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Burnett Description of Strong Shock Waves
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In 1992 Salomons and Mareschal [Phys. Rev. L&3t.269 (1992)] gave evidence that the Burnett
equations can provide an important improvement over the Navier-Stokes equations for shock waves at
high Mach numbers. In this Letter we solve the Burnett equations and make a comparison with the
results from molecular dynamics, the Navier-Stokes equations, and the theory advanced byetallian
[Phys. Rev. E47, R24 (1993)]. A qualitative analysis of the Burnett equations is also done and some
open problems are mentioned. [S0031-9007(98)07042-2]

PACS numbers: 47.40.Nm, 47.45.—n, 51.10.+y

Shock waves appear in a variety of physical phenomena In 1992 Salomons and Mareschal [5] gave convincing
[1,2], in which the main characteristic is the large valuesevidence that the Burnett equations provide an important
of the state variables and their drastic changes within smalinprovement over the Navier-Stokes equations for strong
distances, typically of the order of a few mean free pathsshock waves, although they did not obtain the velocity and
Recently, they have been used to propose an explanatiagemperature profiles. Here we will go one step further
for the sonoluminescence phenomena [3]. They alsand obtain both profiles using the Burnett equations for
provide a natural arena in which different theories carthe situation reported by Holiagt al. [6].
stringently be tested. The Navier-Stokes equations can The Burnett corrections to the pressure tensor and the
be used to provide a description for several shock waveaeat flux were taken from Chap. 15 of the book by
propagation phenomena, and while they describe some @hapman and Cowling [4] for the case of a stationary
the features, the description is subject to improvementplane shock wave which moves along theaxis with
especially for strong shocks. Among the theories thatelocity u(x). The coefficients¢’s and’s) that appear
extend the Navier-Stokes description is the one provideth the expressions for the pressure tensor and the heat flux
by the Burnett constitutive equations obtained by Chapmafsee Egs. (15.3,8) and (15.3,6) in the book by Chapman
and Cowling [4], and it is our goal to see up to what pointand Cowling [4] and Eq. (1) below] correspond to the
the Burnett description is adequate for describing shoclknes calculated by Burnett [4] and by Wang-Chang
wave profiles. We also point out the main mathematicabnd Uhlenbeck [7] for the rigid sphere case using the
problems for such a description to be valid. Since even fofirst order Sonine expansion for the viscosity [6]. Our
the Navier-Stokes equations solutions in closed form arealculations for the Burnett corrections of the fluxes are
not known, we have used numerical methods to study than agreement with the ones reported by Wang-Chang [7]
Burnett equations. We would like to emphasize that we arexcept for a numerical factor which multipliess in
using numerical methods because in nonlinear phenomermss expression for the pressure tensor. It is important
it is rather often the only way to go. Nevertheless,to point out that the general form of these equations
numerical methods are in general not enough to achievean be obtained using strictly a macroscopic reasoning
a proper understanding of the underlying dynamics of thg8]. Adopting the same dimensionless variables as Holian
differential equations so that we have complemented therat al. [6], the calculated Burnett corrections for the
by a qualitative analysis of the dynamical system providedx component of the reduced stress tensor and athe

by the Burnett equations. | component of the heat flux are given by
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where py and uy are the mass density and velocity at the low density region of the shock wave, respectively. Here

u* = u/ug is the reduced velocityr = kT/mu? is a reduced temperature, ands equal tox/!, with I the “mean
free path” as defined by Holiagt al. [6]. In terms of the previous dimensionless variables the Rankine-Hugoniot jump
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conditions give for the reduced variables at the high denpressure tensor, meaning the Navier-Stokes [6] plus the
sity part of the shocku,;) the following parametriza- Burnett contributions, and the component of the heat
tion in terms ofrg, uf = 79 + 3, 71 = 370 + 1 —  flux into the integrated form of the reduced conservation
> 72, whereuy = 1 always. Furthermore defining the €quations for momentum and energy [6], leads us to
Mach number ¥, as the ratio of the shock velocity di- obtain two second order differential equations fmﬁ
vided by the sound velocity, both velocities evaluated af"d 7- Such a second order system can be written as
the low density part of the shock, it turns out that for a2 first orijer one in four dlmenS|orl§ for the variables
monatomic gas for which the ratio of the specific heat aty}(s) = u*(s), y2(s) = 7(s), y3(s) = u™(s), andya(s) =
constant pressure divided by the one at constant volume &(5), Where a prime denotes the /derlvatlve with respect
equal to5/3, we obtain thatd, = /0.6/7. to s. The system is of the forny’ = F(y, r9), where
Substitution of the completex component of the| Fi(y,70) = y3, Fa(y, 79) = ya,

