VOLUME 81, NUMBER 10 PHYSICAL REVIEW LETTERS 7 BPTEMBER 1998

Dynamics Based Computation
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We demonstrate the ability of lattices of coupled chaotic maps to perform simple computations. This
dynamical system is shown to emulate logic gates, encode numbers, and perform specific arithmetic
operations on those numbers such as addition and multiplication. We also demonstrate the ability of
this dynamical system to perform the more specialized operation of determining the least common
multiplier of a sequence of integers. [S0031-9007(98)07021-5]

PACS numbers: 05.45.+b, 89.70.+c

A recurring theme of research into chaotic systemsn cycles of varying orders with period depending on the
has been that chaos provides “flexibility” in the perfor- value ofx.. For example [2]: Fob < x. < 0.75we geta
mance of natural systems and provides such systems wigpatiotemporal fixed-point region (where all lattice sites re-
a rich repertoire of behaviors that can be utilized for “im-lax tox., i.e.,x(i) = x. for every element after threshold
proved” performance [1]. We demonstrate the ability ofcoupling). Further, the excess is emitted at the rate of one
coupled chaotic dynamical systems to perform a variety ofinit per dynamical update. This is followed by regions of
computations. threshold parameter space where the system emits excess

Chaotic lattices—Our computer hardware is a network (and lattice configurationgx(1), x(2),...,x(N)} repeat)
of chaotic elements. It is described by discrete space in periodic sequences of higher order. For instance, for
discrete timer, and continuous state variable. The indi- 0.75 < x. < 0.905, we get cycles of order 2, f@r.905 <
vidual elements (indexed by their spatial locatipevolve  x. < 0.925 we get order 4, fox. ~ 0.93 we get order 6,
under a suitable nonlinear mgjix.(i)). We have takerf ~ and so forth. Thus from thisingle spatially distributed
to be the logistic mapf(x) = ax(1 — x),x € [0,1]with  chaotic system, we can deterministically [2] extract with a
the nonlinearity parameter chosen to make the system singleparameter (in this case the threshold value) an infi-
chaotic ¢ = 4 throughout this work). In this chaotic lat- nite variety of dynamical behavior and periods.
tice aself-regulatory threshold dynamigsincorporated to The properties that underscore the significance of hav-
provide adaptation [2]. The adaptive mechanism is triging chaotic elements in the lattice are: (a) If the same
gered when a site in the lattice exceeds the critical valu¢hreshold dynamics was imposed on a random lattice, we
Xs, I.€., when a certain site.(i) > x.. The supercritical would not recover any of the above periodicities. Forthese
element then relaxes (or avalanches) by transporting its eyperiodicities to occur we require deterministic dynamics;
cessA = (x,(i) — x.) to its neighbor(s). In particular, (b) The ergodic properties of chaotic systems guarantee
we considerunidirectional transport in one-dimensional that the system always falls into the desired periodicities
lattices of coupled logistic maps, which behave as fol-and it will not get trapped in any restricted corner of phase
lows: When a response (a relaxation) is triggered, the sigspace; and (c) chaotic elements will yield an infinite num-
nal (excess of threshold) is transferred to one neighboter of periodicities under variation of the threshold.
xG) = xe,x,(0 + 1) > x.(i +1) + A. Construction of gates—First, we will demonstrate that

The relaxation continues synchronously untilbgll) =  our dynamical system can emulatel@r logic gate. One
X«, after which the next iteration of the maps takes placecan interpret the state of an element as follows= x. is
The dynamics then induces a unidirectional nonlineastate 1 and; < x. is state 0. The response of the lattice
transport down the lattice by initiating a domino effectused to characterize the output is the excess transported
(reminiscent of the avalanches arising in self-organizedut of the edge of the lattice as a result of the relaxation.
sandpiles [3]). The boundary (hencefoetigg is open Thus one can imagine a readout at the open end of the
so that the excess is conducted out of the system. Odattice which registers the excess signal which represents
basic unit of time (henceforthdynamical updateconsists  the output (the answer of the logical operation).
of one synchronous forward iteration of the maps in the To achieve this logic operation, we operate in the
lattice followed by relaxation of all lattice sites to their x. regime where the chaotic elements emit excess as a
final (relaxed) state [alt(i) = x.]. sequence of period 2 when threshold coupled. Here a

