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Quantum error correction is required to compensate for the fragility of the state of a quantum
computer. We report the first experimental implementations of quantum error correction and confirm the
expected state stabilization. A precise analysis of the decay behavior is performed in alanine and a full
implementation of the error correction procedure is realized in trichloroethylene. In NMR computing,
however, a net improvement in the signal to noise would require very high polarization. The experiment
implemented the three-bit code for phase errors using liquid state NMR. [S0031-9007(98)06923-3]

PACS numbers: 03.67.—a, 02.70.—c, 03.65.Bz, 89.70.+c

Quantum computers exploit the superposition principlgect to the correlated phase errors induced by diffusion
to solve some problems much more efficiently than anyn a pulsed magnetic field gradient, and the proton and
known algorithm for their classical counterparts. Thesewo labeled carbons in trichloroethylene (TCE) subject to
problems include factoring large numbers [1], combina-ts natural relaxation processes. In alanine, we observed
torial searching [2], and simulations of quantum systemgorrection of first-order errors using a precise analysis of
[3-5]. Exploiting the power of quantum computation wasthe decay behavior of a given input state. The full error-
thought to be physically impossible due to the extremecorrection procedure (including the final Toffoli gate) was
fragility of quantum information [6,7]. This judgment implemented in TCE to demonstrate the expected state
seems to be overly pessimistic as quantum error-correctiopreservation of an arbitrary coherent input.
techniques [8—10] were found to protect quantum informa- Although our experiments validate the usefulness of
tion against corruption. For physically reasonable modelgrror correction for quantum computing with pure states,
of decoherence [11] a quantum computation can be as lonere is a substantial loss of signal associated with the
as desired with arbitrarily accurate answers, provided these of ancilla spins in weakly polarized systems. We
error rate is below a threshold value [12—15]. Thus deargue that in this setting, the loss of signal involved in
coherence and imprecision are no longer considered insuexploiting ancillas removes any advantage for computation
mountable obstacles to realizing a quantum computer. gained by error correction, at least unless the system is

The chief remaining obstacle to quantum computing issufficiently polarized to enable the generation of nearly
the difficulty of finding suitable physical systems whosepure states. Nevertheless, our experiments demonstrate
guantum states can be accurately controlled. Devicethat error-correcting codes can be implemented, and that
based on ion traps [16] have so far been limited to twahey behave as predicted.
bits [17]. Recently, liquid state NMR techniques have The simple three-bit quantum error-correcting code used
been shown to be capable of quantum computations withere is designed to compensate to first order for small
three bits [18,19]. Thus it is possible, for the first time, torandom phase fluctuations. These fluctuations constitute
implement the simplest quantum error-correcting codesa random evolution of the state
and so test these ideas in physical systems. |b1babs) — ¢ 10100207400 o poy

In room temperature liquid state NMR, one can coher-
ently manipulate the internal states of the coupled s;pin
nuclei in each of an ensemble of molecules subject to avhereb; is0 or 1, ; is a random phase variable, andis
large external magnetic field. Although the set of accesthe Pauli matrix acting on théth spin. The#; depend
sible states is highly mixed, it has been shown that exen the error rates in the model, which is described in
perimental methods exist that can be used to isolate théetail below.
pure state behavior of the system, thus permitting lim- The error-correcting code is a phase variant of the
ited application of NMR to quantum computation [20,21]. classical three-bit majority code with a decoding tech-
A detailed description of these methods can be found imique that preserves the quantum information in the en-
[11]. Here we describe the implementation of a quancoded state [9]. Le{=) = (|0) * |1))/+/2. The state
tum error-correcting code which compensates for smal{«|000) + 8|100)) is encoded as|+++) + B|———)
phase errors. The behavior of this code was measurday a unitary transformation. The first-order expansion of
for two systems: Thé’C labeled carbons in alanine sub- the operator in Eq. (1) in the small random phases is

= ei[(_l)bl01+(—])h292+(—1)b393]|b1b2b2>’ (1)
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1-i00) — itho! — i0;0), (2)
which evolves the encoded state to
al++4) + Bl-—) = al++H) + Bl-—2) — ifi(al—++) + Bl+—) — iby(al+—+) + Bl—+-)
— if3(al++-) + Bl——1). )

