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We consider transitions in quantum networks analogous to those in the two-dimensional Ising model.
We show that for a certain network configuration of active components the transition is between the
guantum and the classical behavior of the network, and the critical amplification coincides with the
fundamental quantum optical cloning limit. [S0031-9007(98)07112-9]

PACS numbers: 03.65.—w, 03.67.—a, 05.50.+q, 42.50.—p

Precise control over single quantum systems is ess related to quantum and classical, for passive systems
sential in testing and harnessing of quantum mechano diabatic and adiabatic behavior of the network. The
ics. This has become possible with the advances in laséransition phenomenon is clearly reflected in observable
cooling and trapping techniques and manipulation of opguantities and shows a relation to symmetry which can
tical elements in the one-photon level. The availability ofbe of general significance for quantum networks.
single quantum systems has fed the interesgjuantum The Ising model describes a set of two-state systems
networks: A quantum computer [1] is a network of indi- which interact with their nearest neighbors; a quantum
vidual quantum systems, where any two of the nodes caanalogy of such a setup can be experimentally realized
interact with each other. Most quantum private commu-in various ways, as will be explained below. Figure 1
nication schemes [2] are networks of two or three nodesshows schematically a 2D quantum network with nearest
In addition to these information processing and commu-
nication related applications, networks of optical com-
ponents [3] and avoided crossings in multilevel systems 72—

[4,5] have been considered in order to study higher di-
mensional quantum interference effects.

According to statistical physics, a set of probabilisti-
cally behaving individual systems can exhibit critical be-
havior when connected. In this paper we consider the
question whether transition phenomena exist in networks
of systems which behave probabilisticalipt because of
finite temperature but due to their quantum natutr@nsi-

[ ] [ ]
tions are known to exist in Ising quantum chain models.
We define a model of a quantum network which carries
in its structure a formal analogy to the two-dimensional - E] E]

Ising model. Such networks can be experimentally re-

; ; : _ ; ~&I1G. 1. A quantum network where the nodes are connected
alized by various active (energy-consuming) or passive S L rest neighbor. The boxéa] and denote

(gnergy—preserving) components. It is folund that ransiye ransformations performed at the nodes; when they are
tions do take place and we are able to give them a cleafefined by Eq. (1) the network has a relation to the Ising
physical interpretation. For active systems the transitiormodel.

0031-900798/81(11)/2185(5)$15.00 © 1998 The American Physical Society 2185



VOLUME 81, NUMBER 11 PHYSICAL REVIEW LETTERS 14 B,TEMBER 1998

neighbor interactions. To define the building blocks of The partition functionQ(T) can be expressed in a
this network we now take a closer look at the Ising modelsimple form by defining 2" X 2V matrix 2 whose ma-
The two-state systems in the Ising model, let us sayrix elements are the thermal weight factors correspond-
spins, are on a 2D lattice of the siaeé X M. Since only ing to a particular spin configuration of two neighboring
nearest neighbor interactions are taken into account, theolumns(u|P|u/) = e ALEW-#TEW]  With this nota-
total energy of the system can be expressed using thgon Q(T) = Tr P¥ = iN=|(/\a)M- The eigenvalues,,
energyE(u) of one column (with the spin configuration thus determine the thermodynamics of the system. As
w) and the energyE(u, u') between two columns. Let was shown by Onsager and Kaufmann [6], e x 2V
sy = =1 denote the values of individual spins ard matrix P is a spinor representation of a set of plane ro-
be the absolute value of the energy of a spin-spinations in2N X 2N dimensional space. The eigenvalues

interaction. Then the energies can be writterZég) =  of P are uniquely determined by the eigenvalues of the
N N N ! . . . .
—€D p—y Sksk+1 and E(u, u') = —€ D S5 corresponding plane rotation matix which is
|
0 00 -.. 10 B» 00 --- By |
00 --- 0
p=|00 0
00 :
L AL Bl2 BH |
| coshd isinh@ | cosh¢ isinh¢
o [—isinhe coshé } o [—isinhcﬁ coshg } ()

cothd® = coshg, ¢ = 2€/kT .

The form of the matrixP suggests immediately E|3. described by a network of the type in Fig. 1: the avoided
quantum-network analog. The matricésand B can be crossings between the levels are identified with the
interpreted to describe the evolution of a two-state owperationsA andB. Corresponding physical systems are,
two-mode system. The matriR is then the evolution for instance, Rydberg atoms [9] and longitudinal electro-
operator over a period in the network of Fig. 1. Themagnetic modes in a cavity [4]. One can also consider the
inputs of the network are mixed pairwise accordingmatrix P as a set of operations in the computational space
to the transformationB, and then the pairs are let to of a quantum computer [10]. For simplicity, in the fol-
interact with the neighboring ones by applying the shiftedowing we call the SU(1,1) components amplifiers and the
set of operationsA. By repeating thisM times, a SU(2) components beam splitters, but we actually mean
2N X 2M-dimensional network can be constructed [7].any of the possible realizations.

