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Burnett Description of Strong Shock Waves
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In 1992 Salomons and Mareschal [Phys. Rev. Lett.69, 269 (1992)] gave evidence that the Burnett
equations can provide an important improvement over the Navier-Stokes equations for shock waves at
high Mach numbers. In this Letter we solve the Burnett equations and make a comparison with the
results from molecular dynamics, the Navier-Stokes equations, and the theory advanced by Holianet al.
[Phys. Rev. E47, R24 (1993)]. A qualitative analysis of the Burnett equations is also done and some
open problems are mentioned. [S0031-9007(98)07042-2]

PACS numbers: 47.40.Nm, 47.45.–n, 51.10.+y
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Shock waves appear in a variety of physical phenome
[1,2], in which the main characteristic is the large value
of the state variables and their drastic changes within sm
distances, typically of the order of a few mean free path
Recently, they have been used to propose an explana
for the sonoluminescence phenomena [3]. They a
provide a natural arena in which different theories ca
stringently be tested. The Navier-Stokes equations c
be used to provide a description for several shock wa
propagation phenomena, and while they describe some
the features, the description is subject to improveme
especially for strong shocks. Among the theories th
extend the Navier-Stokes description is the one provid
by the Burnett constitutive equations obtained by Chapm
and Cowling [4], and it is our goal to see up to what poin
the Burnett description is adequate for describing sho
wave profiles. We also point out the main mathematic
problems for such a description to be valid. Since even
the Navier-Stokes equations solutions in closed form a
not known, we have used numerical methods to study
Burnett equations. We would like to emphasize that we a
using numerical methods because in nonlinear phenom
it is rather often the only way to go. Nevertheles
numerical methods are in general not enough to achie
a proper understanding of the underlying dynamics of t
differential equations so that we have complemented th
by a qualitative analysis of the dynamical system provid
by the Burnett equations.
2044 0031-9007y98y81(10)y2044(4)$15.00
na
s
all
s.

tion
lso
n
an
ve
of

nt,
at
ed
an
t
ck
al
for
re

the
re

ena
s,
ve

he
em
ed

In 1992 Salomons and Mareschal [5] gave convinci
evidence that the Burnett equations provide an import
improvement over the Navier-Stokes equations for stro
shock waves, although they did not obtain the velocity a
temperature profiles. Here we will go one step furth
and obtain both profiles using the Burnett equations
the situation reported by Holianet al. [6].

The Burnett corrections to the pressure tensor and
heat flux were taken from Chap. 15 of the book b
Chapman and Cowling [4] for the case of a stationa
plane shock wave which moves along thex axis with
velocity usxd. The coefficients (v’s andu’s) that appear
in the expressions for the pressure tensor and the heat
[see Eqs. (15.3,8) and (15.3,6) in the book by Chapm
and Cowling [4] and Eq. (1) below] correspond to th
ones calculated by Burnett [4] and by Wang-Chan
and Uhlenbeck [7] for the rigid sphere case using t
first order Sonine expansion for the viscosity [6]. Ou
calculations for the Burnett corrections of the fluxes a
in agreement with the ones reported by Wang-Chang
except for a numerical factor which multipliesv6 in
his expression for the pressure tensor. It is importa
to point out that the general form of these equatio
can be obtained using strictly a macroscopic reason
[8]. Adopting the same dimensionless variables as Holi
et al. [6], the calculated Burnett corrections for th
xx component of the reduced stress tensor and thex
component of the heat flux are given by
Here
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wherer0 and u0 are the mass density and velocity at the low density region of the shock wave, respectively.
u? ; uyu0 is the reduced velocity,t ; kTymu2

0 is a reduced temperature, ands is equal toxyl, with l the “mean
free path” as defined by Holianet al. [6]. In terms of the previous dimensionless variables the Rankine-Hugoniot ju
© 1998 The American Physical Society
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conditions give for the reduced variables at the high de
sity part of the shock (u?

1 ,t1) the following parametriza-
tion in terms oft0, u?