The different errors map the encoded state into L)Handom field. This is achieved by turning on an external
thogonal subspaces. By measuring the two observabldield gradientV,B = 9B,/dz across the sample for a
o!lo? ando?o? the subspace can be identified. Thus ongime 8. This modifies the magnetization in the sample
can determine which error occurred without destroyingwith a phase varying linearly along the direction
the encoded quantum information. After decoding, theaccording to d¢/dz = ndydB,/dz, where n is the
original state of the first spin can then be restoredcoherence order of the density matrix element @rid the
by a unitary transformation, while the other two spinsgyromagnetic ratio. A reverse gradient is used to refocus
contain information (the syndrome) about the error whichthe magnetization after allowing molecular diffusion to
occurred. A network which accomplishes the encodingtake place for the amount of time As a result of random
decoding, and error-correction steps is shown in Fig. 1. spin displacemenfAz, the phases of the spins are not

In NMR experiments, nonunitary processes are classireturned to their original values but are randomly modified
fied as spin-lattice and spin-spin relaxation [22,23]. Foiby (ndydB,/dz)Az. For a Gaussian displacement profile
spin 5 nuclei, both processes are due to fluctuating locawith a width of v/2Dr, the effective decoherence time of
magnetic fields. The three spin code corrects for error#his process is proportional to the diffusion constanas

due to locally fluctuating fields along theaxis. well as to the square of the coherence ord¢24]:

We focus on a weakly coupled three-spin system 1 I 2
where the strongest contribution to coherence loss is from — = (—) D = y*(V,B)*n*8°D. 5)
external fields which contribute the Hamiltonian T 9z

Hr = y'1' - B'(t) + 217 - BX(1) + v’ - B3(1), This artificially induced “decoherence” in the alanine

4) experiments is an example of completely correlated phase
scrambling. This occurs naturally if all the spins have
equal gyromagnetic ratios in the slow motion regime. We
used TCE to demonstrate error correction in the presence
gf the natural decoherence.

where I = (I,,I,,I;) and I, = %au (u = x,y,2).
The x and y components of the external fields do not
contribute significantly to loss of coherence in our

experiments. The induced random phase fluctuation . . .
are identical to those described in Eq. (1). As a result, Most NMR experiments are described using the product

the off-diagonal elements of the density matrix deca)pperator formalism [25]. This formalism describef the
exponentially at a rate which depends on the fiekfs s'zate as a sum of products of the operatdfs Ij,

at each spin, their gyromagnetic ratipé, the coherence I:- The identity component of such a sum is the same
order, and the zero frequency components of the spectrff any state and is usually suppressed to yield the
densities of the fields. The “coherence order’ is the deviation” (traceless) density matrix. The effect of error

difference between the total angular momenta along th€orrection can be understood from the point of view of
7 axis of the two stateh), |»') (in units of /i/2) which this formalism. As an example, consider encoding the

define a matrix elemenb’) (b| [24]. statel! using two ancillas initially in their ground states.
To obtain a clean demonstration of error correction, € initial state is described by
a simple error model was implemented precisely in the pa = 1;(%1 + 1?)(%1 + 13)‘ (6)

case of alanine. This implementation used the random
molecular motion induced by diffusion in a constant ;
field gradient to mimic the effect of a slowly varying ps=7(IL + 2 + I +41'213). 7)

After encoding the state is

FIG. 1. Network for encoding, decoding,

and error correction. The circuit describes
Encoding Decoding Error the evolution of the three bits as a function
Correctior of time. The gates — x corresponds to

G Time delay [
or I : I ¥ 1w=> a control-not. R,(90) represent a rotation

gradient fields by an angle ofr /2 around they axis of a

TR/(-90 single bit. The Toffoli gate flips the target
to induce I bit (x) if the two control bits ¢) are in

=y the state|1). A detailed implementation
Decoherence of these gates is given in [18]. The

Toffoli gate information carrying bit is carbon 1 (see
Figs. 2 and 3) in both experiments.
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In the case of completely correlated phase errors, thisrror correction on all possible initial states subject to

decays as the natural decoherence and dephasing. The spins were
1 - repared in the states

pe =M+ I+ e Prep

+GLEE + LEE + L I2E + L E2E)e /7 pGG1+ D)1+ D), (10)
+ 128 - 1128 - 120 - 1 1213)e /7],
(LEL - LEL - LEL - LTe (33) with p one of the four input@1 1,1}, 1}, I}. Any possible

input is just a linear combination of these four states. We
Decoding and error correction mixes these states togethesed gradient methods to directly generate the four states
so as to cancel the initial decay of the first spin, of Eq. (10). They were then subjected to pulse sequences

