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Experimental Quantum Error Correction
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Quantum error correction is required to compensate for the fragility of the state of a quantum
computer. We report the first experimental implementations of quantum error correction and confirm the
expected state stabilization. A precise analysis of the decay behavior is performed in alanine and a full
implementation of the error correction procedure is realized in trichloroethylene. In NMR computing,
however, a net improvement in the signal to noise would require very high polarization. The experiment
implemented the three-bit code for phase errors using liquid state NMR. [S0031-9007(98)06923-3]

PACS numbers: 03.67.–a, 02.70.–c, 03.65.Bz, 89.70.+c
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Quantum computers exploit the superposition princip
to solve some problems much more efficiently than a
known algorithm for their classical counterparts. The
problems include factoring large numbers [1], combin
torial searching [2], and simulations of quantum system
[3–5]. Exploiting the power of quantum computation wa
thought to be physically impossible due to the extrem
fragility of quantum information [6,7]. This judgmen
seems to be overly pessimistic as quantum error-correc
techniques [8–10] were found to protect quantum inform
tion against corruption. For physically reasonable mod
of decoherence [11] a quantum computation can be as l
as desired with arbitrarily accurate answers, provided
error rate is below a threshold value [12–15]. Thus d
coherence and imprecision are no longer considered ins
mountable obstacles to realizing a quantum computer.

The chief remaining obstacle to quantum computing
the difficulty of finding suitable physical systems whos
quantum states can be accurately controlled. Devic
based on ion traps [16] have so far been limited to tw
bits [17]. Recently, liquid state NMR techniques hav
been shown to be capable of quantum computations w
three bits [18,19]. Thus it is possible, for the first time,
implement the simplest quantum error-correcting cod
and so test these ideas in physical systems.

In room temperature liquid state NMR, one can cohe
ently manipulate the internal states of the coupled spin

1
2

nuclei in each of an ensemble of molecules subject to
large external magnetic field. Although the set of acce
sible states is highly mixed, it has been shown that e
perimental methods exist that can be used to isolate
pure state behavior of the system, thus permitting lim
ited application of NMR to quantum computation [20,21
A detailed description of these methods can be found
[11]. Here we describe the implementation of a qua
tum error-correcting code which compensates for sm
phase errors. The behavior of this code was measu
for two systems: The13C labeled carbons in alanine sub
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ject to the correlated phase errors induced by diffus
in a pulsed magnetic field gradient, and the proton a
two labeled carbons in trichloroethylene (TCE) subject
its natural relaxation processes. In alanine, we obser
correction of first-order errors using a precise analysis
the decay behavior of a given input state. The full erro
correction procedure (including the final Toffoli gate) wa
implemented in TCE to demonstrate the expected s
preservation of an arbitrary coherent input.

Although our experiments validate the usefulness
error correction for quantum computing with pure state
there is a substantial loss of signal associated with
use of ancilla spins in weakly polarized systems. W
argue that in this setting, the loss of signal involved
exploiting ancillas removes any advantage for computat
gained by error correction, at least unless the system
sufficiently polarized to enable the generation of nea
pure states. Nevertheless, our experiments demons
that error-correcting codes can be implemented, and
they behave as predicted.

The simple three-bit quantum error-correcting code us
here is designed to compensate to first order for sm
random phase fluctuations. These fluctuations consti
a random evolution of the state

jb1b2b3l ! e2isu1s1
z 1u2s 2

z 1u3s 3
z djb1b2b3l

­ eifs21db1 u11s21db2 u21s21db3 u3gjb1b2b3l , (1)

wherebi is 0 or 1, ui is a random phase variable, ands i
z is

the Pauli matrix acting on theith spin. Theui depend
on the error rates in the model, which is described
detail below.

The error-correcting code is a phase variant of t
classical three-bit majority code with a decoding tec
nique that preserves the quantum information in the
coded state [9]. Letj6l ­ sj0l 6 j1ldy

p
2. The state

saj000l 1 bj100ld is encoded asaj111l 1 bj222l
by a unitary transformation. The first-order expansion
the operator in Eq. (1) in the small random phases is
© 1998 The American Physical Society
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1 2 iu1s1
z 2 iu2s2

z 2 iu3s3
z , (2)

which evolves the encoded state to

aj111l 1 bj222l ! aj111l 1 bj222l 2 iu1saj211l 1 bj122ld 2 iu2saj121l 1 bj212ld
2 iu3saj112l 1 bj221ld . (3)
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The different errors map the encoded state into or
thogonal subspaces. By measuring the two observabl
s 1

z s3
z ands2

z s3
z the subspace can be identified. Thus one

can determine which error occurred without destroying
the encoded quantum information. After decoding, the
original state of the first spin can then be restored
by a unitary transformation, while the other two spins
contain information (the syndrome) about the error which
occurred. A network which accomplishes the encoding
decoding, and error-correction steps is shown in Fig. 1.

In NMR experiments, nonunitary processes are class
fied as spin-lattice and spin-spin relaxation [22,23]. Fo
spin 1

2 nuclei, both processes are due to fluctuating loca
magnetic fields. The three spin code corrects for error
due to locally fluctuating fields along thez axis.

