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Desynchronization, Mode Locking, and Bursting in Strongly Coupled
Integrate-and-Fire Oscillators
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We show how a synchronized pair of integrate-and-fire neural oscillators with noninstantaneous
synaptic interactions can destabilize in the strong coupling regime resulting in non-phase-locked
behavior. In the case of symmetric inhibitory coupling, desynchronization produces an inhomogeneous
state in which one of the oscillators becomes inactive (oscillator death). On the other hand, for
asymmetric excitatordinhibitory coupling, mode locking can occur leading to periodic bursting patterns.
The consequences for large globally coupled networks is discussed. [S0031-9007(98)07030-6]

PACS numbers: 87.10.+e, 05.45.+b

~ Recent studies of networks of neural oscillators have aui() _ I — Ut) + € Z Wi [ij(, - 7)
identified a number of important factors contributing to dt =y 0
the synchronizing properties of synaptic interactions [1— x J(r)dr (1)

7]. These include the time course of excitatory and
inhibitory synapses and the type of neural response t¥ith Ui(t") = 0 whenevew;(r) = 1. We allow for both
small depolarizations. For example, it is found that slowmutual and self interactions as specified by the weight
excitatory synapses tend to be desynchronizing but caffatrix W; the overall strength of the interactions is
be synchronizing if the synapses are sufficiently fast [7]determined by the parametey e > 0. Theith oscillator
On the other hand, noninstantaneous inhibitory synapséS an external input with /; > 1 so that in the absence
tend to be synchronizing [4—6]. Most work on the of any.coupllng,e = 0, each oscillator 'f|res at a rate
synchronization of coupled neural oscillators has beed/7:i With T; = In[f;/(1; — 1)]. Neglecting the shape
carried out in the weak coupling regime where phase®f @n individual pulse, the output spike train of each
reduction methods can be applied [1,8]. However, in thé)scnl_ator is represented as an sequencen (_)f Dirac delta
case ofintegrate-and-firgI F) and related spiking models functions,£;(t) = 3,e7 6(t — T}'), whereT7 is thenth
it is possible to extend the analysis to the strong couplindiing time of the oscillator; that is{/;(77') = 1 for all
regime [3,6,9—11]. So far most of the results obtainedntégersn. We assume that each spike is converted to
from the latter models have been consistent with the basi@ POStSynaptic poteznna_l whose shape is given by the
principles extracted from the weak coupling theory. a function J(r) = a*re”*7O(7) with large (small)a
In this Letter we show that synaptic interactions foundcorresponding to fast (slow) synapses, @) = 1 if
to be synchronizing in the weak coupling regime can actu? > 0 and zero otherwise. For simplicity, we neglect the
ally become desynchronizing when the strength of interaceffects of discrete axonal transmission delays.
tions becomes large. We proceed by studying a pair of IF We define a phase-locked SO“_Jt'OQ of Eq. (1) to be
(type 1) neural oscillators with noninstantaneous synapti@n€ for which the firing times satisfy;’ = (n — 6,)T,
interactions. These are chosen such that the pair is syfi € R \ Z, with the collective period7 and phase
chronized for sufficiently small coupling. Linear stability difference ¢ = 6, — 6, determined from the pair of
analysis is carried out by considering perturbations of th&guations [6,11]
oscilla}tor _firing tim_es. We show that a discre_tg Hopf bi- 1= —e NI + e Z Wi Kr(0; — 0,). (2)
furcation in the firing times can occur at a critical value eyt
of the coupling leading to the formation of a non-phase- T A ~ B
locked state. In the case of symmetric inhibitory couplingVhere Kr(¢) = e Jo e'Jr(t + $T)dr and Jr(r) =
this results in one of the oscillators becoming quiescend-nez /(¢ + nT). Equatlcin @) can be derived by inte-
(oscillator death). On the other hand, in the presence d¥rating Eq. (1) betweerd;’ and 7" ". Suppose that;
a mixture of excitation and inhibition, mode locking is @ndWi; are related according to
found to occur with the two oscillators exhibiting periodic € K7(0) ~
bursting patterns. We interpret these results in terms of 1= o T° € — € Z Wij 3)
an analog version of the |F model. j=12
We begin by considering two coupled IF oscillatorsfor somel > 1 andT = In[1/(I — 1)]. Then the syn-
whose state variablds;(¢), i = 1,2, evolve according to chronous statep = 0 with collective periodl” exists as a
the pair of equations solution to Eq. (2). (Ife; andI; are bothi independent

