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Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems
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(Received 9 February 1998)

We simulated site dilute Ising models ind ­ 3 dimensions for several lattice sizesL. For each
L singular thermodynamic quantitiesX were measured at criticality and their distributionsPsXd were
determined for ensembles of several thousand random samples. ForL ! ` the relative width of
PsXd tends to a universal constant: there is no self-averaging. The width of the distribution
the samplesid dependent pseudocritical temperaturesTcsi, Ld scales asdTcsLd , L21yn and not as
,L2dy2. The sample dependence ofXisT , Ld enters dominantly, but not exclusively, viaTcsi, Ld.
[S0031-9007(98)06491-6]

PACS numbers: 05.50.+q, 75.10.Nr, 75.40.Mg, 75.50.Lk
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Phase transitions in systems with quenched disord
are of considerable theoretical and experimental intere
and have been the subject of intensive investigation
Nonetheless, there are only a few general exact resu
on such systems and some of these raised questi
which were left unanswered for more than a decad
For example, the Harris criterion [1], which states th
condition for stability of a pure fixed point agains
disorder as1ynpure # dy2, was derived assuming that
fluctuations of the local critical temperatureTc,L of a
region of size j

d
L scaled asdTc , j

2dy2
L . Another

result by Chayeset al. [2] stated that1yn # dy2 for
any disordered system. This is identical with the Harr
criterion for disordered systems governed by a pure fix
point. For systems governed by a random fixed poi
it raised the question as to whether the relationdTc ,
j2dy2 holds in this case as well.

Another important and relevant issue concerns th
meaning of measurements done on disordered syste
at or near their transition points. All measuremen
(experimental and numerical) are obtained for finit
systems; moreover, each such system constitutes a p
ticular realization of the quenched randomness. Henc
while taking the infinite system limit, increasing system
size L, we also move between different realizations o
the randomness. Thus the only meaningful objects f
finite-size scaling aredistributions of various properties
in ensembles of random systems. Usually, measureme
(experimental and numerical) are taken on a single (or
few) large system, and it is important to ascertain to wh
extent are the results obtained for a single system rep
sentative of the general class to which it belongs. Th
answer hinges on the important issue of self-averagin
If a quantity is not self-averaging, increasingL does not
improve the statistics of its measurement (sample-t
sample fluctuations remain large). Whereas it has be
known that for (spin and regular) glasses [3] there is n
self-averaging in the ordered phase, the discovery [4] th
there is no self-averaging for randomferromagnetsat
their critical point came as somewhat of a surprise (o
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criticality self-averaging does hold). The numerical work
on which this claim was based has been backed up w
a finite-size scaling ansatz [4] which seemed to fit th
data quite well. Subsequently the issue has been inves
gated by Aharony and Harris (AH) [5], who provided a
theoretical understanding of the absence of self-averagi
in critical random ferromagnets. The central point o
AH was that a random fixed point is characterized b
a distribution of nonzero widthof some measurable
quantities (such as energies, susceptibilities, etc.), a
hence if an ensemble of systems flows to this fixed poin
its properties must also be distributed in a similar way
The argument was supported by a renormalization grou
calculation ind ­ 4 2 e dimensions. The AH work led
to several predictions, some of which were in clear dis
agreement with the scaling theory [4]. Since neither th
general arguments nor the results obtained bye expansion
can be viewed as definitive, independent confirmation
desired. Furthermore, recently claims were made [6]
the effect that the manner, in which the sample-to-samp
fluctuations of the pseudocritical temperature scale wi
size, governs one’s ability to observe the “true” critica
exponents of random systems, quantum and classical.

In order to investigate these fluctuations, the extent
which our finite-size scaling ansatz holds and to test th
AH results, we carried out extensive simulations of th
3 2 d Ising model with site dilution. For the pure model
the exponentap ­ 0.11 . 0 [7], randomness is relevant,
and the critical behavior is governed by a random fixe
point. Various aspects of the critical properties of thi
model have been measured very carefully [8]. In particu
lar, a, the specific heat exponent of the random model,
negative [8], consistent with [2].

