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A recently developed approach to classical and quantum dynamical entropy involving generalized
partitions of unity allows one to use the mathematical formalism typical for quantum statistical
mechanics to analyze classical dynamical systems. In particular, density matrices, their von Neumann
entropy, and irreversible quantum dynamical maps corresponding to measurement processes appear. To
illustrate the power of this new technique we give a simple proof of the Ruelle’s inequality between the
Kolmogorov-Sinai entropy and the Lyapunov exponents. Continuous time classical dynamical systems
are briefly discussed also. [S0031-9007(98)07034-3]

PACS numbers: 05.45.+b, 03.65.Sq, 05.30.—d

In this Letter we discuss mostly conservative, discretadensity matrices (Schrodinger picture) and represented in
time classical dynamical systems described by a tripléhe form
(X,du,®) wheredu denotes a probability measure on
the phase spack and® : X — X is a measure preserv- p = Ap) =D WepW], 3)
ing dynamical map. Koopman'’s formalism [1] allows us @
to describgX, du, ®) in terms of “quantumlike objects” with > Wiw, = 1. These dynamical maps can trans-
the Hilbert spacé.?(X, d u) of square integrable functions form pure states into mixed ones and change the entropy
with the scalar productf,g) = [ f*(x)g(x)du(x) and of a state. Discrete time open quantum systems are
the unitary operator described by the powers of the single dynamical map

_ 2 {A";n € N} which form a discrete time dynamical
(U ) = f(P&), fELXKdp). @ semigroup. For continuous time irreversible dynamical

The analysis of spectral propertiesi@fis one of the basic  systems we use quantum Markovian master equations of
topics in the classical ergodic theory [2]. The recentlyithe form

developed approach to dynamical entropy of classical d

and quantum systems adds new ideas and techniques to 2P: _ Lp;; t=0, 4)

Koopman'’s formalism. In particular, the notion of density dt ) o )

matrix and completely positive maps which are used invith  the  standard  (Lindblad-Gorini-Kossakowski-

quantum statistical mechanics to describe the dynamicgudarshan) form of the generator [3]

of an open system interacting with an environment or . 1 + +

being supbject %/o a measuremegt process will find classical “P = —ilH.p] + 2 2{Ve.pVel + Vep. Vel

applications. One should stress here that the quantum P (5)

systems which appear in this approach are fictitious . o

ones with no direct physical connection to the originalWhere#f = H' is a Hamiltonian of the system.

classical system. The main idea is to use the mathematicagl !N Our special case of the Hilbert spagé(X,du) a

formalism and experience gained in quantum physics t§eNSity matrixp is given by a positively defined in-

solve the problems of classical ergodic theory. tegral kernelp(x|y) satisfying the normalization condi-
We begin with the notion of a density matrixwhich ~ tlon Jp(xlx)du(x) =1 and its spectral decomposition

is a trace class positive and normalizegh (¢ 1) operator ~PECOMES

acting on the Hilbert space of the quantum system and

describing a mixed state of the system. The average value

of the observable given by a self-adjoint operatoe= A' )

at the state reads(A) = tr(pA). Denoting the (possibly With

degenerated) eigenvalues pfby {A;} we can calculate

the von Neumann entrop8f p | of the density matrixp as

S[pl==> A;InA; = —tr(p In p). ) S =1. @)
J J

pely) = 2 (e (5), (6)
J

fX PO dp) = 85 A >0,

An irreversible (non-Hamiltonian) dynamical map for the In the standard approach to the Kolmogorov-Sinai entropy
open quantum system interacting with an environmenthe fundamental object is a finite partition &finto dis-
and particularly with a measuring apparatus is giverjoint subsetsC = {Cy,C»,...,C;}. There exists a cor-
by a completely positive linear transformation acting onresponding family of indicator functions denoted by the
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same symbolC = {x¢,, xc,---»> xc.} Where yc(x) =1  dynamical map given by (3)

for x € C; yc(x) = 0 for x &€ C. The partitionC pro- d ot -
duces the density matrix Alp) = D J;UupUt}], pr = A'(I€)¢&D, (14)
k Jj=1
pc(xly) = ;XC/(X)XC/(”' (8) where f is the multiplication operator by the functiof