3 40 16 8 16 8 8
F3=————| —7oyi — —T0yi+ =y — =Y+ =y — = +5 - 2
3 2y%y2(04_92)[ o oYL T G ToYi T gyt T i T gyt T vy £ 5yivayn T vava v
8 2 2
X |0 — =60+ =03 +260s5) + =y 633y |,
( 1 3 2 3 3 5) 3 1 3y3y2:|
1 16 16 16 16 16 3p
Fp=—"7"—| —7 + — — — iy — — i+ = + 2, Fa(y,
4 y12y2(62 n 63)|: 9 0Y1Y2 9 Yiy2 9 Yiy2 9 D) 9 y1y2' y3 + y1y; c2 Fs(y, 7o)
—yi(yiy2er + y3ca) = yiyi(ea + cs) + y3yayiya(ca + C4)j|, (2)
and c¢; = %wl — 19—4 wy + %w6, cy = —% w>, ¢3 = | ues;u*(s;) = 0.250006, 7(s;) = 3/16 [6]. On the other
% w3, Cq = % wa, andcs = % ws. Finally the coefficients hand, the initial values for the derivatives were taken to be
w’'s and@’s are given by zero. The initial value of; was determined in such a way
w, = 1.014 X 4, wy = 1.014 X 2, _that the numc_erical soluti_on_ gives*(0) = 0.6_2_5 accord_-
ing to the choice of the origin [6]. Two explicit numerical
w3 = 0.806 X 3, wyq = 0.681, methods are used to solve the differential equations (2),
ws = % X 0.806 — 0.99, ws = 0.928 X 8, the Adams’ me_thod and the backward diff_erentiatio_n for-
45 45 mula (BDF) as implemented by the Numerical Algorithms
0, = 7 X 1.035, 0, = g X 1.035, GroupFoRTRAN library. The results of both methods are
0; = —3 X 1.03, 0, =3 X 0.806, practicallyindistinguishable and can be read in Figs. 1 and
2 where (MD) calculations [5,6], the theory advanced by
fs = 8.3855. (3)  Holianet al. [6], and the Navier-Stokes are also exhibited.
If U denotes the open s@i, ) X (0,°) X R X R, R It is found that the numerical solution cannot be

being the set of real numbers, we see that, for fixgd obtained for values ofs lower than about—1.5 for
F(-,79) has continuous partial derivatives of any orderthe Navier-Stokes equations;2.1 for the Holianet al.

in U. The mathematical problem posed by the shoclequations, and about= —2 for the Burnett equations.
wave problem in the Burnett regime is to find, for a However, the reason for this is different in the case
fixed Mach number (fixedry), a heteroclinic trajectory of the Burnett equations when compared to the Navier-

of y/ = F(y, 7,) which joins the two critical pointg"? =  Stokes and Holiaret al. equations. In fact, fory > 0
(1, 70,0,0) andy%™ = (uF, 1,0,0) which is equivalent we can obtain numerical solutions for the latter equations
to posing a boundary value problem. in a wide range of values fas, and this is a result of

The Mach number for which the molecular dynamicstaking M, = « (7o = 0). The general methodology of
(MD) calculations were reported is equal 184 [5], for  perturbing the downstream critical point by making the
this valuery =~ 3 X 1072, and we will take as an approxi- velocity slightly greater and integrating upstream, which
mation 7o = 0. Such an approximation is not essentialwe refer to as integrating in the negative direction, is a
and was chosen in order to compare with previous calcurobust one in the sense that the profiles for finite Mach
lations by Holianet al. [6]. In fact, shock wave profiles numbers can be obtained in this way. This works for
can be generated for all Mach numbers but due to the lacthe three theories considered here. Our explanation for
of space our calculations will not be reported. It must bethis to occur is that the initial point is in the basin
pointed out that for low Mach numbers strong evidenceof attraction, s — —, of an invariant set that turns
that the Burnett equations provide a better description thaaut to be the solution sought. However, in the case
the Navier-Stokes equations has been given [9]. Followingf the Burnett equations the existence of a heteroclinic
other authors [6,10] we approximate the previous boundartrajectory is not clear for all Mach numbers as we
value problem by an initial value one, using the initial val- now argue.
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FIG. 1. Reduced velocity profiles® vss. Circles: molecular
dynamics (£, = 134); solid line: theory by Holiaret al. (v, =

0); dashed line: Navier-Stokes((= 0); and long-dashed line:

Burnett ¢, = 0).

The eigenvalues X) of the differential of F at y"?
[F'(y")] can be seen to be roots of the equation
54702(0y — 04) (2 + €3) A* + 40573 c2 A° +

70/ °[96 (02 — 04) — 360 c3 — 144 ¢3]A% +

72720 7o — 1104)A + 73/ °(384 — 640 7,) = 0. (4)

