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Length-Scale Dependence of the Superconductor-to-Insulator Quantum Phase Transition
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One-dimensional (1D) arrays of small-capacitance Josephson junctions demonstrate a sharp transition,
from Josephson-like behavior to the Coulomb blockade of Cooper-pair tunneling, as the effective
Josephson coupling between nearest neighbors is tuned with an externally applied magnetic field.
Comparing the zero-bias resistance of three arrays with 255, 127, and 63 junctions, we observe a
critical behavior where the resistance, extrapolated toT ­ 0, is independent of length at a critical
magnetic field. Comparison is made with a theory of thisT ­ 0 quantum phase transition, which maps
to the 2D classicalXY model. [S0031-9007(98)06542-9]
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The superconductor-to-insulator (SI) transition is a
archetypical example of a quantum phase transition [
The Josephson junction (JJ) array is an ideal system
the study of this transition, because its fabrication is we
controlled, and the array parameters can be accura
determined and directly related to the theoretical mode
We present the first experimental measurements of
SI transition in 1D arrays of small-capacitance Josephs
junctions. Our experiments directly demonstrate ho
measured transport quantities, which are determined
quantum fluctuations, have a diverging length dependen
at the quantum critical point.

The SI transition has been extensively studied in 2
Experiments have been carried out on granular [2–4] a
homogeneous [5,6] thin films. Theoretical studies of th
2D case have concentrated on modeling the films as
arrays of small capacitance Josephson junctions (so
recent references are [7–12]). Experiments with su
arrays have been carried out [13,14]. Less extensiv
studied is the SI transition in 1D JJ arrays, where theo
has been done [1,8,15–19] and is currently of acti
interest. Experiments with 1D systems have been carr
out on long and narrow thin films of both granula
[20] and homogeneous [21] composition. In contrast
thin films, the 1D JJ array can be made with a hig
degree of uniformity, and the parameters of interest
the theory can be directly and independently measur
Furthermore, we can design and fabricate a quasi-1D
array in such a way that we tunein situ the ratio of the
Josephson coupling energy to the charging energy, wh
is the critical parameter in the theory.

Several 1D JJ arrays with nominally identical junctio
parameters, but having a different number of junctions,N ,
could be fabricated simultaneously on one chip. A sca
ning electron micrograph of a section of an array is show
04 0031-9007y98y81(1)y204(4)$15.00
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in Fig. 1. The fabrication of the arrays has been discusse
in detail elsewhere [22]. The arrays were made of Al
with an Al2O3 tunnel barrier. Each of the Al electrodes in
the series array is connected to its neighbors by two junc
tions in parallel, thus forming a superconducting quantum
interference device (SQUID) between nearest neighbor
The SQUID geometry was used so that an externa
perpendicular magnetic field,B, could tune the effec-
tive Josephson coupling,EJ , between nearest neighbors,
EJ ­ EJ0j cospBAloopyF0j, whereAloop ­ 0.12 mm2 is
the effective area of the SQUID loop. Because the geo
metrical inductance of the SQUID loopL0 ø F0y2pIC0,
an external magnetic field creates a phase shift so th

FIG. 1. A scanning electron micrograph of a section of the
Josephson junction array. Tunnel junctions are formed a
the overlap between the base electrode (darker gray) and t
top electrode (lighter gray). The hole between neighborin
electrodes forms the SQUID geometry.
© 1998 The American Physical Society
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the critical current between nearest neighbors is mod
lated in a periodic way. Here,EJ0 ­ sF0y2pdIC0, where
F0 ; hy2e ­ 20.7G mm2 is the superconducting flux
quantum, andIC0 ­ pD0y2eRT is the Ambegaokar-
Baratoff critical current [23], which is calculated from
the superconducting energy gap,D0, and the junction nor-
mal tunnel resistance,RT . In what follows, we will re-
fer to the lumped SQUID as an effective junction with
a tunableEJ , and a fixed charging energyEC ­ e2y2C,
whereC is the sum (parallel combination) of two junction
capacitances.

The array resistance was found by taking the slop
of the current-voltage (I-V ) characteristic at high bias,
V . Ns2D0yed, where2D0 ­ 430 meV is the measured
value of the gap for these AlyAl 2O3yAl tunnel junctions.
This value of array resistance is consistent to with
0.2% with that value measured at lower bias, but at lar
magnetic fields, where superconductivity is complete
suppressed. Dividing byN, we could calculate the normal
state resistance per junction,RT . The capacitance,C ­
csA, is determined from the junction area,A, which is
measured from a scanning electron micrograph, and
specific capacitance,cS . 45 fFymm2 [24].

