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We show how a synchronized pair of integrate-and-fire neural oscillators with noninstantan
synaptic interactions can destabilize in the strong coupling regime resulting in non-phase-lo
behavior. In the case of symmetric inhibitory coupling, desynchronization produces an inhomogen
state in which one of the oscillators becomes inactive (oscillator death). On the other hand
asymmetric excitatoryyinhibitory coupling, mode locking can occur leading to periodic bursting pattern
The consequences for large globally coupled networks is discussed. [S0031-9007(98)07030-6]
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Recent studies of networks of neural oscillators ha
identified a number of important factors contributing t
the synchronizing properties of synaptic interactions [1
7]. These include the time course of excitatory an
inhibitory synapses and the type of neural response
small depolarizations. For example, it is found that slo
excitatory synapses tend to be desynchronizing but c
be synchronizing if the synapses are sufficiently fast [7
On the other hand, noninstantaneous inhibitory synap
tend to be synchronizing [4–6]. Most work on th
synchronization of coupled neural oscillators has be
carried out in the weak coupling regime where phas
reduction methods can be applied [1,8]. However, in t
case ofintegrate-and-fire(IF) and related spiking models
it is possible to extend the analysis to the strong coupli
regime [3,6,9–11]. So far most of the results obtain
from the latter models have been consistent with the ba
principles extracted from the weak coupling theory.

In this Letter we show that synaptic interactions foun
to be synchronizing in the weak coupling regime can ac
ally become desynchronizing when the strength of intera
tions becomes large. We proceed by studying a pair of
(type I) neural oscillators with noninstantaneous synap
interactions. These are chosen such that the pair is s
chronized for sufficiently small coupling. Linear stability
analysis is carried out by considering perturbations of t
oscillator firing times. We show that a discrete Hopf b
furcation in the firing times can occur at a critical valu
of the coupling leading to the formation of a non-phas
locked state. In the case of symmetric inhibitory couplin
this results in one of the oscillators becoming quiesce
(oscillator death). On the other hand, in the presence
a mixture of excitation and inhibition, mode locking i
found to occur with the two oscillators exhibiting periodi
bursting patterns. We interpret these results in terms
an analog version of the IF model.

We begin by considering two coupled IF oscillator
whose state variablesUistd, i ­ 1, 2, evolve according to
the pair of equations
0031-9007y98y81(10)y2168(4)$15.00
ve
o
–
d
to

w
an
].

ses
e
en
e-
he

ng
ed
sic

d
tu-
c-
IF
tic
yn-

he
i-
e
e-
g
nt
of

s
c
of

s

dUistd
dt

­ Ii 2 Uistd 1 e
X

j­1,2

Wij

Z `

0
Ejst 2 td

3 Jstd dt (1)

with Uist1d ­ 0 wheneverUistd ­ 1. We allow for both
mutual and self interactions as specified by the weigh
matrix W; the overall strength of the interactions is
determined by the parametere, e . 0. Theith oscillator
has an external inputIi with Ii . 1 so that in the absence
of any coupling,e ­ 0, each oscillator fires at a rate
1yTi with Ti ­ lnfIiysIi 2 1dg. Neglecting the shape
of an individual pulse, the output spike train of each
oscillator is represented as a sequence of Dirac del
functions,Eistd ­

P
n[Z dst 2 Tn

i d, whereTn
i is thenth

firing time of the oscillator; that is,UisTn
i d ­ 1 for all

integersn. We assume that each spike is converted t
a postsynaptic potential whose shape is given by th
a function Jstd ­ a2te2atQstd with large (small)a

corresponding to fast (slow) synapses, andQstd ­ 1 if
t . 0 and zero otherwise. For simplicity, we neglect the
effects of discrete axonal transmission delays.

