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One-dimensional (1D) arrays of small-capacitance Josephson junctions demonstrate a sharp transition,
from Josephson-like behavior to the Coulomb blockade of Cooper-pair tunneling, as the effective
Josephson coupling between nearest neighbors is tuned with an externally applied magnetic field.
Comparing the zero-bias resistance of three arrays with 255, 127, and 63 junctions, we observe a
critical behavior where the resistance, extrapolated'te- 0, is independent of length at a critical
magnetic field. Comparison is made with a theory of this= 0 quantum phase transition, which maps
to the 2D classicakY model. [S0031-9007(98)06542-9]

PACS numbers: 73.40.Gk, 73.23.Hk, 74.50.+r

The superconductor-to-insulator (SI) transition is anin Fig. 1. The fabrication of the arrays has been discussed
archetypical example of a quantum phase transition [1]in detail elsewhere [22]. The arrays were made of Al,
The Josephson junction (JJ) array is an ideal system fawith an Al,O; tunnel barrier. Each of the Al electrodes in
the study of this transition, because its fabrication is wellthe series array is connected to its neighbors by two junc-
controlled, and the array parameters can be accuratetions in parallel, thus forming a superconducting quantum
determined and directly related to the theoretical modelsnterference device (SQUID) between nearest neighbors.
We present the first experimental measurements of th€he SQUID geometry was used so that an external
Sl transition in 1D arrays of small-capacitance Josephsoperpendicular magnetic field3, could tune the effec-
junctions. Our experiments directly demonstrate howtive Josephson couplinds;, between nearest neighbors,
measured transport quantities, which are determined b§; = E;o| cosmBAjeop/Pol, Whered oo, = 0.12 um? is
quantum fluctuations, have a diverging length dependendée effective area of the SQUID loop. Because the geo-
at the quantum critical point. metrical inductance of the SQUID lodpy <« & /271,

The Sl transition has been extensively studied in 2Dan external magnetic field creates a phase shift so that
Experiments have been carried out on granular [2—4] and
homogeneous [5,6] thin films. Theoretical studies of the
2D case have concentrated on modeling the films as 2D
arrays of small capacitance Josephson junctions (some
recent references are [7—12]). Experiments with such
arrays have been carried out [13,14]. Less extensively
studied is the Sl transition in 1D JJ arrays, where theory
has been done [1,8,15-19] and is currently of active
interest. Experiments with 1D systems have been carried
out on long and narrow thin films of both granular
[20] and homogeneous [21] composition. In contrast to
thin films, the 1D JJ array can be made with a high
degree of uniformity, and the parameters of interest in
the theory can be directly and independently measured.
Furthermore, we can design and fabricate a quasi-1D JJ
array in such a way that we turie situ the ratio of the
Josephson coupling energy to the charging energy, which
is the critical parameter in the theory.

Several 1D JJ arrays with nominally identical junction F'C- 1. A scanning electron micrograph of a section of the
Josephson junction array. Tunnel junctions are formed at

parameters, but having a different number of junctians, the overlap between the base electrode (darker gray) and the