I,'=7—
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then such a solution is ensured by the underlying symistence of such an instability, we can then look for new
metry of the system). In order to investigate the linearsolutions beyond the bifurcation point by direct numerical
stability of the synchronous state, we consider pertursolution of the dynamical system. Beyond the bifurca-
bations of the firing times of the forrd} = nT + 87  tion point we expect the sequence of interspike intervals
[6,9,12]. Integrate Eq. (1) between two successive firingA\? = 77*! — T, n € Z to lie on some closed invariant
events and expand the resulting map for the firing times teircle exhibiting periodic or quasiperiodic behavior.
first order in the perturbation$;. This generates a linear ~ We shall illustrate the above ideas by considering two
delay-difference equation which has solutions of the fornparticular choices oW.
87 = e"8;, A€C,0=Ima <27 The eigenvalues (i) Symmetric inhibitory coupling(W;; = Wy, = 0,
A satisfy the characteristic equation [12] Wi, = Wy = —1).—For this exampley = 2 so that
~ ~ the inhibitory pair of oscillators has a stable synchronous
De< WieGT(A) — A Wi2eG7(2) ) state for sufficiently smalk. In Ref. [6], a return map
W21€G7(A) WxneGr(A) — Az argument was used to derive the stability condition (8) for
arbitrary coupling. As we shall now show, such a con-
, dition is necessary but not sufficient, since the oscillators
with can desynchronize via a Hopf bifurcation in the strong
A= —1)T -1+ €A +€6B, i=12, (5) coupling regime. Setting\ = iw. in Eq. (4) for the
/ given weight matrix and equating real and imaginary parts
A= /J\T(O) _ K?(O)_ , B — 57(0) _ KT_(O) ’ leads to a pair of equations whose solutions deterraine
1—eT T and the corresponding critical couplirg. The solution
branches for,. are plotted as a function af in Fig. 1a.

. (6) Crossing the solid transition curve in Fig. 1la from be-
~ _ _ low signals the destablization of the synchronous state due
— T t ! naA
Gr(d) = e fo ¢ Z J(t + nT)e " dt, (7) to excitation of the linear eigenmodé,, 8,) = (1, —1).

ner The direct numerical solution of Eq. (1) shows that there

where " denotes differentiation. Far(r) given by an  emerges an inhomogeneous state consisting of one active
a function, the functionXr(¢), J7(¢), andGr(A) can

be evaluated explicitly by performing a summation over
geometric series [12]. In particular, one finds thgt(A) 30
has a pole ah = —aT.

One solution to Eq. (4) ia = 0, which reflects invari-
ance under constant phase shifts. Thus the condition for
linear stability of the synchronous state is Re< 0 for
all other eigenvalues. For sufficiently small coupling, all 10 ¢
solutions to Eq. (4) in the complexplane will be in ane
neighborhood of eitheaA = 0 or the pole atA = —aT.

Therefore, takingA = O(e) and expanding Eq. (4) to 0 0 0.5 1 1.5 2
second order ire, we obtain the following stability con- o %
dition for the synchronous state: 8 ®
ekK-(0)Re? < 0, (8) 6l
Where'ﬁ,js the nonzero eigenvalue of the modified weight €
matrix W;; = W;; — 8;;2x—12 Wi. It turns out that 4t _ .
K}(0) < 0 for 0 < @ < o and finiteT so that Eq. (8) bursting bursting
reduces to the condition Re > 0. 2t
Suppose that Eg. (8) does hold for a given weight ma- synchrony
trix W and that the pair of IF oscillators are synchro- 0 : : : ‘ :
nized for sufficiently small. The question we wish to 0 2 (v 4 6

addres_s' is whether or not increasing _the coupkngan FIG. 1. Ciritical couplinge. for the desynchronization of a
destabilize the synchronous state. First note that destaair of IF oscillators is plotted as a function of the inverse

bilization cannot occur due to a real eigenvalue crossingise timea. External biag = 1.5. (a) Symmetric inhibitory
the origin. [Simply setx = 0in Eq. (4).] Therefore, we coupling. Thel:1 synchronous state becomes unstable as the

need to investigate the possibility of a pair of pure imagi_solid transition curve is crossed from below leading to oscillator