We focus on a weakly coupled three-spin system
where the strongest contribution to coherence loss is from
external fields which contribute the Hamiltonian
HR ; g1I1 ? B1std 1 g2I2 ? B2std 1 g3I3 ? B3std ,

(4)
where I ­ sIx , Iy , Izd and Iu ­

1
2 su (u ­ x, y, z).

The x and y components of the external fields do not
contribute significantly to loss of coherence in our
experiments. The induced random phase fluctuation
are identical to those described in Eq. (1). As a result
the off-diagonal elements of the density matrix decay
exponentially at a rate which depends on the fieldsBk

at each spin, their gyromagnetic ratiosgk , the coherence
order, and the zero frequency components of the spectr
densities of the fields. The “coherence order” is the
difference between the total angular momenta along th
z axis of the two statesjbl, jb0l (in units of h̄y2) which
define a matrix elementjb0l kbj [24].

To obtain a clean demonstration of error correction
a simple error model was implemented precisely in the
case of alanine. This implementation used the random
molecular motion induced by diffusion in a constant
field gradient to mimic the effect of a slowly varying
|0>
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FIG. 1. Network for encoding, decoding,
and error correction. The circuit describes
the evolution of the three bits as a function
of time. The gate≤ ! x corresponds to
a control-not. Rys90d represent a rotation
by an angle ofpy2 around they axis of a
single bit. The Toffoli gate flips the target
bit (x) if the two control bits (≤) are in
the statej1l. A detailed implementation
of these gates is given in [18]. The
information carrying bit is carbon 1 (see
Figs. 2 and 3) in both experiments.
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random field. This is achieved by turning on an extern
field gradient =zB ­ ≠Bzy≠z across the sample for a
time d. This modifies the magnetization in the samp
with a phase varying linearly along thez direction
according to ≠fy≠z ­ ndg≠Bzy≠z, where n is the
coherence order of the density matrix element andg is the
gyromagnetic ratio. A reverse gradient is used to refoc
the magnetization after allowing molecular diffusion t
take place for the amount of timet. As a result of random
spin displacementDz, the phases of the spins are no
returned to their original values but are randomly modifie
by sndg≠Bzy≠zdDz. For a Gaussian displacement profil
with a width of

p
2Dt, the effective decoherence time o

this process is proportional to the diffusion constantD as
well as to the square of the coherence ordern [24]:

1
t

­

√
≠f

≠z

!2

D ­ g2s=zBd2n2d2D . (5)

This artificially induced “decoherence” in the alanin
experiments is an example of completely correlated pha
scrambling. This occurs naturally if all the spins hav
equal gyromagnetic ratios in the slow motion regime. W
used TCE to demonstrate error correction in the presen
of the natural decoherence.

Most NMR experiments are described using the produ
operator formalism [25]. This formalism describes th
state as a sum of products of the operatorsIk

x, Ik
y ,

Ik
z . The identity component of such a sum is the sam

for any state and is usually suppressed to yield t
“deviation” (traceless) density matrix. The effect of erro
correction can be understood from the point of view o
this formalism. As an example, consider encoding th
stateI1

z using two ancillas initially in their ground states
The initial state is described by

rA ­ I1
zs 1

2 1 1 I2
zd s 1

2 1 1 I3
zd . (6)

After encoding the state is

rB ; 1
4 sI1

x 1 I2
x 1 I3

x 1 4 I1
xI2

xI3
xd . (7)
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In the case of completely correlated phase errors, t
decays as

rC ; 1
4 fsI1

x 1 I2
x 1 I3

xde2tyt

1 s3I1
xI2

xI3
x 1 I1

xI2
yI3

y 1 I1
yI2

xI3
y 1 I1

yI2
yI3

xde2tyt

1 sI1
xI2

xI3
x 2 I1

xI2
yI3

y 2 I1
yI2

xI3
y 2 I1

yI2
yI3

xde29tytg .
(8)

Decoding and error correction mixes these states toge
so as to cancel the initial decay of the first spin,

r1
E ; 1

8 I1
zs9e2tyt 2 e29tytd ø I1

zs1 2
9
2 t2yt2 1 · · ·d .

(9)

The effect of error correction can be seen from th
absence of terms depending linearly ont.

In the alanine experiments, each of the four product o
erators in the sum of Eq. (6) was realized in a separ
experiment, and the final state after encoding and dec
ing inferred by adding the results. The loss of polarizatio
over time in each product operator was measured explic
in each experiment. The results were added computati
ally to simulate the effect of the Toffoli gate and are show
in Fig. 2. This method has the advantage of permitting
detailed analysis of the relevant relaxation pathways. T
initial slopes of the decay curves for each operator we
estimated and added as required for error correction. T
resulting slope is zero within experimental errors. Th
the net curve has quadratic behavior for small delays.