The threshold coupling governs the dynamics of the lattwo-element unit can have two possible states (note that
tice, showing the presence of maplyasesn x. space [2]. we always consider attractor states, not transients): (1)
The excess emitted from the open boundary of the systenthe coherent state: This occurs in the rarggs0 <
as well as the lattice configurations &f threshold cou- x. < 0.905, and emits excess from the open edge in
pled element$x(1), x(2), ..., x(N)} for all finite N, evolve  the periodic sequencé — 2A; — 0 — 2A; ..., where
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A = f%(x«) — x« and (2) the out-of-phase state which tion of the threshold, over the range< x. < 0.75, going
occurs in the rang8.835 < x. < 0.905 and which emits from 0 atx. = 0 to a maximum valueE,,x = 9/16 at
excess from the open edge in the periodic sequénee x. = 3/8 and then back to 0 again at = 3/4. In our
A, — 0— A,...whered, = f(f(x:) + A1) — x.. encoding scheme the amount of excess emission (in speci-

Thus a particular realization of ®OR gate is achieved fied units) directly gives the value of the integer. We de-
as follows: We work in a parameter window aroundfine the unit of excess emission to Be— E,../N, where
x+ ~ 0.84 where the coherent and out-of-phase states ar¥ is the largest integer we wish to encode. Then an integer
coexisting attractor states anil, < A; such that the misencoded by an excess emissiom@. In order to en-
difference between the coherent and out-of-phase statesde integers 0 td/, the necessary capacity of resolution
is clearly discernible. Now the inputs of our logic gate of emitted excess must bg,../N = 8. Clearly, greater
are two elements in specified states. Their collectivgprecision in measuring the excess and threshold setting al-
response after a dynamical update is the excess signiaws larger numbers to be encoded.
ejected from the open edge of the two-element lattice Since the map is deterministic, one can determine ex-
(which here is the second lattice element, i.e., elemerdctly the threshold which yields a given excess (where ex-
two). The collective response should emulate the outputess varies from O & units) and this gives a lookup table
of aNOR gate. We obtain this input-output association asassociating the value of the threshold to the value of an
follows: If the inputs arel; = 0 and I, = 0 we select integer (see Fig. 1). Thus the same element can encode
an attractor state consisting of two elements, both wittan arbitrarily large set of humbers, under varying thresh-
x < x4. This coherent two-element lattic€),0), after  old (with the threshold levels being sent to it as part of the
dynamical update, emit2A; from the open edge. If software or programming).
the inputs arel; = 0 and I, = 1, we select the out-of- Typically stronger nonlinearities yield a larger range
phase lattice stat@®, 1), whose response, after a dynamicalof excess emission. For instance the parabolic form of
update, is to eject a total excess of 0 from the open edgé¢he logistic map, at = 4, has the highest maxima and
If the inputs arel; = 1 and I, = 0 we select the out- thus yields the largest difference between the map and the
of-phase latticd1,0) whose response, after a dynamicaleffective truncated map after adaptive response as shown
update, is to eject a total excessof ~ 0 from the open in the inset of Fig. 1. The range of excess emission
edge. Finally, ifthe inputsarg = I andl, = I weagain [0, En.x | is determined by the above-mentioned difference
choose the coherent lattice stétel) whose response after with E,., = (a — 1)?/4a for the logistic map. This range
a dynamical update is to eject a total excess of 0 from theecreases with decreasing strength of the nonlinearity
open edge. parametem.

Now if we define the output from the open edge of the To perform addition om: numbers, we set the threshold
lattice as: 1 if the ejected amountis0 and O if the ejected of m connected elements such that each encodes a term in
amount is~0, it is clear that the input-to-output associa- the sum. The excess emitted from an element drives its
tion corresponds to that ofNOR gate. Consequently, any neighboring element, with the element encoding the last
Boolean operation or circuit can be constructed by a suitterm of the sum having the open edge where we register
able coupling of this basic two-element lattiger gate.

Note that one requires sufficiently strong nonlinearities in LA S B B B L B
the local map in order to obtain the emission pattern neces- N ARG i
sary for the construction of gates. In our system of coupled 03l “EF / \ H
logistic maps, only values af > 3 can yield the required I 2 E ]
attractor states. Intriguingly, logic operations in dynami-
cal systems have been seen before, as demonstrated by
Toth and Showalter, who were able to demonstrate logic
in a spatially extended chemical dynamical system [4].

Arithmetic operations—When our lattice elements are
not being used in computations they have a default thresh-
old of x. = 1 (i.e., they are effectively decoupled). Speci- L
fication of the input of an arithmetic operation consists of % 20 40 60 80 100
providing threshold parameters < 1 for some elements. encoded number
This induces an avalanche of excess providing communizig 1. A lookup graph of encoded number vs threshold value
cation of information among these elements. The collecy,. The encoded number is given by the emitted exckss
tive excess from a specified open edge yields the answelwhich is a function ofx.) through the relation: Encoded

Encoding and addition scheme-%In the threshold number = A/3, where A = f(xs) — x and 8 = Emax/N,
range0 < x. < 0.75, a chaotic element under adaptive With /(x) = 4x(1 — x*) and the largest number encoded
threshold response emits excess after each dynamical u}g%o here). Inset: Return map of a Tgle chaotic element under

. aptive threshold response (here= 3/4). The difference
date in order to relax back te.. The amount of excess petween the solid and dotted lines is the amount of excess
emitted per dynamical update is a unimodal nonlinear funcemitted in the dynamical update.

