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Quantum Mechanical Tools in Applications to Classical Dynamical Systems
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A recently developed approach to classical and quantum dynamical entropy involving generalized
partitions of unity allows one to use the mathematical formalism typical for quantum statistical
mechanics to analyze classical dynamical systems. In particular, density matrices, their von Neumann
entropy, and irreversible quantum dynamical maps corresponding to measurement processes appear. To
illustrate the power of this new technique we give a simple proof of the Ruelle’s inequality between the
Kolmogorov-Sinai entropy and the Lyapunov exponents. Continuous time classical dynamical systems
are briefly discussed also. [S0031-9007(98)07034-3]
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In this Letter we discuss mostly conservative, discre
time classical dynamical systems described by a trip
sX, dm, Fd where dm denotes a probability measure o
the phase spaceX andF : X ° X is a measure preserv-
ing dynamical map. Koopman’s formalism [1] allows u
to describesX, dm, Fd in terms of “quantumlike objects”:
the Hilbert spaceL2sX, dmd of square integrable functions
with the scalar productk f, gl 

R
fpsxdgsxd dmsxd and

the unitary operator

sUfd sxd  fsssFsxdddd, f [ L2sX, dmd . (1)

The analysis of spectral properties ofU is one of the basic
topics in the classical ergodic theory [2]. The recent
developed approach to dynamical entropy of classic
and quantum systems adds new ideas and technique
Koopman’s formalism. In particular, the notion of densit
matrix and completely positive maps which are used
quantum statistical mechanics to describe the dynam
of an open system interacting with an environment
being subject to a measurement process will find classi
applications. One should stress here that the quant
systems which appear in this approach are fictitio
ones with no direct physical connection to the origin
classical system. The main idea is to use the mathemat
formalism and experience gained in quantum physics
solve the problems of classical ergodic theory.

We begin with the notion of a density matrixr which
is a trace class positive and normalized (trr  1) operator
acting on the Hilbert space of the quantum system a
describing a mixed state of the system. The average va
of the observable given by a self-adjoint operatorA  Ay

at the stater readskAl  trsrAd. Denoting the (possibly
degenerated) eigenvalues ofr by hljj we can calculate
the von Neumann entropySfrg of the density matrixr as

Sfrg  2
X

j

lj ln lj  2trsr ln rd . (2)

An irreversible (non-Hamiltonian) dynamical map for th
open quantum system interacting with an environme
and particularly with a measuring apparatus is give
by a completely positive linear transformation acting o
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density matrices (Schrödinger picture) and represented
the form

r ° Lsrd 
X
a

WarWy
a , (3)

with
P

Wy
aWa  1. These dynamical maps can trans

form pure states into mixed ones and change the entro
of a state. Discrete time open quantum systems a
described by the powers of the single dynamical ma
hLn; n [ Nj which form a discrete time dynamical
semigroup. For continuous time irreversible dynamica
systems we use quantum Markovian master equations
the form

drt

dt
 Lrt; t $ 0 , (4)

with the standard (Lindblad-Gorini-Kossakowski-
Sudarshan) form of the generator [3]

Lr  2ifH, rg 1
1
2

X
b

hfVb , rV
y
b g 1 fVbr, V

y
b gj ,

(5)

whereH  Hy is a Hamiltonian of the system.
In our special case of the Hilbert spaceL2sX, dmd a

density matrix r is given by a positively defined in-
tegral kernelrsxjyd satisfying the normalization condi-
tion

R
rsxjxd dmsxd  1 and its spectral decomposition

becomes

rsxjyd 
X

j

ljcjsxdcp
j s yd , (6)

with Z
X

cp
i sxdcjsxd dmsxd  dij, lj . 0 ,

X
j

lj  1 . (7)

In the standard approach to the Kolmogorov-Sinai entrop
the fundamental object is a finite partition ofX into dis-
joint subsetsC  hC1, C2, . . . , Ckj. There exists a cor-
responding family of indicator functions denoted by the
© 1998 The American Physical Society
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same symbolC  hxC1 , xC2 , . . . , xCk j wherexCsxd  1
for x [ C; xCsxd  0 for x ” C. The partitionC pro-
duces the density matrix

rC sxjyd 
kX

j1

xCj sxdxCj s yd . (8)

As the functions xCj are mutually orthogonal and
kxCj k 

p
msCjd the eigenvalues ofrC are equal to

hmsCjd; j  1, . . . , kj and the von Neumann entropy of
rC is equal to the standard entropy of the partition

SfrC g  2

kX
j1

msCjd ln msCjd . (9)

The main idea of the theory developed in [4–6] is t
replace partitions of the phase spaceX by the “opera-
tional partitions of unity” which consist of elements of the
algebra of bounded (complex) observables of a classic
or quantum dynamical system. This approach was d
signed for the analysis of infinite quantum systems; ne
ertheless, it was successfully applied for the discussion
“quantum chaos” in finite quantum systems [7] and in th
classical domain also [6]. In the case of a classical d
namical system an operational partition of unity is simpl
a family F  h f1, f2, . . . , fkj of complex-valued func-
tions,fj : X ° C satisfying the normalization condition

kX
j1

j fjsxdj2  1 . (10)

The density matrixrF associated with the partition of
unity F is defined as

rF sxjyd 
kX

j1

fjsxdfp
j s yd . (11)

Such density matrices have additional properties

rsxjxd  1, jrsxjydj # 1 . (12)

Generally, the functionsfj are not orthogonal and the
computation of the entropySfrF g involves the solution
of the eigenvalue problem forrF .

