins, placed at random on the

(vi) It may be computationally advantageous to mea-

lattice (canonical). For grand-canonical ensembles wittfure various quantities, for instance, to find critical ex-
different concentrations, AH predicted that the constanPonents, at the sample-dependent pseudocritical point
C is universal and indeed we find the same asymptotid (i, L) (Wheret; = 0), rather than aT’.. This is so since,

width. However, their predicted (to ordef) universal
value isRy /R, = 0.25; we find 0.35(2). Two different
ensemblesseemto asymptote to different values at

as a consequence of item iv, the variancel'dt, L) is
much smaller.
We now present numerical evidence for each of the

[9,10] (even when the concentration in one equals thétatements made above.

fraction of spins of the other).
(i) The pseudocritical temperatureg.(i, L) are dis-
tributed with a widthd T,.(L) which scales as

ST.(L) ~ L~V7. (1)

The site-dilute Ising modek-Each site of a cubic
lattice is either occupied by an Ising spin or empty. Here
we report results obtained for a grand-canonical ensemble
of samples in which the occupation of each site was
determined independently with probabiliy = 0.8. At

This behavior was suggested by AH, reasoning that whethis probability Heuer found the fastest crossover to the
combined with the finite-size scaling theory of [4] it gave asymptotic (random) critical behavior [8]. We used the
rise to the lack of self-averaging discussed in item (i).wolff [13] single cluster algorithm [14] with skewed

However, this reasoning depends on the validity of theyeriodic boundary conditions [15] on lattices of sizes
finite-size scaling theory. Here we establish the validity;, — 4§ 16, 32, and64. For each of these sizes we

of (1) independently of any additional assumptions. Wesjmulated, respectively,

ng = 10000, 4000, 32000, 4000, and 1479

different random samples. High-precision measurements
of various critical properties yielded, = 3.49921(3),

a/v = —0.066(9), B/v = 0.505(2), y/v = 1.990(4),

1/v = 1.467(5), in good agreement with [8].

Lack of self-averaging, distribution of the critical sus-
ceptibility —Curves ofy (T) = (((M?) — (M|)*)/pL’T
are presented in Fig. 1 for two samples of size= 32.

From measuring;(T.) = [{(M?)]/pL>3T, (without sub-
traction of [(M?)]) for an ensemble of samples we con-
structed the histogram of Fig. 2, for various siZes

As evident from the histograms and from the inset, the
widths of these distributions approach a constant for in-
creasingL. This is the result of AH, whereas our scal-
ing theory [4] would predicR, ~ L%/, The source of
the discrepancy is an assumption we made regarding the
distribution of the pseudocritical temperatures; had we as-
sumed that (1) holds, our scaling ansatz would have also
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FIG. 1. Susceptibility per spin of two systems of size=

32, generated with site occupation probabiljpy= 0.8 versus
temperature.T,(i, L) denotes the pseudocritical temperature of
samplei, identified by the maximum of the susceptibilityZ’.

is the value approached by the mean of these inlthe «
limit.
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FIG. 3. Distribution of scaled pseudocritical temperatures
o L obtained for sizes. = 16 (thin dotted line), L = 32 (thick
O.OOO 5 05 10 15 20 o5 dashed line), and. = 64 (thin solid line), usingy, = 1/v =

1.467 andT. = 3.4992.

X(To.LIX(T,L)]
FIG. 2. Distribution of the critical susceptibilities, measured The width of the distribution exceeds by a factor of nearly
at 7. for different samples and different sizés= 16 (thin 4 the shift of its average fronT.. Hence, the large
dotted line),L = 32 (thick dashed line), andl = 64 (thin solid  f,,ctuations iny(T,) are due to the large value 6, (L);

line). For eachL the values ofy;(T,, L) were normalized by '
the ensemble average of all samples of that size. The inséﬂ'hen we perform measurements at the fixed temperature

shows the second moment of the distribution as a function of c; some samples we deal with will be considerably
L; evidentlyR, — C. above their pseudocritical temperature and some below