We define a phase-locked solution of Eq. (1) to be
one for which the firing times satisfyTn

j ­ sn 2 ujdT ,
uj [ R n Z, with the collective periodT and phase
difference f ­ u2 2 u1 determined from the pair of
equations [6,11]

1 ­ s1 2 e2T dIi 1 e
X

j­1,2

WijKT suj 2 uid , (2)

where KT sfd ­ e2T
RT

0 etbJT st 1 fTd dt and bJT std ­P
n[Z Jst 1 nT d. Equation (2) can be derived by inte-

grating Eq. (1) betweenTn
i and Tn11

i . Suppose thatIi

andWij are related according to

Ii ­ I 2
beiKT s0d
1 2 e2T

, bei ­ e
X

j­1,2

Wij (3)

for someI . 1 and T ­ lnfIysI 2 1dg. Then the syn-
chronous statef ­ 0 with collective periodT exists as a
solution to Eq. (2). (Ifbei and Ii are bothi independent
© 1998 The American Physical Society
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then such a solution is ensured by the underlying sym
metry of the system). In order to investigate the linea
stability of the synchronous state, we consider pertu
bations of the firing times of the formTn

j ­ nT 1 d
n
j

[6,9,12]. Integrate Eq. (1) between two successive firin
events and expand the resulting map for the firing times
first order in the perturbationsdn

j . This generates a linear
delay-difference equation which has solutions of the for
d

n
j ­ enldj, l [ C, 0 # Im l , 2p. The eigenvalues

l satisfy the characteristic equation [12]

Det

√
W11e eGT sld 2 A1 W12e eGT sld

W21e eGT sld W22e eGT sld 2 A2

!
­ 0

(4)
with

Ai ­ sel 2 1d sI 2 1 1 beiAd 1 beiB, i ­ 1, 2 , (5)

A ­ bJT s0d 2
KT s0d

1 2 e2T
, B ­ eGT s0d ­

K 0

T s0d
T

,

(6)

eGT sld ­ e2T
Z T

0
et

X
n[Z

J 0st 1 nT de2nl dt , (7)

where 0 denotes differentiation. ForJstd given by an
a function, the functionsKT sfd, bJT sfd, and eGT sld can
be evaluated explicitly by performing a summation ove
geometric series [12]. In particular, one finds thateGT sld
has a pole atl ­ 2aT .

One solution to Eq. (4) isl ­ 0, which reflects invari-
ance under constant phase shifts. Thus the condition
linear stability of the synchronous state is Rel , 0 for
all other eigenvalues. For sufficiently small coupling, a
solutions to Eq. (4) in the complexl plane will be in ane
neighborhood of eitherl ­ 0 or the pole atl ­ 2aT .
Therefore, takingl ­ O sed and expanding Eq. (4) to
second order ine, we obtain the following stability con-
dition for the synchronous state:

eK 0

T s0d Rebn , 0 , (8)

wherebn is the nonzero eigenvalue of the modified weigh
matrix bWij ­ Wij 2 di,j

P
k­1,2 Wik . It turns out that

K 0
T s0d , 0 for 0 , a , ` and finite T so that Eq. (8)

reduces to the condition Rebn . 0.
Suppose that Eq. (8) does hold for a given weight m

trix W and that the pair of IF oscillators are synchro
nized for sufficiently smalle. The question we wish to
address is whether or not increasing the couplinge can
destabilize the synchronous state. First note that des
bilization cannot occur due to a real eigenvalue crossi
the origin. [Simply setl ­ 0 in Eq. (4).] Therefore, we
need to investigate the possibility of a pair of pure imag
nary eigenvaluesl ­ 6ivc occurring at some critical
coupling ec thus signaling the onset of a discrete Hop
bifurcation in the firing times. Having established the ex
-
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istence of such an instability, we can then look for ne
solutions beyond the bifurcation point by direct numeric
solution of the dynamical system. Beyond the bifurc
tion point we expect the sequence of interspike interva
D

n
k ­ Tn11

k 2 Tn
k , n [ Z to lie on some closed invariant

circle exhibiting periodic or quasiperiodic behavior.
We shall illustrate the above ideas by considering tw

particular choices ofW.
(i) Symmetric inhibitory coupling(W11 ­ W22 ­ 0,

W12 ­ W21 ­ 21).—For this example,bn ­ 2 so that
the inhibitory pair of oscillators has a stable synchrono
state for sufficiently smalle. In Ref. [6], a return map
argument was used to derive the stability condition (8) f
arbitrary coupling. As we shall now show, such a con
dition is necessary but not sufficient, since the oscillato
can desynchronize via a Hopf bifurcation in the stron
coupling regime. Settingl ­ ivc in Eq. (4) for the
given weight matrix and equating real and imaginary pa
leads to a pair of equations whose solutions determinevc

and the corresponding critical couplingec. The solution
branches forec are plotted as a function ofa in Fig. 1a.
Crossing the solid transition curve in Fig. 1a from be
low signals the destablization of the synchronous state d
to excitation of the linear eigenmodesd1, d2d ­ s1, 21d.
The direct numerical solution of Eq. (1) shows that the
emerges an inhomogeneous state consisting of one ac