The dynamical mapF enters the game when we
introduce the time-dependent density matricesr

snd
F which

possess again the structure given by Eq. (11),

r
snd
F sxjyd 

n21Y
m0

rF sssFmsxdjFms ydddd


X

j1,j2,...,jn

fj1 sxdfj2sssFsxdddd · · · fjn sssFn21sxdddd

3 fp
j1

s ydfp
j2

sssFs ydddd · · · fp
jn

sssFn21s ydddd . (13)

The family of density matriceshrsnd
F j can be seen as

obtained by applying a certain, discrete time, complete
positive dynamical semigrouphLn; n  0, 1, 2, . . .j to the
initial pure statejjl kjj, jsxd ; 1. One can explicitly
compute the action ofL, which is a special case of the
o
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dynamical map given by (3)

Lsrd 
dX

j1

f̂jUrUyf̂
y
j , r

snd
F  Lnsjjl kjjd , (14)

where f̂ is the multiplication operator by the functionf
andU is given by Eq. (1). The time evolutionhLn; n 
0, 1, 2, . . .j is an irreversible one, increases always th
entropy and can be interpreted as an effect of a “fuzz
position repeated measurements” [8] performed at discre
times on the fictitious quantum system with the dynamic
given by the unitary operatorU.

The dynamical entropyhfF g of the partition of unityF
is an asymptotic entropy production per a single evolutio
step, i.e.,

hfF g  lim
n°!`

1
n

Sfrsnd
F g . (15)

It is easy to check that in the case of a partition of unity
given by the indicator functionshxCj j we obtain again the
standard dynamical entropy of the partitionhCjj of X. The
following result can be proved using the results of [6].

Theorem.—For the dynamical systemsX, dm, Fd

hKS  sup
F

hfF g , (16)

wherehKS is a Kolmogorov-Sinai entropy and the supre-
mum is taken over all partitions of unity.

Obviously, it follows from the very definition of the
Kolmogorov-Sinai entropy that it is enough to take the
supremum over partitions consisting of indicator functions
On the other hand, taking the supremum over all gen
eralized partitions is practically useless. Therefore it i
necessary to strengthen the above theorem by taking t
supremum over certain restricted classes of functions.
has been done in [6] where a rather technical notion o
H-densesubalgebras has been introduced. As a cons
quence it has been proved that taking a supremum in t
right-hand side of Eq. (16) over partitions of unity consist
ing of functions from aH-dense subalgebra we obtain the
Kolmogorov-Sinai entropy of the systemsX, dm, Fd.

The following examples ofH-dense subalgebras of
real or complex-valued functions appear in applications
(a) stepwise functions; (b) continuous functions; (c) infin
itely differentiable (smooth) functions; (d) polynomials of
a given set of generating functions.

The example of the Arnold cat map studied in [6] show
that using partitions of unity of the type (d) one can
simplify the computation of the dynamical entropy. In the
following we would like to show that smooth partitions
(c) introduce new useful analytical techniques into th
classical ergodic theory.

Consider a smooth ergodic dynamical system with
compactn-dimensional manifoldX. In a local coordinate
system the dynamical mapx0  Fsxd is given by a set of
equations

x0k  fksx1, x2, . . . , xnd . (17)
2041
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The chaotic properties of such a system are characteri
by the Lyapunov exponents. To define them we conside
Riemannian metric onX given by the metric tensorgrssxd.
The infinitesimal distancedl between two points is given
by sdld2  grssxddxrdxs and changes in time accord
ing to

sdld2smd 
≠f

p
smdsxd
≠xr

gpqsssFmsxdddd
≠f

q
smdsxd
≠xs

dxrdxs,

(18)

where we apply the following notation for the powers o
the dynamical map

x0
smd  Fmsxd, x0k

smd  f
k
smdsx

1, x2, . . . , xnd . (19)

Depending on the direction of the vectordxr the distance
dlsmd increases or decreases according to the exponen
law ,exp lpm, where hlp; p  1, 2, . . . , nj is a set of
Lyapunov exponents which are independent on the me
grs andx [9].