We start by recapitulating a few definitions. Conside
an ensemble of systems of linear sizeL, denoting a par-
ticular realization of the randomness byi. For each such
system we measure, at temperatureT , various thermo-
dynamic densitiesXisT , Ld (such as the susceptibility per
site X ­ x, magnetizationM, etc.). Denote byTcsi, Ld
the pseudocritical temperatures of each of these samp
© 1998 The American Physical Society
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[obtained, for example, by locating the maximum ofx

(see Fig. 1)]. The sample-averaged pseudocritical te
peratureTcsLd ­ fTcsi, Ldg approaches, forL ! `, the
asymptotic limit TcsLd ! Tc. Our main results can be
summarized as follows:

(i) Lack of self-averaging.—The values ofx, measured
at Tc for many samples of sizeL, are distributed with
meanfxsLdg and varianceVx sLd. The normalized square
width

Rx ­ Vxyfxg2 ! C as L ! ` ,

i.e., goes to a constant, for largeL, as predicted by
AH, in contradiction to our predictionR , Layn . The
distributions of various thermodynamic quantities do n
become sharp in the thermodynamic limit and the syste
is not self-averaging.

(ii) Universality.—We studied different dilutions and
two random ensembles, one with a fixedconcentration
of magnetic sites (grand canonical) and the other w
a fixed number of spins, placed at random on the
lattice (canonical). For grand-canonical ensembles w
different concentrations, AH predicted that the consta
C is universal and indeed we find the same asympto
width. However, their predicted (to ordere0) universal
value isRMyRx ­ 0.25; we find 0.35(2). Two different
ensemblesseemto asymptote to different values ofR
[9,10] (even when the concentration in one equals t
fraction of spins of the other).

(iii) The pseudocritical temperaturesTcsi, Ld are dis-
tributed with a widthdTcsLd which scales as

dTcsLd , L21yn . (1)

This behavior was suggested by AH, reasoning that wh
combined with the finite-size scaling theory of [4] it gav
rise to the lack of self-averaging discussed in item (
However, this reasoning depends on the validity of th
finite-size scaling theory. Here we establish the validi
of (1) independently of any additional assumptions. W
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FIG. 1. Susceptibility per spin of two systems of sizeL ­
32, generated with site occupation probabilityp ­ 0.8 versus
temperature.Tcsi, Ld denotes the pseudocritical temperature o
samplei, identified by the maximum of the susceptibility.Tc
is the value approached by the mean of these in theL ! `
limit.
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rule out the possibility thatdTcsLd , L2dy2 as was
assumed by us [4] and listed by others [6] as “th
most likely scenario.” The latter behavior occurs only in
systems governed by a pure fixed point [1]. Note that th
critical concentration in percolation [11] behaves as in (1
(see also a similar phenomenon in the random-field Isin
model [12]).

(iv) The finite-size scaling form assumed in [4],

XisT , Ld ø LrQisÙtiL
1ynd , (2)

Ùti ­ fT 2 Tcsi, LdgyTc , (3)

where Ùti is a sample-dependent reduced temperature,
correct. The sample dependence ofXi is predominantly
due to the sample dependence ofÙti.

(v) Different realizations with the sameÙti and L still
have slightly differentXi ; the scaling functionQisxd does
depend on the realizationi via some intrinsic variable not
yet understood.

(vi) It may be computationally advantageous to mea
sure various quantities, for instance, to find critical ex
ponents, at the sample-dependent pseudocritical po
Tcsi, Ld (whereÙti ­ 0), rather than atTc. This is so since,
as a consequence of item iv, the variance atTcsi, Ld is
much smaller.

We now present numerical evidence for each of th
statements made above.