FIG. 1. Critical couplingec for the desynchronization of a
pair of IF oscillators is plotted as a function of the invers
rise timea. External biasI ­ 1.5. (a) Symmetric inhibitory
coupling. The1:1 synchronous state becomes unstable as t
solid transition curve is crossed from below leading to oscillat
death. The dashed curve signals excitation of a2:1 mode-
locked state. (b) Asymmetric excitatory-inhibitory coupling
The 1:1 synchronous state becomes unstable when eith
transition curve is crossed from below leading to bursting.
2169
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oscillator and one passive oscillator. This is an examp
of so-called oscillator death. It is also possible to excit
a 2:1 mode-locked state by crossing the dashed transiti
curve in Fig. 1a; the two oscillators are synchronized [du
to the excitation of the linear eigenmodesd1, d2d ­ s1, 1d]
but fire doublets. Note that there exists a critical invers
rise timea0 such that for sufficiently fast synapses (a .

a0) the synchronous state remains stable for alle.
(ii) Asymmetric excitatory/inhibitory coupling(W11 ­

W22 ­ 1, W12 ­ 22, W21 ­ 1).—For this example,bn ­
3, so once again there exists a stable synchronous state
sufficiently smalle. In contrast to the previous example, a
critical coupling for a Hopf bifurcation in the firing times
exists for alla as displayed in Fig. 1b. The direct nu-
merical solution of Eq. (1) shows that beyond the Hopf b
furcation point the two oscillators exhibit periodic bursting
patterns (Fig. 2). This can be understood in terms of mo
locking associated with periodic variations of the inter
spike intervals on attracting invariant circles (Fig. 3). Sup
pose that thekth oscillator has a periodic solution of length
Mk so thatD

n1pMk

k ­ D
n
k for all integersp. If D

1
k ¿ D

n
k

for all n ­ 2, . . . , Mk, say, then the resulting spike train
exhibits bursting with the interburst interval equal toD

1
k

and the number of spikes per burst equal toMk. Two
important aspects of the spike trains displayed in Fig.
should be noted. First, although the data are taken for p
rameter values close to the bifurcation curves of Fig. 1
the frequencyv of the variations in the interspike inter-
vals differs significantly from the critical frequencyvc.
Moreover, the size of the fluctuations in the interspike in
tervals is large compared to

p
e 2 ec. This suggests that

the Hopf bifurcation is subcritical rather than supercritica
In other words, when the synchronous state destabiliz
there is a jump to a coexisting attracting invariant circl
(a hard excitation). This also implies that the observe
behavior will be robust in the presence of small amoun

FIG. 2. Spike train dynamics for a pair of IF oscillators with
both excitatory and inhibitory coupling as in Fig. 1b. The
firing times of the two oscillators are represented with line
of different heights (marked with a +). Part (a) correspond
to point A in Fig. 1b, while (b) shows an example of spike
train dynamics at point B. Smooth curves represent variation
firing rate in analog version of model (withTref ­ 0).
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of noise. Second, although both oscillators have differe
interburst intervals (D1

1 fi D
1
2) and numbers of spikes per

burst (M1 fi M2), their spike trains have the same total pe
riod, that is,

PM1
n­1 D

n
1 ­

PM2
n­1 D

n
2 .