1 ­
5
4 t0 1

1
4 , t1 ­

7
8 t0 1

3
16 2

5
16 t

2
0 , where u?

0 ­ 1 always. Furthermore defining the
Mach number (Ma) as the ratio of the shock velocity di-
vided by the sound velocity, both velocities evaluated
the low density part of the shock, it turns out that for
monatomic gas for which the ratio of the specific heat
constant pressure divided by the one at constant volum
equal to5y3, we obtain thatMa ­

p
0.6yt0.

Substitution of the completexx component of the
n-

at
a
at
e is

pressure tensor, meaning the Navier-Stokes [6] plus
Burnett contributions, and thex component of the heat
flux into the integrated form of the reduced conservatio
equations for momentum and energy [6], leads us
obtain two second order differential equations foru?

and t. Such a second order system can be written
a first order one in four dimensions for the variable
y1ssd ­ u?ssd, y2ssd ­ tssd, y3ssd ­ u?0ssd, andy4ssd ­
t0ssd, where a prime denotes the derivative with respe
to s. The system is of the formy 0 ­ Fsy , t0d, where
F1sy, t0d ­ y3, F2sy, t 0d ­ y4,
F3 ­
3
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and c1 ­ 2
3 v1 2

14
9 v2 1

2
9 v6, c2 ­ 2

2
3 v2, c3 ­

2
3 v3, c4 ­

2
3 v4, andc5 ­

2
3 v5. Finally the coefficients

v’s andu’s are given by
v1 ­ 1.014 3 4, v2 ­ 1.014 3 2 ,

v3 ­ 0.806 3 3, v4 ­ 0.681,

v5 ­
3
2 3 0.806 2 0.99, v6 ­ 0.928 3 8 ,

u1 ­ 45
4 3 1.035, u2 ­ 45

8 3 1.035 ,

u3 ­ 23 3 1.03, u4 ­ 3 3 0.806,

u5 ­ 8.3855 . (3)
If U denotes the open sets0, `d 3 s0, `d 3 R 3 R, R

being the set of real numbers, we see that, for fixedt0,
Fs?, t0d has continuous partial derivatives of any orde
in U. The mathematical problem posed by the sho
wave problem in the Burnett regime is to find, for
fixed Mach number (fixedt0), a heteroclinic trajectory
of y 0 ­ Fsy , tod which joins the two critical pointsyup ­
s1, t0, 0, 0d andydown ­ su?

1 , t1, 0, 0d which is equivalent
to posing a boundary value problem.

The Mach number for which the molecular dynamic
(MD) calculations were reported is equal to134 [5], for
this valuet0 ø 3 3 1025, and we will take as an approxi-
mation t0 ­ 0. Such an approximation is not essentia
and was chosen in order to compare with previous calc
lations by Holianet al. [6]. In fact, shock wave profiles
can be generated for all Mach numbers but due to the la
of space our calculations will not be reported. It must b
pointed out that for low Mach numbers strong evidenc
that the Burnett equations provide a better description th
the Navier-Stokes equations has been given [9]. Followi
other authors [6,10] we approximate the previous bounda
value problem by an initial value one, using the initial va
r
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ues;u?ssid ­ 0.250 006, tssid ­ 3y16 [6]. On the other
hand, the initial values for the derivatives were taken to
zero. The initial value ofsi was determined in such a way
that the numerical solution givesu?s0d ­ 0.625 accord-
ing to the choice of the origin [6]. Two explicit numerica
methods are used to solve the differential equations (
the Adams’ method and the backward differentiation fo
mula (BDF) as implemented by the Numerical Algorithm
GroupFORTRAN library. The results of both methods ar
practically indistinguishable and can be read in Figs. 1 a
2 where (MD) calculations [5,6], the theory advanced b
Holianet al. [6], and the Navier-Stokes are also exhibite