1 1 s1a —t/r —ot/my __ 1 9 5, 0 for encoding, decoherence, and decoding (experiment
pr =g L0 =) = L = 327/ 4 ). ). The reduced density matrix on the first spin (the

(©) output) was measured. In the second experiment (II)
The effect of error correction can be seen from thedecoding was followed by error correction (i.e., physical
absence of terms depending linearlyron implementation of the Toffoli gate so that the whole

In the alanine experiments, each of the four product opcircuit of Fig. 1 was implemented) before the output was
erators in the sum of Eq. (6) was realized in a separatéetermined. Decoherence was implemented in two ways.
experiment, and the final state after encoding and decod-he first involved a variable delay during which natural
ing inferred by adding the results. The loss of polarizatiordephasing takes place. In the second implementation, we
over time in each product operator was measured explicitljnserted pulses for each possible phase error (sign flips
in each experiment. The results were added computatio®n at most one spin). Pulse sequences can be found in
ally to simulate the effect of the Toffoli gate and are shown[26]. Ideally the output would be identical to the input.
in Fig. 2. This method has the advantage of permitting alhe measured outputs were compared to the ideal ones
detailed analysis of the relevant relaxation pathways. Th&y computing the “entanglement fidelity” [27]. This is
initial slopes of the decay curves for each operator wer@ useful measure of how well the quantum information
estimated and added as required for error correction. Thi@ the input is preserved. Entanglement fidelity is the
resulting slope is zero within experimental errors. Thussum of the correct polarization left in the output state
the net curve has quadratic behavior for small delays.  for each input. More precisely, given inpd{, let f,

The goal of our experiments with TCE was to establishoe the relative polarization df; in the output compared
the behavior of encoding followed by decoding andto the input. Thery = %(1 + fx + fy + f2), and this
formula is correct for processes which do not affect the
completely mixed staté 1. The results for nine different

o . .
f delays are shown in Fig. 3. The curves show that error
1.2 HeR@e = —on correction decreases the initial slope by a factor-d
1rs NH, (by square fit to the logarithm).

oo o8 Error corrected , . Our demonstration of error correction does not imply
g osf !z 1217 |13 that error correction can be used to overcome the problems
g 04% of high temperature ensemble quantum computing. In
= 02 12 3 this model of quantum computing, the initial state can be
N gl lzlzly ) — . . . described as a small, linear deviation from the infinite
£ _Ozw temperature equilibrium. Thus, the deviation is propor-
S heesseete Tt tional to a Hamiltonian of: weakly interacting particles.

0.4 121217 (single) In this limit no method of error correction based on

-0.6 externally applied, time dependent fields can improve the

polarization of any particle by more than a factor
ms proportional to./n [28]. If one wishes to use error
FIG. 2. The intensities of the magnetization of the first spincorrection an even bigger problem is encountered: The
after applying the dephasing and decoding procedures describgfitial state of the ancillas used for each encoding/decoding

in the text, together with single exponential fits to the intensitiescycle must be pure. In the high temperature regime, the
versus the dephasing time The relevant coupling frequencies ) :

are 53.9 and 34.8 Hz between adjacent carbons. The thrddeStWe candois to generate a pseudo pure deviation in the
mixed statesI!, I'I2, I'I3, evolved as single quantum ancillas. Unfortunately, this deviation has to be created

coherences during, whereasI!I2I? evolved as a mixture of simultaneoushon all ancillas, leading to an exponential
single and triple quantum coherences, which have been plottegduction in polarization as a function of the total number

separately (single and triple). Their sum (error corrected) gi"e?f ancillas required [29]. This reduction in polarization
the intensities the same experiment using a pseudopure state

(see text). The initial slope of the sum is close to zero, thudS not recoverable by error correction. In fact, further

showing that the error-correction procedure was able to cancé@inalysis shows that an initial polarization of order unity is
dephasing to first order. required for error correction to yield a net gain. Another
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