I
Y
T
|

threshold value x4
=
=)
n
-

e
e
T
1

2157



VOLUME 81, NUMBER 10 PHYSICAL REVIEW LETTERS 7 BPTEMBER 1998

the output. After a dynamical update, an avalanche sweegseriodicityk asx*. Now in order to encode aM bit binary
across the lattice as shown in Fig. 2. This avalanche givesumber whose representationdgay— - - - axa;, we use
rise to an excess emission from the open edge which can Bé chaotic elements, each encoding a bit. If the value of the
directly associated with the result. The addition operatiorkth bit is 1 (i.e.,a; = 1) its threshold is set at?* ', such
is then achieved simply as followstnput the threshold that it emits excess periodically with periad ~*. For in-
values from the lookup table to encode the numbers to bstance, if the bit farthest from the decimal point = 1
added and then register the emitted excess from the openwill be encoded by an element whose period is 1, while
edge at the end of one dynamical updafehe dynamics if a; = 1 it will be encoded by an element whose peri-
of the lattice is such that this emitted excess is the requireddicity 2V ~!. If the value of a bit is 0, then the element
answer. representing the bit has its threshold set at 0 resulting in

Parallel operations—Finally, the operation can be zero emission.
done in parallel (synchronously/concurrently) by having a To obtain the value of the numbey - - - a;, we have
branching topology of the lattice. To add several numberso threshold couple th& elements representing the bits,
a branched lattice is employed where each branch is awith ay having the open edge to the readout. The excess
element encoding a term in the sum. Now the computatioemitted by thisV element over one period of the longest
time is not proportional to the number of terms in theperiod 2V~! (i.e., over2¥~! dynamical updates for a
sum, as in serial addition. Instead, the computation time i&/-bit number) gives the value of the number, namely
independent of the number of terms in the addition, and i$_,—, y ax2*~!. This encoding scheme exploits chaos as it
always equal to two: In one avalanche step all the brancemploys many different periods and only a chaotic element
elements relax and then in a second step the element wittan yield all of them under varying threshold. The scheme
the open edge leading to output relaxes. Consequentlgan be easily modified to encode any other base expansions
this dynamical system, consisting of a highly branching(such as decimals) as well. It should be noted that one has
lattice, can serve as a massively parallel computer, witto take care in choosing the same unit of excess emission
several inputs flowing concurrently into an element, fromfor all cycles in that the amount an element with threshold
whose open edge one collects the answer. xX emits afterk steps should be the same for &ll The

Encoding and addition scheme-2Now we describe threshold values for which a requisite set of cycles emits
an alternate encoding scheme that exploits the abilitthe same excess can be determined exactly. The number
of the dynamical system to operate at various periodef bits that can be encoded is limited by the resolution of
icites. We denote the threshold yielding excess emission &xcess emission and threshold setting.

For addition, we again threshold couple the lattice of

Elements encoding numbers: i, j, k, 1 threshold elements representing_the terms in the sum. After evo-
'__ﬂgll_’_lf_d_in_a_lin_egr_ckain _f"_fffr_ia_la_dfiiiﬁl___l lution over2V~! dynamical updates the coupled elements
! |_* : will eject from thge_open b(_)undary an amount equal to the
' | | 1 ] Oren Edge Registers result of the addition. This operation commutes and any
B P N oureuT | number of terms can be threshold coupled together (i.e.,

Dvasmibal Usdat added) _in series (Iinear Iattiqe configuration) or par_aIIeI
Y ollowed by (branching lattice configuration). The relaxation time
Adaptive Response Excess emitted (which determines the computing speed) for serial addition
f'°';'o?,'t’;ﬂt§dg"' of m N-bit numbers issm + N — 1, while for parallel
=i+]j+k+1(3 units) addition itis=N + 1. A specific example of the parallel
r“,‘s“ '5“1(_5“1_6_1' additio.n Qperation is de'zm.ons.trated in Fig. 3.
110 ) 1 Multiplication.—Multiplication can be performed (as
! i an extension of addition) by invoking the same parallel
! i kll1 : computational approach through branching. For instance,
|
i

to multiply m by n, we have a lattice with branches, each
Avalanching of emitted : : o
le;gizlécto'glgx:g‘ongn Z’i‘éifs. branch being a copy of the lattice elem_ent encodm@la.
' . encoding scheme 1 or 2). The total ejected excess will be
FIG. 2. Threshold coupled chaotic elements emulating arhe answerm X n. Alternately, we can take the lattice

adding machine: Here we are adding four numberg, , i i
and [ each encoded by an element with threshold set sucﬁlemem encoding: and collect the emitted excess over

that it emitsi, j, k,l units of excess, respectively (where the dynamlcal updates. Thg collected excess, equal to n, ..