It is found that the numerical solution cannot b
obtained for values ofs lower than about21.5 for
the Navier-Stokes equations,22.1 for the Holian et al.
equations, and abouts ­ 22 for the Burnett equations.
However, the reason for this is different in the cas
of the Burnett equations when compared to the Navi
Stokes and Holianet al. equations. In fact, fort0 . 0
we can obtain numerical solutions for the latter equatio
in a wide range of values fors, and this is a result of
taking Ma ­ ` (t0 ­ 0). The general methodology of
perturbing the downstream critical point by making th
velocity slightly greater and integrating upstream, whic
we refer to as integrating in the negative direction, is
robust one in the sense that the profiles for finite Ma
numbers can be obtained in this way. This works f
the three theories considered here. Our explanation
this to occur is that the initial point is in the basi
of attraction, s ! 2`, of an invariant set that turns
out to be the solution sought. However, in the ca
of the Burnett equations the existence of a heteroclin
trajectory is not clear for all Mach numbers as w
now argue.
2045
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FIG. 1. Reduced velocity profilesu? vs s. Circles: molecular
dynamics (Ma ­ 134); solid line: theory by Holianet al. (t0 ­
0); dashed line: Navier-Stokes (t0 ­ 0); and long-dashed line:
Burnett (t0 ­ 0).

The eigenvalues (l) of the differential of F at yup

[F0syupd] can be seen to be roots of the equation

54t
5y2
0 su2 2 u4d sc2 1 c3d l4 1 405 t3

0 c2 l3 1

t
5y2
0 f96 su2 2 u4d 2 360 c2 2 144 c3gl2 1

t2
0s720 t0 2 1104dl 1 t

3y2
0 s384 2 640 tod ­ 0 . (4)

It is easily seen that forMa ­ 1 (t0 ­ 3y5) l ­ 0
is a solution with multiplicity one, so forMa ­ 1,
yup ­ ydown is a nonhyperbolic point. ForMc . Ma .

1 (Mc ø 2.6899) we found that the eigenvalues ar
complex and all have a positive real part; forMa ­ Mc

two eigenvalues have zero real part, and forMa . Mc

the eigenvalues are complex: two of them have positi
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FIG. 2. Reduced temperature profilest vs s. The meaning of
the symbols and lines is as in Fig. 1.t0 ­ 0.
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real parts, and the other two have negative real pa
In brief, for Ma ­ 1, Mc, the upstream critical point is
not hyperbolic, forMc . Ma . 1 the upstream critical
point is an unstable node, and forMa . Mc the upstream
critical point is a saddle. For the other critical point it i
found that forMa . 1 the eigenvalues ofF0sydownd are
all real, three of them are positive, and one is negativ
So forMa . 1 the downstream critical point is a saddle.

The Hartman-Grobman theorem [11] establishes th
the local qualitative behavior of the linearized differentia
equations and the nonlinear ones is the same for hyp
bolic critical points. Since forMa fi 1 andMa fi Mc the
eigenvalues at the upstream critical point are complex
infer that the behavior of the solution nearyup is oscilla-
tory. This fact could be advanced as an argument to
validate the Burnett description since for shock waves
monotonic profile is expected. However, this is a sho
sighted argument since forMa , Mc the oscillations are
irrelevant. Nevertheless, as the Mach number is increa
(Ma . Mc) the oscillations grow instead of decreasing, fo
Mc , Ma , Mc1 (Mc1 ø 3.25) the numerical solution re-
mains bounded, and for larger Mach numbers the nume
cal solution cannot be obtained for lower values ofs than
a certain negative value ofs [scst0d]. We have evalu-
ated the eigenvectors at the critical upstream point f
Ma ­ 2.8. When we perturb the upstream critical poin
along the eigenvectors corresponding to the unstable ma
fold and integrate in the negative direction, we found th
the numerical solution does not go to the critical point b
exhibits an oscillatory behavior. In other words, there
evidence of an attracting region. We have used the rec
struction technique for attractors [12], which is based o
a remarkable result by Takens, and found that the attra
ing region is a limit cycle; see Fig. 3. What happens fo
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FIG. 3. Long time behavior,k large, of the numerical solution
at equal spaced pointssk ­ si 1 kD, u?