The site-dilute Ising model.—Each site of a cubic
lattice is either occupied by an Ising spin or empty. Her
we report results obtained for a grand-canonical ensemb
of samples in which the occupation of each site wa
determined independently with probabilityp ­ 0.8. At
this probability Heuer found the fastest crossover to th
asymptotic (random) critical behavior [8]. We used the
Wolff [13] single cluster algorithm [14] with skewed
periodic boundary conditions [15] on lattices of size
L ­ 4, 8, 16, 32, and 64. For each of these sizes we
simulated, respectively,

nL ­ 10 000, 4000, 32 000, 4000, and1479

different random samples. High-precision measuremen
of various critical properties yieldedTc ­ 3.49921s3d,
ayn ­ 20.066s9d, byn ­ 0.505s2d, gyn ­ 1.990s4d,
1yn ­ 1.467s5d, in good agreement with [8].

Lack of self-averaging, distribution of the critical sus-
ceptibility.—Curves ofxsT d ­ sfkM2l 2 kjMjl2gdypL3T
are presented in Fig. 1 for two samples of sizeL ­ 32.

From measuringxisTcd ­ fkM2lgypL3Tc (without sub-
traction of fkM2lg) for an ensemble of samples we con
structed the histogram of Fig. 2, for various sizesL.

As evident from the histograms and from the inset, th
widths of these distributions approach a constant for in
creasingL. This is the result of AH, whereas our scal-
ing theory [4] would predictRx , Layn. The source of
the discrepancy is an assumption we made regarding t
distribution of the pseudocritical temperatures; had we a
sumed that (1) holds, our scaling ansatz would have al
23
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FIG. 2. Distribution of the critical susceptibilities, measured
at Tc for different samples and different sizesL ­ 16 (thin
dotted line),L ­ 32 (thick dashed line), andL ­ 64 (thin solid
line). For eachL the values ofxisTc, Ld were normalized by
the ensemble average of all samples of that size. The in
shows the second moment of the distribution as a function
L; evidentlyRx ! C.

produced the correct resultRx , const. Therefore confir-
mation of this result may serve as an indication of the v
lidity of (1) as well. Nevertheless, since this interpretatio
depends on the validity of further assumptions implicit i
our scaling theory, it is important to verify independently
and directly scaling and (1).

Universality.—We studied two more random ensem
bles: another grand-canonical one, but with occupatio
probability p ­ 0.6, and a canonical one with a fixed
number of0.6Ld spins, randomly placed in each sample
We found that the limiting values of bothRx and Rm

are the same for the two grand-canonical ensembles (w
p ­ 0.8, 0.6), indicating universality, but for the canoni-
cal ensemble different values were obtained. These resu
will be presented and explained elsewhere [9].

Distribution of the pseudocritical temperatures.—We
estimated, using the histogram reweighting method [16
the pseudocritical temperatureTcsi, Ld of every sample
of our ensembles. This was done in an iterative way; th
first guess forTcsi, Ld wasTc —from data collected at this
point we calculated the susceptibility as a function ofT ;
the temperature at which it had its maximum was our ne
estimate forTcsi, Ld, where more data were collected
and so on. The procedure converged in less than t
iterations within the resolution imposed by the statistica
error in determining the temperature of the maximalx.
The resulting histograms for several sizes are collaps
on Fig. 3 using the value ofyt ­

1
n ­ 1.467s5d which

was determined independently [10] by simulations atTc.
The means and widths of these distributions are

TcsLd ø Tc 2 0.532 ? L21yn ,

dTcsLd ø 2.13 ? L21yn .
(4)
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FIG. 3. Distribution of scaled pseudocritical temperature
obtained for sizesL ­ 16 (thin dotted line),L ­ 32 (thick
dashed line), andL ­ 64 (thin solid line), usingyt ­ 1yn ­
1.467 andTc ­ 3.4992.