Since P contains all the physical information of the Note that according to (1) — I, when the anglep —
Ising model, e.g., the phase transitions, we may expect, and B — I, when ¢ — 0 (I is the two-dimensional
analogous phenomena in the quantum network describathit matrix). That is, in both of these limits the network
by P. decomposes into sets of noninteracting modes. Thus

The physical realizations of the quantum netwdtk describes a quantum network where only nearest neighbors
can be divided into two groups. When the angle interact, and where a single parameterdetermines the
is real, A and B are SU(1,1)-type matrices describ- relative importance of the interactions, i.e., the network
ing energy-consuming (active) operations. Imagingry character of the system.
leads to SU(2) matrices, which correspond to energy- The transitions in the network are determined by
preserving (passive) manipulations of the two modes othe eigenvalues of. The only problem in diagonal-
two states. Parametric amplifiers, four-wave mixers, andzing P is the relative shift between the sets ofA
phase-conjugating mirrors are SU(1,1) devices which caand B. This can be solved by the discrete Fourier
operate also in the quantum regime [8]: they could bdransform(Fy), = expli2mkl/N)//N = " /JN, be-
used to build a network of active (quantum) optical com-cause the Fourier transform of the shift matfsy ), =
ponents. The corresponding passive networks could b&.;; + 6 n—16;0 IS diagonaI:F;r,SNFN = D,, where
realized, for example, with beam splitters or fiber cou-(D, )y = w*8y. The whole network matri thus de-
plers. Also a network of intersecting energy levels can be&eomposes into
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0, both Gg < 2 and Gg > 2 (for the cloning limitG < 2
. 1 one input is assumed to be the vacuum). In the next step
P=(Fyeh) 0 B (Fy ® B), (2) the transformst mix amplitudes witha phase difference;
Ky_1 this means that a squeezed quadrature may become mixed
. B with a nonsqueezed one. In this case the output can stay
where (K,)i = (Ku)» = C(0)C(¢) + §(0)S(¢)o™",  nonclassical only fos, < 2. ThusG, separates regions
(K2 = (Kn)ay = —C($)S(0) + C(0)S(¢)w™", and  where the quantum-classical character of the network is or
C = cosh andS = isinh. Most textbooks present the js not sensitive to the phases of the input. The sensitivity
solution of the Ising model in a slightly different form, tg the input phases can also be investigated by considering
but we have formulated the problem as in (2) in orderhow K, depends ono” below and aboves.. Note that
to make a connection to interferometers. The usuajhe choice of the type of the input influences the interpre-
Mach-Zehnder interferometer affects the input states byation since it has to be understood as a part of the system
a unitary transformatiort/y;-z which can be formally  configuration. Here it should be also reminded that the
written as transition can be understood as a quantum effect and not
Ky O " due to a finite temperature. Namely, the quantum theory
Uu-z = (F2 ® Il)[ 0 K, }(FZ ® 1), ) of amplification implies loss of quantum information, that
: . . is, the SU(1,1) formulation utilized here, even for a zero-
where K, = eXF’(”ﬁ") is determined by a chosen phasetemperature reservoir because of the presence of quantum

¢. Thus the Ising-type network we consider acts like an,,.,,m fluctuations in the amplification process [8,12].
N-dimensional interferometer where, instead of one-mode Let us now consider the passive SU(2) networks [13].

phase shifts, two-mode rotations are performed in betweeﬁahe analogy to the Ising model is then not one to one.

the N-dimensional mixers’y andF\ [11]. For example, (1) is true only for one trivial choice for
From K,, one obtains the eigenvalues”, wherey,  the, now imaginary, angles. We can, however, define
are determined via a network which has the same basic properties as the ac-
coshy, = coshd cosh¢ — cog27n/N)sinhd sinh¢ tive ones: nodes connected by nearest neighbor interac-
tions, with one parametef quantifying the importance of
= coth¢ coshg — cos2mn/N). (4)  these interactions. Let us, for example, fix= i /4 and
An explicit expression foly,, is given via the integral rep- denote¢’ = —i¢. In the limits¢’ — 0 and¢’ — 7/2
resentation [6] y, = [; dv/mlog[2(cothe cosh¢ —  the network decomposes into sets of independent modes,