Another important array parameter is the capacitan
of each electrode to ground,C0. The measurements
described here were made on a sample with a A
ground plane located at a distance of1.5 mm. By mak-
ing the nearest neighbor capacitance relatively larg
C . 3.5 fF, and the spacing between electrodes rel
tively small (0.2 mm), we designed the arrays to have
large electrostatic screening lengthL ; sCyC0d1y2 . 10.
When an excess charge is localized to one electrode
will polarize the array over a distance2L junctions. Hav-
ing L ¿ 1 should reduce the effects of disorder from ran
dom offset charges due to charge traps in the substra
because any potential due to random offset charges sho
be averaged over this length scale.

Measurements were made in a dilution refrigerato
Special care was taken to filter the sample from hig
frequency electromagnetic radiation [22]. The preamp
fier stage of our measurement scheme was specially
d
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FIG. 2. Dependence of theI-V curves on array length,N , T ­ 50 mK. (a) TheI-V curves atB ­ 0 G showing Josephson-like
behavior and the critical currentIC . (b) TheI-V curves atB ­ 71 G showing the Coulomb blockade of Cooper-pair tunneling an
the threshold voltageVt . (c) The magnetic field dependence ofIC. (d) The magnetic field dependence ofVt .
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signed to measure the high resistances associated w
the Coulomb blockade [25]. The uniformity of the ar-
rays could be estimated from the normal state resistanc
which is found to be proportional to the number of junc-
tions, with a maximum variation inRT of 66%. For
arrays withEJ ¿ EC we observe the individual critical
currents in the series array, which display a high degre
of uniformity. Furthermore, the complete suppression o
the Cooper pair current with magnetic field (see below
demonstrates that the two junctions of each SQUID ar
very nearly identical. In this paper, we discuss thre
arrays made on one chip, with a differing number of junc
tions; N ­ 255, 127, and 63. All three arrays had junc-
tion areaA . 0.039 mm2 andRT ­ 4.9 kV 6 6%, from
which we calculateEJ0yEC . 142 meVy23 meV ­ 6.1.

Figure 2a shows theI-V curve of the three arrays
at zero magnetic field. The arrays are not truly supe
conducting, and there was actually a slope to the “zero
voltage” branch of theI-V curve, which gave a finite
resistance. Furthermore, the observed “critical currents
i.e., first maximum ofI vs V , occurring at.0.03 mV,
are only1% of the classical Ambegaokar-Baratoff value.
This critical current shows a clear dependence on arra
length: The longer the array, the largerIC, indicating that
superconducting behavior is favored in the longer arra
As EJ was suppressed belowEJ0 with an externally ap-
plied magnetic field, the measured critical current of eac
array was reduced, and the resistance on the zero-volta
branch increased. Figure 2c shows the magnetic field d
pendence ofIC . In the neighborhood ofBC ­ 58 the
curves in Fig. 2c cross one another so that forB . BC ,
the longer the array, the smaller the critical current.

Figure 2b shows theI-V curve of the three arrays at a
fixed magnetic fieldB . BC . Here we see a new type of
behavior which is dual to theB , BC behavior. TheI-V
curve is characterized by a zero current state for voltag
below a threshold voltage, where the array switches
a finite current state. The threshold voltage increase
as the magnetic field is increased, characteristic of th
Coulomb blockade of Cooper pair tunneling (CBCPT)
The magnetic field dependence of the threshold voltag
205
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for B . BC is shown in Fig. 2d for the three arrays
We see that the longer the array, the larger the thresh
voltage, indicating that insulating behavior is favored
the longer array.

Figures 2a–2d demonstrate how two quantities whi
characterize the nonlinearity of theI-V curve, IC and
VT , depend on magnetic field and array length. W
observe that in the longer array, superconducting behav
is favored (largerIC) for B , BC and insulating behavior
is favored (largerVT ) for B . BC . In the neighborhood
of BC there is a dramatic change in the slope of th
I-V curves at zero bias, as the arrays make a transit
from Josephson-like behavior to the CBCPT. To pro
this change in slope, we used a small amplitude, lo
frequencys13 Hzd excitation to measure both the curren
dIrms and voltagedVrms by phase sensitive detection with
two lock-in amplifiers. The excitation was then regulate
so that the productdIrmsdVrms was held constant, around
zero bias. The zero-bias resistance was taken to
R0 ; dVrmsydIrms for a fixed dissipation in the array of
10216 W. This measurement technique allowed us to u
an excitation just large enough for a detectable sign
while at the same time small enough so that we cou
probe thelinear response of the array as it undergoe
the transition. R0 was thus measured as a function o
temperature and magnetic field.

The temperature dependence ofR0 is shown in Fig. 3
for several values of the magnetic field for two array
Each set of curves (solidN ­ 255, dashedN ­ 63)
shows qualitatively similar behavior: At zero magnet
field, we see that as each array is cooled,R0 decreases
to a value which is temperature independent. As t
magnetic field is increased, the resistance of this flat t
increases, until it reaches a critical value, whereR0sT d
curves make a sharp turn to increasing resistance
the temperature goes to zero. Further increasing of
magnetic field drives the array into the insulating sta
with a well defined zero current state below the thresho
voltage.