_ and U is given by Eq. (1). The time evolutiop\";n =
As the functions yc, are mutually orthogonal and 0,1,2,...} is an irreversible one, increases always the

llxc, Il = +/u(C)) the eigenvalues ofpc are equal to entropy and can be interpreted as an effect of a “fuzzy
{u(Cj);j = 1,....k} and the von Neumann entropy of position repeated measurements” [8] performed at discrete
pc is equal to the standard entropy of the partition times on the fictitious quantum system with the dynamics
k given by the unitary operatdy.
Slpc]l = — Z w(Cj) In u(Cj). 9) The dynamical entropi[ F ] of the partition of unity’F
=1

j is an asymptotic entropy production per a single evolution

The main idea of the theory developed in [4—6] is toSt€P: i-€-
replace partitions of the phase spaXeby the “opera- — 1 )
tional partitions of unity” which consist of elements of the hF]= LN n Sloz 1.

algebra of bounded (complex) observables of a classicq{ is easy to check that in the case of a partition of unity

or quantum dynamical system. This approach was degjiven by the indicator function§yc,} we obtain again the

signed for_the analysis of infinite quantum systems; nevVgo o qarqg dynamical entropy of the partitigy} of X. The
ertheless, it was successfully applied for the discussion q llowing result can be proved using the results of [6].

“quantum chaos” in finite quantum systems [7] and in the Theorem—For the dvnamical svstef . d u. ®
classical domain also [6]. In the case of a classical dy- ' y I ystenx, d ., @)

namical system an operational partition of unity is simply hxs = suph[F], (16)
a family F = {f1, f2,...,fx} of complex-valued func- F
tions, f; : X — C satisfying the normalization condition Wherehs is a Kolmogorov-Sinai entropy and the supre-
k mum is taken over all partitions of unity.
Z Ifj(x)|2 =1. (10) Obviously, it follows from the very definition of the
j=1 Kolmogorov-Sinai entropy that it is enough to take the
supremum over partitions consisting of indicator functions.
On the other hand, taking the supremum over all gen-
' eralized partitions is practically useless. Therefore it is
_ ' x necessary to strengthen the above theorem by taking the
Py xly) j;f’(x)ff(y)' (11) supremum over certain restricted classes of functions. It
) ) N ) has been done in [6] where a rather technical notion of
Such density matrices have additional properties H-densesubalgebras has been introduced. As a conse-
plxlx) =1, lp(xIy) = 1. (12) quence it has been proved that taking a supremum in the
right-hand side of Eq. (16) over partitions of unity consist-
Generally, the functiong; are not orthogonal and the ing of functions from aH-dense subalgebra we obtain the
computation of the entrop§[p ] involves the solution Kolmogorov-Sinai entropy of the syste(®, d u, ®).
of the eigenvalue problem fqry. The following examples ofH-dense subalgebras of
The dynamical map® enters the game when we real or complex-valued functions appear in applications:
introduce the time-dependent density matripé'g which (&) stepwise functions; (b) continuous functions; (c) infin-

(15)

The density matrixp f associated with the partition of
unity F is defined as

possess again the structure given by Eq. (11), itely differentiable (smooth) functions; (d) polynomials of
- n—1 a given set of generating functions.
py (xly) = l_[ p (D" (x)|P™(y)) The example of the Arnold cat map studied in [6] shows
m=0 that using partitions of unity of the type (d) one can
_ Z Fi (@) - £ (@1 (x)) simplify the computation of the dynamical entropy. Inthe

i following we would like to show that smooth partitions
o () o (=] (c) introduce new useful analytical techniques into the
XIS G@ ) - f5, (@7 (13) classical ergodic theory.

The family of density matrice:{p(}'f)} can be seen as Consider a smooth ergodic dynamical system with a

obtained by applying a certain, discrete time, Completeb;on:pac;ur/]—d:jmensu_)nalll mann‘_olgf. In a I.ocal goordlntat?
positive dynamical semigroup\";n = 0,1,2,...} to the system the dynamical mag = ©(x) is given by a set o

initial pure state|¢)(¢,£(x) = 1. One can explicitly Squations
compute the action of\, which is a special case of the = gkt X2, xY). (17)
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The chaotic properties of such a system are characterized To prove the Ruelle’s inequality [10], we construct the
by the Lyapunov exponents. To define them we consider density matrixs ) which maximizes the entropy under the
Riemannian metric oX given by the metric tensqy,(x). condition
The infinitesimal distancé! between two points is given