(see Fig. 1). We have also made straightforward fits of
i 2 212
produced the correct resutt, ~ const. Therefore confir- ;2: (;/fatrrgaengﬁﬁtT 8%1) ( Lt?tghi E(zr)m_éi?(Lw) - A.Lwe 1"0323
mation of this result may serve as an indication of the va- "] 449(8) and Y = 142“(4) 0 is within errors of
lidity of (1) as well. .Nfevertheless, since th'$ Interpretationy, sHift exponent (its érror .bar is small); we believe
depends on the validity of further assumptions implicit INhat we can concludp # d/2 = 1.5. Since ’one expects
our sqallng theory, it is important to verify mdependentlythat/\ — y, and we have also détérmined independently
and d_lrectly_scallng and (.1)' y: = 1.467(5), our results strongly suggest that all of
Universality—We studied two more random ensem-. .. ovionents are actually the same A = 1/v
bles: another grand-canonical one, but with occupation Testing the scaling ansgtz—RepIacingQ» by Q in

ﬁL?Tt:Ste);"zOp 6L¢ %Sinzmrjar? dgﬁﬂﬂgegnﬁ ;V;tchh 2;:;;;1 Eqg. (2) g:on_stitutes an assumption that the dependenpe on

We found fhat the Iir'niting values of botR.. and R ‘the reallz_a_tlon of the randomness can be absorbed in the

are the same for the two grand-canonical er);semblerg (Wi .seudocrltlcal temperature of the parthular gample. .Our
irst task was to check the extent to which this holds, i.e.,

p = 0.8,0.6), |n_d|cat|ng universality, bu_t for the canoni- 0 what extent can one collapse data obtained at different
cal ensemble different values were obtained. These resul $es and temperatures for different samples. Figure 4
W”Il:)ibsirﬁ:jﬁ'ggtﬁg tir;d es)(eplizlgfr(?ti(zgeg gergrgtresWe presents the magnetization for two system sizes. The data
. . s emp : collapse well onto two branches of a function, one below
estimated, using the histogram r'ewelghtlng method [le]and one abovd.(i, L), lending support to the validity
g}eoﬁrszﬁgggg;gzl tmgf,cztsuiﬁéﬁ% g; (in:[\:re;ilivseavr\?;l? i of the scaling ansatz. We succeeded in fitting thousands
first quess foff, (i .L) wasT. —from data collected at t%is %f data points at three different sizes to two scaling
9 e\l ¢ functions (corresponding to the two branches). This may

point we calculated th_e s.uscepfubmty asa function7of e interpreted as supportingsérong scaling hypothesis
the temperature at which it had its maximum was our nex 9., that for largd.

estimate for7.(i,L), where more data were collected, .
and so on. The procedure converged in less than ten Xi(T,L) = LPQ(iiL""). ()
iterations within the resolution imposed by the statisticalHere we modified (2) by dropping the sample dependence
error in determining the temperature of the maximal of the scaling function, i.e., assuming that teeatire
The resulting histograms for several sizes are collapsesample dependence can be absorbed.inOn the other

on Fig. 3 using the value of, = % = 1.467(5) which  hand, as evident from Fig. 4, the data points do exhibit
was determined independently [10] by simulationg at considerable scatter about the main trend. To investigate
The means and widths of these distributions are the extent of violation of such a strong scaling relation,
we studied the distribution of the susceptibility maxima.

T.(L) ~ T, — 0532 - L7",

(4) Sample dependence of the scaling functieif, in-
8T (L) = 2.13 - L™/,

stead of y;(T.,L), we measure for each sample and
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L% T (i,L)-T /T, FIG. 5. Distribution of the normalized maximal susceptibili-
ties for samples of sizek = 16 (thin dotted line) and. = 32
FIG. 4. Scatter plot of the scaled modulus of the magnetiza{thick dashed line). The horizontal scale is the same as Fig. 2,
tion, measured &, for ensembles of samples of two different 0 €mphasize how small the width of this distribution is, which
sizes, plotted (on log-log scale) versus the scaled temperatufdSC goes to a constant (see inset).
t; ={T, — T.(i,L)}/T.. The lines are the scaling functions
fitted separately for three different sizes, showing remarkable . .
agreement. The scatter of the points from the lines is duéupported in part by the Germany-Israel Science Foun-
partially to measurement error (thermal) and partly to genuinadation (GIF) and in part by the Israel Ministry of Sci-
sample dependence of the scaling function. ence. Computations were performed on the SP2 at the
Inter-University High Performance Computing Center,
Tel Aviv.
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