The width of the distribution exceeds by a factor of nearl
4 the shift of its average fromTc. Hence, the large
fluctuations inxsTcd are due to the large value ofdTcsLd;
when we perform measurements at the fixed temperatu
Tc, some samples we deal with will be considerabl
above their pseudocritical temperature and some belo
(see Fig. 1). We have also made straightforward fits
the variancedTcsLd2 to the form dTcsLd2 , L22r, and
fits of the shift ofTcsLd to TcsLd 2 Tc , l2l; we found
r ­ 1.449s8d and l ­ 1.42s4d. r is within errors of
the shift exponentl (its error bar is small); we believe
that we can concluder fi dy2 ­ 1.5. Since one expects
that l ­ yt and we have also determined independent
yt ­ 1.467s5d, our results strongly suggest that all o
these exponents are actually the samer ­ l ­ 1yn.

Testing the scaling ansatz.—ReplacingQi by Q in
Eq. (2) constitutes an assumption that the dependence
the realization of the randomness can be absorbed in
pseudocritical temperature of the particular sample. O
first task was to check the extent to which this holds, i.e
to what extent can one collapse data obtained at differe
sizes and temperatures for different samples. Figure
presents the magnetization for two system sizes. The d
collapse well onto two branches of a function, one belo
and one aboveTcsi, Ld, lending support to the validity
of the scaling ansatz. We succeeded in fitting thousan
of data points at three different sizes to two scalin
functions (corresponding to the two branches). This ma
be interpreted as supporting astrong scaling hypothesis,
e.g., that for largeL,

XisT , Ld ø LrQ̃sÙtiL
1ynd . (5)

Here we modified (2) by dropping the sample dependen
of the scaling function, i.e., assuming that theentire
sample dependence can be absorbed inÙti. On the other
hand, as evident from Fig. 4, the data points do exhib
considerable scatter about the main trend. To investiga
the extent of violation of such a strong scaling relation
we studied the distribution of the susceptibility maxima.

Sample dependence of the scaling function.—If, in-
stead of xisTc, Ld, we measure for each sample an



VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998

2,

n-

he
,

r,

.

.

)

0.001 0.010 0.100 1.000
L 

yt |Tc(i,L)-Tc|/Tc

1 L=64
L=16
L=16
L=32
L=64 

miL
(β/ν)

FIG. 4. Scatter plot of the scaled modulus of the magnetiz
tion, measured atTc for ensembles of samples of two different
sizes, plotted (on log-log scale) versus the scaled temperatu
Ùti ­ hTc 2 Tcsi, LdjyTc. The lines are the scaling functions
fitted separately for three different sizes, showing remarkab
agreement. The scatter of the points from the lines is du
partially to measurement error (thermal) and partly to genuin
sample dependence of the scaling function.

size the maximal value of the susceptibilityx
max
i ­

xfTcsi, Ld, Lg, we accumulate all of our data at the sam
value of the scaling variableÙtiL1yn ­ 0. Hence, if for
largeL the scaling function goes to a sample-independe
form, the distribution ofxmax

i should approach ad func-
tion. This distribution is presented in Fig. 5: Even thoug
it is much narrower (by a factor ofø70) than the distribu-
tion of Fig. 2, as the inset shows, its width alsogoes to a
constant. Hence, a strong scaling hypothesis such as (
can be viewed only as an approximation.

Consequences for efficient simulations.—In order to
acquire data for large systems with high precision (say
estimate exponents from finite-size scaling analysis), th
commonly accepted procedure is to perform, for all size
simulations at one temperatureTc. The error inherent
in doing this, due to sample-to-sample fluctuations,
much larger than that of taking measurements atTcsi, Ld.
The latter procedure involves a different computationa
overhead, that of determiningTcsi, Ld. Clearly, this may
be advantageous if the width of the quantities measur
at the pseudocritical temperature of each sample is mu
smaller than that of the data taken atTc.
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FIG. 5. Distribution of the normalized maximal susceptibili-
ties for samples of sizesL ­ 16 (thin dotted line) andL ­ 32
(thick dashed line). The horizontal scale is the same as Fig.
to emphasize how small the width of this distribution is, which
also goes to a constant (see inset).
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