The goal of our experiments with TCE was to establi
the behavior of encoding followed by decoding an
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FIG. 2. The intensities of the magnetization of the first sp
after applying the dephasing and decoding procedures descr
in the text, together with single exponential fits to the intensiti
versus the dephasing timet. The relevant coupling frequencies
are 53.9 and 34.8 Hz between adjacent carbons. The th
mixed statesI1

z , I1
zI2

z , I1
zI3

z , evolved as single quantum
coherences duringt, whereasI1

zI2
zI3

z evolved as a mixture of
single and triple quantum coherences, which have been plo
separately (single and triple). Their sum (error corrected) g
the intensities the same experiment using a pseudopure s
(see text). The initial slope of the sum is close to zero, th
showing that the error-correction procedure was able to can
dephasing to first order.
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error correction on all possible initial states subject t
the natural decoherence and dephasing. The spins w
prepared in the states

rs 1
2 1 1 I2

zd s 1
2 1 1 I3

zd , (10)

with r one of the four inputs12 1, I1
z , I1

x , I1
y. Any possible

input is just a linear combination of these four states. W
used gradient methods to directly generate the four sta
of Eq. (10). They were then subjected to pulse sequenc
for encoding, decoherence, and decoding (experime
I). The reduced density matrix on the first spin (th
output) was measured. In the second experiment (
decoding was followed by error correction (i.e., physica
implementation of the Toffoli gate so that the whole
circuit of Fig. 1 was implemented) before the output wa
determined. Decoherence was implemented in two way
The first involved a variable delay during which natura
dephasing takes place. In the second implementation,
inserted pulses for each possible phase error (sign fl
on at most one spin). Pulse sequences can be found
[26]. Ideally the output would be identical to the input
The measured outputs were compared to the ideal on
by computing the “entanglement fidelity” [27]. This is
a useful measure of how well the quantum informatio
in the input is preserved. Entanglement fidelity is th
sum of the correct polarization left in the output stat
for each input. More precisely, given inputI1

a, let fa

be the relative polarization ofI1
a in the output compared

to the input. Thenf ­
1
4 s1 1 fx 1 fy 1 fzd, and this

formula is correct for processes which do not affect th
completely mixed state12 1. The results for nine different
delays are shown in Fig. 3. The curves show that err
correction decreases the initial slope by a factor of,10
(by square fit to the logarithm).

Our demonstration of error correction does not impl
that error correction can be used to overcome the proble
of high temperature ensemble quantum computing.
this model of quantum computing, the initial state can b
described as a small, linear deviation from the infinit
temperature equilibrium. Thus, the deviation is propo
tional to a Hamiltonian ofn weakly interacting particles.
In this limit no method of error correction based on
externally applied, time dependent fields can improve th
polarization of any particle by more than a facto
proportional to

p
n [28]. If one wishes to use error

correction an even bigger problem is encountered: T
initial state of the ancillas used for each encoding/decodi
cycle must be pure. In the high temperature regime, t
best we can do is to generate a pseudo pure deviation in
ancillas. Unfortunately, this deviation has to be create
simultaneouslyon all ancillas, leading to an exponentia
reduction in polarization as a function of the total numbe
of ancillas required [29]. This reduction in polarization
is not recoverable by error correction. In fact, furthe
analysis shows that an initial polarization of order unity i
required for error correction to yield a net gain. Anothe
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FIG. 3. Experimentally determined entanglement fidelities f
the TCE experiments after decoding (gray) and after decod
and error correction (black). The relevant coupling frequenci
are 200.7 Hz between H and C1, and 103.1 Hz between C1
C2. The pulse sequences for encoding, decoding, and e
correction take about 35 ms. In this experiment the Toffo
gate was realized by a set of pulses. The histogram repres
the fidelities when a single sign flip error has been induced
H, C1, or C2 clearly exhibiting the improvement from erro
correction. The graph shows continuous curves interpolati
the data points. The broken curves were determined
simulating the pulse sequence using the measured coup
constants and estimatedT2’s of 1.1 s (C1), 0.6 s (C2), and 3 s
(H). Differences between experimental and theoretical curv
are attributed to lack of precise knowledge of the error mod
Errors in the data points are approximately 0.05. Note th
since the protonT2 is much longer than that of the carbons
the long term gain in fidelity is partially due to recovery
of polarization from the proton. The demonstration of erro
correction lies in the initial slope. The curves show that err
correction decreases the initial slope by a factor of,10 (by
least squares fit to the logarithm).

problem is the inability to reuse ancilla bits. This ha
two consequences. The first is that decoherence rap
removes information in the state, leading to computatio
which are logarithmically bounded in time [30]. Second
the total number of ancillas required is proportional to th
time-space product of the computation, rather than to
power of its logarithm.

Our work shows that liquid state NMR can be used
test fundamental ideas in quantum computing. Our e
periments demonstrate for the first time the state p
serving effect of the three-bit phase error-correcting cod
The first-order behavior was established to high accura
for a specific state in alanine, while the overall effect wa
observed and the improvement in state recovery verifi
in TCE. These experiments confirm not only the validit
of theories of quantum error correction in a simple cas
but also demonstrate the ability, in liquid state NMR, t
control the state of three spin-half particles. This is a
important advance for quantum computing, as this is t
first system where this degree of control has been succe
fully implemented.
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