It is easily seen that foM, =1 (7o =3/5) A =0
is a solution with multiplicity one, so forM, = 1,
y*? = yd°o" js a nonhyperbolic point. Fa¥/, > M, >

real parts, and the other two have negative real parts.
In brief, for M, = 1, M., the upstream critical point is
not hyperbolic, forM. > M, > 1 the upstream critical
point is an unstable node, and ftf, > M, the upstream
critical point is a saddle. For the other critical point it is
found that forM, > 1 the eigenvalues oF'(y%°"") are
all real, three of them are positive, and one is negative.
So forM, > 1 the downstream critical point is a saddle.
The Hartman-Grobman theorem [11] establishes that
the local qualitative behavior of the linearized differential
equations and the nonlinear ones is the same for hyper-
bolic critical points. Since foM, # 1 andM, # M. the
eigenvalues at the upstream critical point are complex we
infer that the behavior of the solution neg¥ is oscilla-
tory. This fact could be advanced as an argument to in-
validate the Burnett description since for shock waves a
monotonic profile is expected. However, this is a short
sighted argument since faf, < M, the oscillations are
irrelevant. Nevertheless, as the Mach number is increased
(M, > M._)the oscillations grow instead of decreasing, for
M. <M, < M. (M., = 3.25)the numerical solution re-
mains bounded, and for larger Mach numbers the numeri-
cal solution cannot be obtained for lower values dhan
a certain negative value of [s.(79)]. We have evalu-
ated the eigenvectors at the critical upstream point for
M, = 2.8. When we perturb the upstream critical point
along the eigenvectors corresponding to the unstable mani-
fold and integrate in the negative direction, we found that
the numerical solution does not go to the critical point but
exhibits an oscillatory behavior. In other words, there is
evidence of an attracting region. We have used the recon-
struction technique for attractors [12], which is based on

1 (M. =~ 2.6899) we found that the eigenvalues are & remarkable result by Takens, and found that the attract-

complex and all have a positive real part; fo, = M.
two eigenvalues have zero real part, and 86y > M.

the eigenvalues are complex: two of them have positive
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FIG. 2. Reduced temperature profileys s. The meaning of
the symbols and lines is as in Fig. Iy = 0.
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ing region is a limit cycle; see Fig. 3. What happens for
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FIG. 3. Long time behavior large, of the numerical solution
at equal spaced pointg = s; + kA, uy = u*(s;). The larger

and wider limit cycle corresponds t, = 3.1 and the other
one toM, = 2.8.
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M, > M, is that the limit cycle has grown large enough drodynamic stability analysis has been carried out for the
to touch a repelling region. So, when the unstable nodeonstant solutions to the Euler equations for certain normal
becomes a saddle there appears a limit cycle which evemrodes [2]. The consideration of the viscous case would
tually, as the Mach number is increased, disappears. Thossibly provide a bound to the Mach number for which the
may be considered as an indication that a heteroclinic trasolution to the Navier-Stokes equations, or to the Burnett
jectory does not exist foM, > M.. It is interesting to equations, ceases to be stable, but this interesting problem
notice that there are some similarities of the bifurcatiorwould lead us too far from the objective of this work.
just described a¥1, = M, and the Hopf bifurcation [11]. The results given here show that the Burnett equations
We must not forget that we are interested in a heteroare on the right track to provide a better description for
clinic trajectory, and this is the subject of global analysis.shock waves so it is then natural to think that the super-
The condition for the existence of a heteroclinic trajectoryBurnett and higher order gradient expansions may enlarge
[13] is that the stable manifold of one critical point inter- the domain of Mach’s numbers for which an heteroclinic
sects in a smooth way the unstable manifold of the othergurve exists. However, such expansions are rather difficult
for hyperbolic critical points the existence of such mani-to deal with and have some problems so it seems better
folds is guaranteed by the stable manifold theorem [11]to look for other alternatives but this is a subject for
Montgomery [14] has given some conditions that assuréurther work.
that the Burnett equations, and the higher order gradient We thank our colleagues P. Miramontes, E. Pérez-
Chapman-Enskog expansions, have a heteroclinic traje€havela, and F. Sanchez-Gardufio for invaluable
tory for Mach numbers near and above 1 although the exdiscussions. This work was supported by CONACyT
plicit upper limit is not known. These conditions can be (0651-E9110).
shown to be satisfied by the equations considered in this
work so that the Burnett equations have a shock struc-
ture at least for Mach numbers near one. Our calculations[1] Y.B. Zeldovich and Y. P. RaizeRhysics of Shock Waves
suggest that the upper limit i, and we have obtained (Academic, New York, 1966, 1968), Vols. | and II.
numerical solutions with structure for slightly higher num- [2] S.A. Markovskii and B.V. Somov, Space Sci. R€%,
bers thanV.., but the limit cycle is probably so small that 443 (1996).
it cannot be resolved. It is interesting to notice that the [31 C.C. Wu and P.H. Roberts, Phys. Rev. Let0, 3424
change in the Conley index &£, for the upstream critical (1993). . .
point implies the existence of a nonconstant solution con-[4! S: €hapman and T.G. Cowlinghe Mathematical Theory
. . of Non-Uniform Gases(Cambridge University Press,
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_solutlon could be shown to be gra_dl_entllk_e, then, qccord- [5] E. Salomons and M. Mareschal, Phys. Rev. L6g, 269
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Coming back to the numerical results given in Figs. 1 [6] B.L. Holian, C.W. Patterson, M. Mareschal, and E.
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for values ofs lower than about-2 because the local [7] C.S. Wang-Chang and G.E. Uhlenbeck, $tudies in

flow associated with the differential equation, for the initial Statistical Mechanicsedited by J. de Boer and G.E.
conditions used, cannot be extended t&¢ —«. Insuch a Ulenbech (North-Holland, Amsterdam, 1970), p. 1; C.S.
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