A comparison of the two sets of curves in Fig. 3 re
veals some very interesting and counterintuitive behavi
Concentrating on the bottom curve of each set (B ­ 0
for N ­ 63, dashed line, andN ­ 255, solid line), we
find that the high temperature resistance is proportio
to the array length. However, as the temperature is lo
ered, these two curves cross, and at low temperatures
resistance of the longer array is smaller than the sho
array. Comparing the sets of curves in Fig. 3 pairwis
we can follow how this crossover behavior evolves asEJ

is tuned with magnetic field (open circles and dotted lin
in Fig. 3). Thus we can determine aT ­ 0 critical point,
where the array resistance appears to be independen
length. This point, which is labeledJp in Fig. 3 is the
point where theR0sT d curves begin to turn upwards, indi
cating insulating behavior asT ! 0 in each array.

We can find explanation for this nonclassical depe
dence ofR0 on temperature and array length in the theo
206
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FIG. 3. Comparison of two arrays withN ­ 255 (solid line)
and N ­ 63 (dashed line). R0sT d is measured at the same
magnetic fields in each set of curves (from bottom to to
B ­ 0, 27, 47, 53, 57, 60, 62, and 64 G). The crossin
point is circled, where the resistance is the same forN ­ 255
and N ­ 63. As we approach the critical magnetic field, the
temperature of this crossing point goes to zero (connect
dotted line). At the critical point (labeledJp) the T ­ 0
resistance is independent of array length.

of the quantum 1D JJ array. Theoretical treatment of th
quantum 1D JJ array, where both the charging and co
pling energy were included, has mapped this problem
the s1 1 1dD classical uniformXY model [1,15], the ex-
tra dimension being imaginary time,ih̄ykBT . The map-
ping could be carried out for a model whereC ø C0
and the dimensionless coupling constant was found to
sEJyEC0 d1y2, whereEC0 ; e2y2C0. For our case, where
C ¿ C0, the effective charging energy is presumabl
EC0 yL, so that the dimensionless coupling constant
J ­ sEJyLECd1y2.

In this picture, quantum “phase slips,” or finite voltage
across the 1D array at zero temperature, correspond
the appearance of free vortices in the 2DXY model.
Temperature enters into the picture by setting the fini
size of the system in the imaginary time dimension. In
real experiment, finite size effects will play an importan
role. The temperature independent “flat tail” may resu
when we cool the real system so that the imagina
time dimension is larger, and the finite size in real spac
determines the energy for free vortex formation. Takin
the resistance at the minimum temperature,R0sTmind as



VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998

,
,

k
h

,

,

tt.

,

.

.

.

.

l-
104

105

106

107

0.3 0.4 0.5 0.6 0.7 0.8

N = 255
N = 127
N = 63

R
0 (

Ω
)

J = (E
J
 / E

C
 Λ)1/2

T = 50mK

FIG. 4. The zero-bias resistance,R0sTmind, plotted ver-
sus the experimental value of the coupling constan
J ­ fEJsBdyLEC0g1y2, at T ­ 50 mK. In the vicinity of
J ­ Jp . 0.5 the three curves cross one another. ForJ , Jp

(insulating side)R0 increases asN increases. ForJ . Jp

(superconducting side)R0 decreases asN increases.

being proportional to the probability for free vortex
formation, one can argue that [26]

R0sTmind , N22pJ . (1)

The power law results because the energy for vort
formation is logarithmic in the system size for the 2DXY
model. AtJ ­ Jp ; 2yp, R0sTmind is independent ofN ,
and a transition occurs which becomes sharper asN ! `.
For J . Jp, the measuredR0sTmind would actually be
smaller for a larger array. This counterintuitive behavio
arises because a larger system is more stable aga
quantum fluctuations. Precisely this behavior is observ
when comparing the SI transition in these three arrays
different lengths (see Fig. 3 for comparison ofN ­ 255
andN ­ 63).

Figure 4 showsR0 taken at the lowest temperature
versusJ ­ sEJyLECd1y2, which can be calculated from
the magnetic field. The absolute magnitude ofJ has
a large experimental uncertainty of about a factor
62, primarily due to uncertainty in the values ofL

and EC , which should nevertheless be the same for
three arrays. The observed value ofJp . 0.5, where the
three curves cross one another in Fig. 4, does comp
well with the simple theoretical value of2yp ­ 0.637.
However, the power law behavior predicted by Eq. (1
is not observed in the critical region. This may be du
to the fact that (1) assumes a square array, and negl
the screening effects of bound vortex-antivortex pair
Nevertheless, the mapping to a 2DXY model captures
the basic transition, and its qualitative dependence onN .
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