k ; u?sskd. The larger
and wider limit cycle corresponds toMa ­ 3.1 and the other
one toMa ­ 2.8.
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Ma . Mc1 is that the limit cycle has grown large enough
to touch a repelling region. So, when the unstable no
becomes a saddle there appears a limit cycle which ev
tually, as the Mach number is increased, disappears. T
may be considered as an indication that a heteroclinic t
jectory does not exist forMa . Mc. It is interesting to
notice that there are some similarities of the bifurcatio
just described atMa ­ Mc and the Hopf bifurcation [11].

We must not forget that we are interested in a heter
clinic trajectory, and this is the subject of global analysi
The condition for the existence of a heteroclinic trajector
[13] is that the stable manifold of one critical point inter
sects in a smooth way the unstable manifold of the othe
for hyperbolic critical points the existence of such man
folds is guaranteed by the stable manifold theorem [11
Montgomery [14] has given some conditions that assu
that the Burnett equations, and the higher order gradie
Chapman-Enskog expansions, have a heteroclinic traj
tory for Mach numbers near and above 1 although the e
plicit upper limit is not known. These conditions can b
shown to be satisfied by the equations considered in t
work so that the Burnett equations have a shock stru
ture at least for Mach numbers near one. Our calculatio
suggest that the upper limit isMc, and we have obtained
numerical solutions with structure for slightly higher num
bers thanMc, but the limit cycle is probably so small that
it cannot be resolved. It is interesting to notice that th
change in the Conley index atMc for the upstream critical
point implies the existence of a nonconstant solution co
tained in a compact set (see Ref. [13], p. 456). If such
solution could be shown to be gradientlike, then, accor
ing to Montgomery [14], a heteroclinic trajectory exists.

Coming back to the numerical results given in Figs.
and 2, we see that the numerical solution cannot be fou
for values ofs lower than about22 because the local
flow associated with the differential equation, for the initia
conditions used, cannot be extended tos ­ 2`. In such a
case the behavior of the numerical solution, forMa . Mc1,
seems to be consistent with the theoretical results in Hir
and Smale [15]. What is remarkable is that the piec
of the invariant set that remains is in good agreeme
with MD calculations. However, the results from MD are
also restrictive [6]. Indeed, two facts may be observe
[5,16]. One is that the data exhibit dispersion and seco
that they exhibit oscillatory type behavior for the profile
which is also found in some raw data generated by t
direct simulation Monte Carlo method [5,9]. So, one ma
question if such a dispersion and oscillatory type behavi
may be an indication that a shock structure does not ex

On the other hand, the Navier-Stokes equations hav
structure for high Mach numbers, but it must be pointe
out that this does not mean that the solution can be o
served. In order to be observed the solution must
stable in the hydrodynamic sense [17] which poses
difficult mathematical problem even in its linearized ver
sion which unfortunately is in general not conclusive. I
this respect it is important to mention that a linearized h
de
en-
his
ra-

n

o-
s.
y
-
r;

i-
].
re
nt

ec-
x-

e
his
c-
ns

-

e

n-
a

d-

1
nd

l

sh
e
nt

d
nd
s
he
y
or
ist.
e a
d
b-

be
a

-
n
y-

drodynamic stability analysis has been carried out for th
constant solutions to the Euler equations for certain norm
modes [2]. The consideration of the viscous case wou
possibly provide a bound to the Mach number for which th
solution to the Navier-Stokes equations, or to the Burne
equations, ceases to be stable, but this interesting probl
would lead us too far from the objective of this work.

The results given here show that the Burnett equatio
are on the right track to provide a better description fo
shock waves so it is then natural to think that the supe
Burnett and higher order gradient expansions may enlar
the domain of Mach’s numbers for which an heteroclini
curve exists. However, such expansions are rather diffic
to deal with and have some problems so it seems bet
to look for other alternatives but this is a subject fo
further work.
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