unit of excess is8). These elements are threshold coupledYi€lds the answer. This ha? th_"l‘ advantage of requiring
in a chain, with the ejected excess from eleme@t i) only one element of the lattice in order to calculate the
driving element;, etc., onto element, from whose open product (in contrast to the former method which requires

boundary the collective excess is emitted to the output lea ; ; ;
The emitted excess is exactly the sum j + k& + [ in units elements) while costing times more than the former

of §. The computing time, equal to the duration of the adaptivemethOd _f‘ dynamical updates are _required instead Of, 1).
avalanching process, is equal to the number of terms in the su,laependlng on the resources aV&}”ab'e, one could elt_her
(which is four here). operate with many elements or with fewer elements with
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in 3 b1t Bhvar vepresentation | 7 (LLD element synchronously with different periodic impulses.
(a3 a2 al): 111+ 101+ 001 This simple but intriguing example demonstrates that dy-

s (101 namic algorithms hold the potential for computing a range
a2 a3

of specialized mathematical operations. Thus we begin to
al

Z

see the first glimpse that dynamics can perform computa-
tion not just by emulating logic gates or simple arithmetic

op,,,,‘Edge operations, but by perf_orming more sophistica_lted opgration
OUTPUT through self-organization rather than composites of simpler
Chaotic Update 1: 23 emitted operations.
Chaotic Update 2: 35 emitted . . . .
Chaotic Update 3: 25 :,",;;ttzd Obviously it remains to be seen how to match dynami-
Chaotic Update 4: 65 emitted cal systems with specific computational problems. A key
if al,a2 or a3 = 0 then | ifal =1 then threshold set feature of dynamical computing is its ability to handle gen-
threshold set at x,” emits | at x,' emits 13 every eral computational tasks. This appears to be in contrast
fourth update. i .
if a2 = 1 then threshold set | if a3 < 1 then threshold set Wlth DNA [5'6] and quantum CompUters [7] WhICh Seem
at x emits 13 every | at x, emits 18 every to be geared to handlgpecificproblems suited specially
second update. update.

to their physical properties. Additionally, we can demon-
FIG. 3. Parallelized addition operation of three integers: 7.strate [8] that the methods for dynamical computation out-
Sh a"i}rr]‘doflih‘pg‘eegaletr:‘]intti"g:cﬁf t?ﬁeigdgirgnth?reifg;gogff Itgj fined in this paper work (even in the presence of noise) with
a branching configuration. Now after four dynamical upgates r_mnuous nonlinear differential equqtlons, such as those
(since the longest period= 231 = 4) the entire branching Which model coherently pumped far-infrared Nksers
lattice emits a total excess of 13 units, which is the result off9]. Thus, applications of this technique might prove use-
the operation7 + 5 + 1 = 13. ful for high speed optical computing. Further, while it is
known that coupled chaotic maps [10] camprinciple, be
viewed as universal computers, we have shawpractice
that the generic chaotic properties of nonlinear dynamical
quicker dynamics, in order to achieve the operation in thesystems can perform a variety of computations. Thus the
same amount of time. potential of dynamical computation lies in the possibility
Least common multiple-We can also devise dynami- of designing asinglespatially extended dynamical system
cal algorithms, which exploit the dynamics to performto perform avariety of computational tasks by exploiting
other, more specialized operations. For instance, we havwbe rich and complex dynamics and pattern formation of
realized a dynamical algorithm for finding a least commonspatially extended nonlinear systems.
multiple (LCM) of a sequence of integers. To find the We would like to thank Kurt Wiesenfeld for many
LCM of a sequence of integersiky,ky, ..., k, we usen helpful discussions. We acknowledge support from ONR
chaotic elements as the input. Theseput elements have and Control Dynamics, Inc.
their threshold fixed such that they emit excess cyclically
with periods equal to the values of the integers they
represent, namel¥,, k,,...,k,. The periodicity of the
excess emitted thus represents the value of the terms of
the LCM.
The deterministic dynamics of the local elements allows . i . .
one to obtain exact generating equations for windows ?Electronllc address: sudeshna@imsc.ernet.in
Electronic address: wditto@acl.gatech.edu
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