As we are looking for the relations between the Lya
punov exponents and the Kolmogorov-Sinai entropy w
take a fixed partitionF which consists of smooth real func-
tions. Because of the property (12) we can always wr
puttingr

snd
F ; rsnd

≠

≠yr
rs1dsxjydyx  0 , (20)

2
≠2

≠yr≠ys
rs1dsxjydyx  grssxd, fgrssxdg $ 0 ,

(21)

with a positively defined real-valued matrixfgrssxdg. In
the following we shall use it as a Riemannian metric o
X, and therefore we can keep the same notation as in (1
After a straightforward computation we obtain

Asnd
rs sxd  2

≠2

≠yr≠ys
rsndsxjydyx


n21X
m0

≠f
p
smdsxd
≠xr

gpqsssFmsxdddd
≠f

q
smdsxd
≠xs

. (22)

Our first goal is to calculate the mean value of the followin
self-adjoint operator acting onL2sX, dmd

Hsnd  2
1
4 sfAsndsxd21grs≠r≠s 1 H.c.d (23)

in the quantum state given by the density matrixrsnd.
From Eqs. (22) and (23) it follows that

trsrsndHsndd  ny2 . (24)

The next step is to estimate limn!`
1
n log sss detfAsndsxdgddd.

Taking into account the structure of the matrixfAsndsxdg
(22), we see that the product of its eigenvalues is dom
nated (up to a multiplicative constant) by a product o
exph2lpnj with lp . 0 corresponding to “stretching di-
rections.” Therefore

lim
n!`

1
n

lnsdetfAsndgd # 2
X

p;lp.0

lp . (25)
2042
zed
r a

-

f

tial

tric

-
e

ite

n
8).

g

i-
f

To prove the Ruelle’s inequality [10], we construct the
density matrixdsnd which maximizes the entropy under the
condition

trsdsndHsndd  ny2 . (26)

The structure ofdsnd is the following:

dsnd  Z21 exps2bHsndd . (27)

The density matrixdsnd describes the quantum equilib-
rium state (at the inverse temperatureb) of the particle
with the configuration spaceX and the classical Hamil-
tonianH  1

2 fAsnd21grspr ps. Consider for simplicity the
one dimensional case of a quantum particle on an interv
f0, Lg with the classical HamiltonianH1  p2y2m. For
large values of the massm the semiclassical approxima-
tion will be valid, and the quantum entropySqfbg of the
equilibrium state at the inverse temperatureb can be writ-
ten as

Sqfbg  Sclfbg 1 os1ymd,

Sclfbg 
1
2 lns2pmd 1 ln L 2

1
2 ln b 1

1
2 ,

(28)

whereSclfbg is the classical entropy for this model.
As we are computing limn!`s1yndSsdsndd, then accord-

ing to Eq. (28) the nontrivial contributions come from the
degrees of freedom corresponding to the eigenvalues
Asnd which grow exponentially withn. For such a case all
quantum and finite volume corrections do not contribu
to the final result, the classical counterpart of the conditio
(26) givesb ø 1, and the leading term for the entropy is
obtained from the classical expression for the free partic
with the “mass matrix”Asnd

Ssdsndd ø 1
2 lnsdetAsndd . (29)

Combining now the inequality (25), the estimation (29)
and the fact thatSsrsndd # Ssdsndd, we obtain

lim
n!`

1
n

Ssrsndd #
X

p;lp.0

lp . (30)

As by a proper choice of the smooth partitionF we can
approach the supremum in (13), we obtain the Ruelle
inequality

hKS #
X

p;lp.0

lp . (31)

The standard definition of the dynamical entropy i
given for discrete time dynamical systems. To appl
it for continuous time dynamicshFt; t [ Rj we have
to introduce a time stept, calculate the Kolmogorov-
Sinai entropy for the corresponding dynamical mapFt ,
and then using the propertyhKSsFnd  jnjhKSsFd we
may definehKS  hKSsFtdyt. We shall see that the
presented approach enables us to avoid the procedure
discretization.
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Consider a continuous time dynamical system
sX, dx, Ftd given by the equations of motion

dxr
t

dt
 Gr sxtd, xt  Ftsxd , (32)

with the measure (volume) preservation conditio
≠rGr  0. Instead of a discrete time dynamical sem
group hLn, n  0, 1, . . .j given by (14), we use the
completely positive dynamical semigroup [3] describin
“continuous time fuzzy position measurement” [8] an
governed by the following Markovian master equatio
which is a particular case of (4) and (5) with self
adjointVb :

drt

dt
 2ifK , rtg 2

1
2

X
j

fffŵj , fŵj , rtg ggg . (33)

HereK  iGr sxd≠r is the generator of the unitary Koop-
man’s evolution (“quantum Hamiltonian”) and̂wj denotes
the multiplication operator by the real functionwjsxd. Ap-
plying Trotter’s product formula and using explicit expres
sions, we can easily find the solution of (33) with the initia
conditionr0sxjyd  1,

rtsxjyd  exp

(
2

1
2

X
j

Z t

0
fwjsxsd 2 wjs ysdg2 ds

)
,

t $ 0 . (34)

We can define now the dynamical entropy of the stochas
perturbationW  sw1, w2, . . . , wld as

hfWg  lim
t!`

1
t

Sfrtg . (35)

The supremum ofhfWg over a large enough class o
stochastic perturbations is expected to be equal to
Kolmogorov-Sinai entropy defined in a standard wa
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Repeating our analysis of above one can easily pro
that this supremum is not larger than the sum of positi
Lyapunov exponents.
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