cog2mn/N) — cosv)]. As can be seen from above, the while intermediate values ap’ describe a network of in-
zeroth eigenvalues(= 0) is not a smooth functionap:at  teracting modes. The zeroth eigenvalue of the makrix
yo = 0, i.e., when coskp = /2, its derivative‘;—f/j’ has a is defined by the equation cgs = J5(cos¢’ + sing’).
discontinuity. In the Ising model this gives the transition|t reaches the value zero fa. = 7 /4, and its deriva-
temperatur&?,. = 2.269¢. We are now at the pointto in- tive with respect tap’ has a singularity at this point. The
terpret what this mathematical behavior means physicallyransition thus takes place at the point when all the beam
in the case of quantum networks. We will first consi- splitters are half transmitting. Names for the two regimes
der active SU(1,1) networks, then the passive SU(2) oneseparated by can be given by considering a network of
For the active SU(1,1) networks the amplificatiénof  avoided crossings. Imagine that in Fig. 1 the individual
the single components and B is cosi # and cosh¢, elements are actually avoided crossings between intersect-
respectively. The critical amplificatioi. = cosit . =  ing energy levels. At each crossing the system can either
cosht ¢. = 2 has an interesting physical interpretation.follow the energy level adiabatically, or make a Landau-
It has been shown [12] that for parametric amplifiersZener transition to the neighboring level, that is, to show
G =2 sets a borderline between quantum and classidiabatic behavior. Indicating which of these processes is
cal performance of the device. Fét = 2 an initially = more likely, we call the regimeb’ < /4 diabatic and
squeezed input loses the squeezing, i.e., its nonclass$’ > 7 /4 adiabatic. Thus we have shown that the sys-
cal properties in the process of amplification. This istem does not evolve smoothly from the adiabatic to the
sometimes called the “magic cloning limit”; if it did diabatic regime and vice versa but exhibits at the critical
not exist, one could reproduce quantum states, whickransmittance, = %atransition which is associated with
would simply violate quantum mechanics. Meaning ofsingularities in the global parameters of the network.
the regimes below and abo¢g can be discussed by con-  We have now identified the regimes of behavior sepa-
sidering an input where signals at each input port haveated by the transition, both for the SU(1,1) and SU(2)
the same amplitude but different phases at every secondetworks. The essential feature is the appearance of
e.g.[1,1, 0" ", 0*", w*..]//2N. If the input sig- singularities at the transition point. In a normal situation
nals carry nonclassical features such as squeezing, théme tuning of local parameters, that is, the parameters of the
both inputs of each componer# are fed with squeezed network nodes such as beam splitters or amplifiers, leads to
light; therefore the output oB can remain squeezed for a smooth change in the global properties of the network.
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At the transition point this is not true. To demonstratethe adiabatic and diabatic limits [5], but not for the case of
the observability of this phenomenon we now consider thé0:50 crossings which according to our results is the tran-
response of the network in the case of two generic types dition point between these regimes.
input states: the equal superposition of all modes, and the In summary, we have taken a novel point of view to
eigenstate of one mode. the networks used in quantum computation, communica-
The output of the network is given by the transfor-tion, and interference experiments: we have shown that
mation PY. The Mth powers ofK, in Eq. (2) can be they can exhibit transition phenomena. Although the in-
obtained using the diagonalized form &f,: (K¥),;; =  dividual quantum components at the network nodes are
coshMy, + isin2mn/N)sinhMy,/sinhy, = (KM)5,  smoothly behaving, in certain network configurations—
and (KM),; = (K,)21 sinhMy,/sinhy, = (KM)i,. An like the 2D Ising model analog considered here—they
input in an equal superposition state with a phase periodshow nonsmooth global behavior. For networks based on
icity determined byn, that is,[1,0, w",0, w?",...]/~/N,  active SU(1,1) components the transition is particularly
will be transformed into the output state interesting since the critical amplificatiod, = 2 coin-
LMY 1, (KM)ap, 0™ (KM) 1, 0" (KM, .. ]/+/N. By cides with the “magic cloning limit.” We have shown
choosingn one can thus control constructive and de-that for certain inputs the network has two regimes of
structive interference in the network,(;1 > v,). The quantum-classical behavior: below the transition point
choicen = 0 is a special one: aG. yo =0 and the G. =2 the network is sensitive to the phase informa-
whole network becomes transparent. The transparengjon in the input, above not. In the case of passive
remains true independent @f; one may consider this SU(2) networks the critical transmittange= 5 separates
to be analogous to the appearance of long range correlgegions of adiabatic and diabatic behavior. One impor-
tions at7,. in the Ising model. Furthermore, for = 0  tant point strikes out from the discussion of observ-
the transition is clearly manifested in the measurableable quantities: the manifestations of the transition are at
output intensities. The global amplification coefficienttheir strongest when the input is totally symmetric (e.g.,
is then simplyMy,, and its rate of change with respect[1,0,1,0,...]/</N). In this case the combined network—
to the local amplification coefficient, M%’, has a input configuration is totally symmetric &i., and below
discontinuity atG.. For an input in the eigenstate of the and aboveG. the roles of the transform$ and B are in-
(2n + 1)th mode, i.e.[0,0,...,1,...,0], the(2n + 1)th  terchanged. Discontinuities &t. are therefore associated
output amplitude has the forng; Zﬁ;(‘) coshMy,, +  Wwith breaking of a symmetry. Thus the analysis presented
i sin(2wm/N)sinhMy,,/ sinhy,,. Since this sum con- in this Letter offers a working hypothesis for the study
tains ally,,, the singularity is smoothed. By choosing the of more general quantum networks: a quantum network
type of the input one can thus modify the manifestationgnight show transition phenomena whenever some values
of the transition in the output. Similar considerations carof its functioning and input parameters lead to creation of
be carried out to find the fingerprints of the transition ina certain degree of symmetry in the system.
the case of SU(2) networks. We thank Professor B. Kaufmann, Professor P. Zoller,
Note that due to the nonsmoothnessygf operations Professor W.P. Schleich, Dr. 1. Marzoli, and Dr. D.
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