: lues\ = +i . t itical death. The dashed curve signals excitation of:h mode-
nary eigenvaluest = =iw. OCCUITng at some critical 5ereq state. (b) Asymmetric excitatory-inhibitory coupling.

coupling €. thus signaling the onset of a discrete HopfThe 1:1 synchronous state becomes unstable ‘when either
bifurcation in the firing times. Having established the ex-transition curve is crossed from below leading to bursting.
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oscillator and one passive oscillator. This is an exampl®f noise. Second, although both oscillators have different
of so-called oscillator death. It is also possible to exciteinterburst intervals| # A}) and numbers of spikes per

a 2:1 mode-locked state by crossing the dashed transitioburst (4, # M), their spike trains have the same total pe-
curve in Fig. 1a; the two oscillators are synchronized [dugiod, that is,> ", A7 = S AZ.

to the excitation of the linear eigenmo@®, §,) = (1, 1)] Further insight into the above results can be obtained by
but fire doublets. Note that there exists a critical inversetonsidering an analog version of the IF model in which

rise timea, such that for sufficiently fast synapses &  the output activity of an oscillator is now represented as a

@) the synchronous state remains stable foeall short-term average firing rate rather than as a sequence of
(i) Asymmetric excitatory/inhibitory coupling¥,; =  spikes. Such an analog model can be expressed in terms
Wy =1, Wi, = =2, Wy = 1).—For thisexampley =  of an integral equation for an effective synaptic current

3, so once again there exists a stable synchronous state fgy(r) [12]:
sufficiently smalle. In contrast to the previous example, a .
critical coupling for a Hopf bifurcation in the firing times X;(1) = € Z W, f JOfXi(t — 7)) dr + I — T
exists for alla as displayed in Fig. 1b. The direct nu- frp) ! !

merical solution of Eq. (1) shows that beyond the Hopf bi- )
furcation point the two oscillators exhibit periodic bursting

patterns (Fig. 2). This can be understood in terms of mod¥/th the firing ratef (X) determined from the IF model,
locking associated with periodic variations of the inter- 7T+ X -1

spike intervals on attracting invariant circles (Fig. 3). Sup- f(X) = [ ref + In<ﬁ>} 0 +Xx —-1)

pose that thé&th oscillator has a periodic solution of length

M, so thatA; "™ = A7 for all integersp. If AL > A} (10)

for all n = 2,..., M, say, then the resulting spike train and T,.s is an absolute refractory period. (This is intro-
exhibits burstmg with the interburst interval equaIAd@ duced to ensure that the firing rate has an upper bound.)
and the number of spikes per burst equalMp. Two  Choosingl; = I — €;£(0) [cf. Eq. (3)], we ensure that
important aspects of the spike trains displayed in Fig. 2; = 0, j = 1,2 is a fixed point of Eq. (9). Linearization
should be noted. First, although the data are taken for pabout this homogeneous state, which plays an analogous
rameter values close to the bifurcation curves of Fig. 1brole to the synchronous state of the IF model, leads to the
the frequencyw of the variations in the interspike inter- stability condition (independent af)

vals differs significantly from the critical frequenay.. f

Moreover, the size of the fluctuations in the interspike in- ef'(ORev, <1, (11)
tervals is large compared tge — €.. This suggests that wherev;, k = 1,2 are the eigenvalues &V. It follows

the Hopf bifurcation is subcritical rather than supercritical.that the fixed point is stable in the weak coupling regime.
In other words, when the synchronous state destabilizes

there is a jump to a coexisting attracting invariant circle

(a hard excitation). This also implies that the observed 25 ' ‘
behavior will be robust in the presence of small amounts 05
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FIG. 3. A plot of the interspike intervalgA; ', A}) beyond