(n) ry(n)y —
by (81 = g,,(x)6x"8x* and changes in time accord- tr(8™H™) = v/2. (26)
Ing to ’ o m The structure o™ is the following:
9D (x IPmy(x) _
(81)*(m) = #g,,q(dﬂ”(x)) # Sx"6x°, 8" =z exp(—BH™). (27)
(18) The density matrix$"™ describes the quantum equilib-

rium state (at the inverse temperaty¢ of the particle
with the confligu(ra)ltion spac& and the classical Hamil-
tonianH = 3[AW~17p, p,. Consider for simplicity the
Xy = @"(),  xly = Sl x). (19)  one dimensional case of a quantum particle on an interval
Depending on the direction of the vect®x” the distance [0, L] with the classical HamiltoniadH; = p?/2m. For
51(m) increases or decreases according to the exponentit@drge values of the mass the semiclassical approxima-
law ~exp A,m, where{A,;p = 1,2,...,v} is a set of tion will be valid, and the quantum entrogy[ 3] of the
Lyapunov exponents which are independent on the metrigquilibrium state at the inverse temperatgrean be writ-
grs andx [9]. ten as
As we are looking for the relations between the Lya- .
punov exponents and the Kolmogorov-Sinai entropy we Sl B1 = Sal Bl + o(1/m),
take a fixed partitiorfF which consists of smooth real func- SalB] = %In(zwm) +InL — %In B + %

tions. Because of the property (12) we can always write . . .
property (12) Y wheresS,[ 8] is the classical entropy for this model.

; m _ @
puttingp 5 = p” As we are computing lim...(1/7)S(8™), then accord-
(20) ing to Eqg. (28) the nontrivial contributions come from the
degrees of freedom corresponding to the eigenvalues of
D (xly) . = g.0(x) Ce. ()] = 0 A" which grow exponentially witl. For such a case all
gyrays P y=e T Enld), Ers\ X1 =1, quantum and finite volume corrections do not contribute
1) to the final result, the classical counterpart of the condition
(26) givesB = 1, and the leading term for the entropy is

with a positively defined real-valued_ matlﬁ>g_rs(X)]- In obtained from the classical expression for the free particle
the following we shall use it as a Riemannian metric onyith the “mass matrix"A®

X, and therefore we can keep the same notation as in (18).

where we apply the following notation for the powers of
the dynamical map

(28)

d 1
y" ,0( )(Xb’)y:x =0,

After a straightforward computation we obtain S(8™) = 3 In(deta™). (29)
AP (x) = — a2 2™ (xly)y— Combining now the inequality (25), the estimation (29),
s Ay ays e and the fact thas(p™) = S(8™), we obtain
9B (x) 3 (o) (x)
=2 o (@) — R (22) im—sp™ = 3 A, (30)
m=0 n—x n Pk, >0
Our first goal is to calculate the mean value of the following ) N
self-adjoint operator acting ab*(X, d w) As by a proper choice of the smooth partitign we can
() 1A () g n—17rs approach the supremum in (13), we obtain the Ruelle’s
H" = =3 ([A"() %00 + He)  (23)  jnequality
in the quantum state given by the density matpi%’.
From Egs. (22) and (23) it follows that hys =< Z A, (31)
tr(p(")H(”)) =v/2. (24) Pty >0
The next step is to estimate ljm.. + log (defA® (x)]). The standard definition of the dynamical entropy is

Taking into account the structure of the matfil®(x)]  given for discrete time dynamical systems. To apply
(22), we see that the product of its eigenvalues is domiit for continuous time dynamicg®;;r € R} we have
nated (up to a multiplicative constant) by a product ofto introduce a time step, calculate the Kolmogorov-
exp2A,n} with A, > 0 corresponding to “stretching di- Sinai entropy for the corresponding dynamical mép,

rections.” Therefore and then using the properthks(®”) = |nlhxs(®) we
| may definehxs = hxs(®P,)/7. We shall see that the
lim — In(defA™]) = 2 Z Ap. (25) presented approach enables us to avoid the procedure of
e pid,>0 discretization.
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Consider a continuous time dynamical systemsRepeating our analysis of above one can easily prove

(X, dx, ®,) given by the equations of motion that this supremum is not larger than the sum of positive
dx’ Lyapunov exponents.
d; =T"(x,), x; = ®,(x), (32) The author thanks Mark Fannes for the remarks on the

) ) ~manuscript. The work is supported by Grant No. KBN 2
with the measure (volume) preservation conditionpo3g 144 09.

d,I'" = 0. Instead of a discrete time dynamical semi-

group {A",n =0,1,...} given by (14), we use the

completely positive dynamical semigroup [3] describing

“continuous time fuzzy position measurement” [8] and .
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