Further insight into the above results can be obtained b
considering an analog version of the IF model in whic
the output activity of an oscillator is now represented as
short-term average firing rate rather than as a sequence
spikes. Such an analog model can be expressed in ter
of an integral equation for an effective synaptic curren
Xistd [12]:

Xistd ­ e
X

j­1,2

Wij

Z `

0
JstdfsssXjst 2 tdddd dt 1 Ii 2 I

(9)
with the firing ratefsXd determined from the IF model,

fsXd ­

∑
Tref 1 ln

µ
I 1 X

I 1 X 2 1

∂∏21

QsI 1 X 2 1d

(10)
and Tref is an absolute refractory period. (This is intro-
duced to ensure that the firing rate has an upper boun
ChoosingIi ­ I 2 beifs0d [cf. Eq. (3)], we ensure that
Xj ­ 0, j ­ 1, 2 is a fixed point of Eq. (9). Linearization
about this homogeneous state, which plays an analogo
role to the synchronous state of the IF model, leads to t
stability condition (independent ofa)q

ef 0s0d Renk , 1 , (11)

wherenk, k ­ 1, 2 are the eigenvalues ofW. It follows
that the fixed point is stable in the weak coupling regime

FIG. 3. A plot of the interspike intervalssDn21
k , D

n
k d beyond

the discrete Hopf bifurcation point (as for Fig. 2a) of the
linearized firing map shows a projection of dynamics on a
invariant circle. Points on the orbit of the full nonlinear firing
map are connected by lines. Note that each triangular regi
is associated with only one of the oscillators, highlighting th
difference in interburst intervals (see also Fig. 2a). The ins
is a blowup of orbit points for one of the oscillators within a
burst.
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Moreover, it is simple to establish that for symmetric in
hibitory coupling the fixed point undergoes a subcritica
pitchfork bifurcation at some critical valueec. Destabi-
lization leads to the formation of a state in which one ne
ron is passive (zero firing rate), which is consistent wit
the behavior found for the IF model with slow synapse
Similarly, in the case of an excitatory/inhibitory pair o
analog neurons, the fixed point destabilizes via a subcr
cal Hopf bifurcation leading to a hard excitation in which
both oscillators have time-varying firing rates. The pe
riod of fluctuations is the same for both oscillators, whic
is in good agreement with the periodicity of the burstin
patterns of the IF model particularly whena is small [see
smooth curves in Fig. 2a].

We briefly discuss some related work. First, va
Vreeswijk [10] has shown that networks of IF oscilla
tors with global excitatory coupling can destabilize from
an asynchronous state via a Hopf bifurcation in the firin
times. However, this leads to slow (vc ø 0) and small
amplitude variations in the average firing rates of the o
cillators. This can be understood by looking at a corr
sponding network of excitatory analog neurons, which ca
only bifurcate to another homogeneous time-independe
state. Second, Hanet al. [13] have demonstrated how
desynchronization can lead to bursting firing patterns
a simplified Hodgkin-Huxley system. The mechanism fo
dephasing in their study is weak diffusive coupling rathe
than strong synaptic coupling with delays as consider
here. Interestingly, in both cases bursting arises witho
the need for additional slow ionic currents.

In conclusion, we have shown how a pair of IF os
cillators can desynchronize in the strong coupling regim
via a discrete Hopf bifurcation in the firing times. This
generates a non-phase-locked state whose time-avera
behavior is consistent with that of a corresponding anal
model for sufficiently slow synapses. One finds that th
result generalizes to larger networks. For example, a n
work of N identical IF oscillators with all-to-all inhibitory
coupling can be handled within this framework by settin
Wii ­ 0 andWij ­ 21ysN 2 1d for j fi i in Eq. (2) and
extending the sum overj from 2 to N. Once again, the
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synchronous state is guaranteed to exist from the und
lying symmetry of the system and its stability for weak
coupling is given by Eq. (8). Moreover, the characteristi
equation governing the bifurcation structure for arbitrar
coupling is easily expressed when one considers pert
bations of the firing times in the basis of eigenvectors o
W, possessing eigenvalues1ysN 2 1d [sN 2 1d fold de-
generate] and21. Beyond the bifurcation point one finds
a state with active and passive clusters. Interestingly,
lattice of oscillators with long-range inhibition and short
range excitation desynchronizes to a state with spatia
periodic variations in activity. Indeed, a Turing-Hopf in-
stability in the firing times turns out to be a fundamenta
mechanism for pattern formation in IF networks as wi
be demonstrated elsewhere [12].
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