the discrete Hopf bifurcation point (as for Flg. 2a) of the
FIG. 2. Spike train dynamics for a pair of IF oscillators with linearized firing map shows a projection of dynamics on an
both excitatory and inhibitory coupling as in Fig. 1b. The invariant circle. Points on the orbit of the full nonlinear firing
firing times of the two oscillators are represented with linesmap are connected by lines. Note that each triangular region
of different heights (marked with a +). Part (a) correspondsis associated with only one of the oscillators, highlighting the
to point A in Fig. 1b, while (b) shows an example of spike difference in interburst intervals (see also Fig. 2a). The inset
train dynamics at point B. Smooth curves represent variation ofs a blowup of orbit points for one of the oscillators within a
firing rate in analog version of model (withi.s = 0). burst.
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Moreover, it is simple to establish that for symmetric in- synchronous state is guaranteed to exist from the under-
hibitory coupling the fixed point undergoes a subcriticallying symmetry of the system and its stability for weak
pitchfork bifurcation at some critical value.. Destabi- coupling is given by Eg. (8). Moreover, the characteristic
lization leads to the formation of a state in which one neu-equation governing the bifurcation structure for arbitrary
ron is passive (zero firing rate), which is consistent withcoupling is easily expressed when one considers pertur-
the behavior found for the IF model with slow synapsesbations of the firing times in the basis of eigenvectors of
Similarly, in the case of an excitatory/inhibitory pair of W, possessing eigenvaluég(N — 1) [(N — 1) fold de-
analog neurons, the fixed point destabilizes via a subcritigenerate] and-1. Beyond the bifurcation point one finds
cal Hopf bifurcation leading to a hard excitation in which a state with active and passive clusters. Interestingly, a
both oscillators have time-varying firing rates. The pe-lattice of oscillators with long-range inhibition and short-
riod of fluctuations is the same for both oscillators, whichrange excitation desynchronizes to a state with spatially
is in good agreement with the periodicity of the burstingperiodic variations in activity. Indeed, a Turing-Hopf in-
patterns of the |F model particularly whenis small [see  stability in the firing times turns out to be a fundamental
smooth curves in Fig. 2a]. mechanism for pattern formation in IF networks as will
We briefly discuss some related work. First, vanbe demonstrated elsewhere [12].
Vreeswijk [10] has shown that networks of IF oscilla- This research was supported by Grant No./&B6220
tors with global excitatory coupling can destabilize fromfrom the EPSRC (UK).
an asynchronous state via a Hopf bifurcation in the firing
times. However, this leads to slow{ = 0) and small
amplitude variations in the average firing rates of the os-
cillators. This can be understood by looking at a corre-
sponding network of excitatory analog neurons, which canl[] Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
only bifurcate to another homogeneous time-independent[ lence(Springer-Verlag, Berlin, 1984).
state. Second, Haet al.[13] have demonstrated how L2 G:B- Ermentroutand N. Kopell, SIAM J. Math. Anal5,
M S . 215 (1984).
desynchronization can lead to bursting firing patterns in

- g . . 3] R.E. Mirollo and S.H. Strogatz, SIAM J. Appl. Maths.
a simplified Hodgkin-Huxley system. The mechanism for 3] 50, 1645 (1990). g PP

dephasing in their study is weak diffusive coupling rather [4] X-J Wang and J. Rinzel, Neural Com#, 84 (1992).
than strong synaptic coupling with delays as considered[s] N. Kopell and D. Sommers, J. Math. Bi#3, 261 (1995).
here. Interestingly, in both cases bursting arises without[6] C. van Vreeswijk, L.F. Abbott, and G.B. Ermentrout,
the need for additional slow ionic currents. J. Comp. Neuroscil, 313 (1994).

In conclusion, we have shown how a pair of IF os- [7] D. Hansel, G. Mato, and C. Meunier, Neural Coni.
cillators can desynchronize in the strong coupling regime 307 (1995).
via a discrete Hopf bifurcation in the firing times. This [8] G.B. Ermentrout and N. Kopell, J. Math. Bio29, 195
generates a non-phase-locked state whose time-averaged (1991).
behavior is consistent with that of a corresponding analogl®] W- Gerstner, J.L. van Hemmen, and J. Cowan, Neural

- . - Comp.8, 1653 (1996).
model for sufficiently slow synapses. One finds that thi 10] C. van Vreeswijk, Phys. Rev. &4, 5522—5537 (1996).

result generalizes to larger networks. For example, a ne 11] P.C. Bressloff, S. Coombes, and B. De Souza, Phys. Rev.
work of N identical IF oscillators with all-to-all inhibitory Lett. 79, 2791 (1997).

coupling can be handled within this framework by setting[12] p.C. Bressloff and S. Coombes (unpublished).

Wi = 0andW;; = —1/(N — 1)forj # iinEq. (2)and [13] S.K. Han, C. Kurrer, and Y. Kuramoto, Phys. Rev. Lett.
extending the sum over from 2 to N. Once again, the 75, 3190 (1995).
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