could be fabricated simultaneously on one chip. A scantop electrode (lighter gray). The hole between neighboring
ning electron micrograph of a section of an array is showrelectrodes forms the SQUID geometry.
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the critical current between nearest neighbors is modusigned to measure the high resistances associated with
lated in a periodic way. Herds;o = (®g/27)Ico, where the Coulomb blockade [25]. The uniformity of the ar-
®y = h/2e = 20.7G um’ is the superconducting flux rays could be estimated from the normal state resistance,
qguantum, andlcy = wAo/2eRr is the Ambegaokar- which is found to be proportional to the number of junc-
Baratoff critical current [23], which is calculated from tions, with a maximum variation iRy of *6%. For
the superconducting energy gag,, and the junction nor- arrays withE; > E. we observe the individual critical
mal tunnel resistance®y. In what follows, we will re-  currents in the series array, which display a high degree
fer to the lumped SQUID as an effective junction with of uniformity. Furthermore, the complete suppression of
a tunableE;, and a fixed charging energyc = ¢*>/2C,  the Cooper pair current with magnetic field (see below),
where(C is the sum (parallel combination) of two junction demonstrates that the two junctions of each SQUID are
capacitances. very nearly identical. In this paper, we discuss three
The array resistance was found by taking the slop&rrays made on one chip, with a differing number of junc-
of the current-voltageI{V) characteristic at high bias, tions; N = 255, 127, and 63. All three arrays had junc-
V > N(2Aq/e), where2A, = 430 upeV is the measured tion aread = 0.039 um’ andR; = 4.9 kQ) *+ 6%, from
value of the gap for these AAlI,O5;/Al tunnel junctions.  which we calculatéE;o/Ec = 142 ueV/23 ueV = 6.1.
This value of array resistance is consistent to within Figure 2a shows thd-V curve of the three arrays
0.2% with that value measured at lower bias, but at largat zero magnetic field. The arrays are not truly super-
magnetic fields, where superconductivity is completelyconducting, and there was actually a slope to the “zero-
suppressed. Dividing by, we could calculate the normal voltage” branch of the/-V curve, which gave a finite
state resistance per junctioRy. The capacitance; =  resistance. Furthermore, the observed “critical currents,”
c;A, is determined from the junction area, which is i.e., first maximum ofl vs V, occurring at=0.03 mV,
measured from a scanning electron micrograph, and thare only1% of the classical Ambegaokar-Baratoff value.
specific capacitanceg = 45 fF/um? [24]. This critical current shows a clear dependence on array
Another important array parameter is the capacitancéength: The longer the array, the larger, indicating that
of each electrode to ground;y. The measurements superconducting behavior is favored in the longer array.
described here were made on a sample with a AWs E; was suppressed belol;, with an externally ap-
ground plane located at a distanceldf um. By mak- plied magnetic field, the measured critical current of each
ing the nearest neighbor capacitance relatively largearray was reduced, and the resistance on the zero-voltage
C = 3.5 fF, and the spacing between electrodes relabranch increased. Figure 2c shows the magnetic field de-
tively small 0.2 wm), we designed the arrays to have apendence oflc. In the neighborhood oB. = 58 the
large electrostatic screening length= (C/Cy)'/? = 10.  curves in Fig. 2c cross one another so thatBor B¢,
When an excess charge is localized to one electrode, the longer the array, the smaller the critical current.
will polarize the array over a distan@e junctions. Hav- Figure 2b shows thé-V curve of the three arrays at a
ing A > 1 should reduce the effects of disorder from ran-fixed magnetic field3 > B-. Here we see a new type of
dom offset charges due to charge traps in the substratbehavior which is dual to thB < B behavior. Thd-V
because any potential due to random offset charges shoutdirve is characterized by a zero current state for voltage
be averaged over this length scale. below a threshold voltage, where the array switches to
Measurements were made in a dilution refrigeratora finite current state. The threshold voltage increases
Special care was taken to filter the sample from highas the magnetic field is increased, characteristic of the
frequency electromagnetic radiation [22]. The preampli-Coulomb blockade of Cooper pair tunneling (CBCPT).
fier stage of our measurement scheme was specially d&he magnetic field dependence of the threshold voltage
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FIG. 2. Dependence of theV curves on array lengthy, T = 50 mK. (a) Thel-V curves atB = 0 G showing Josephson-like
behavior and the critical curretit. (b) Thel-V curves atB = 71 G showing the Coulomb blockade of Cooper-pair tunneling and
the threshold voltag®,. (c) The magnetic field dependencelpf (d) The magnetic field dependencelgf
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for B > B¢ is shown in Fig. 2d for the three arrays. 108
We see that the longer the array, the larger the threshold
voltage, indicating that insulating behavior is favored in
the longer array.
Figures 2a—2d demonstrate how two quantities which
characterize the nonlinearity of theV curve, I and
Vr, depend on magnetic field and array length. We
observe that in the longer array, superconducting behavior
is favored (largei¢) for B < B¢ and insulating behavior
is favored (largeVy) for B > B¢. In the neighborhood
of B¢ there is a dramatic change in the slope of the
I-V curves at zero bias, as the arrays make a transition
from Josephson-like behavior to the CBCPT. To probe
this change in slope, we used a small amplitude, low-
frequency(13 Hz) excitation to measure both the current
dl.s and voltagelV,,s by phase sensitive detection with
two lock-in amplifiers. The excitation was then regulated
so that the producil;,sdV;ns Was held constant, around
zero bias. The zero-bias resistance was taken to be
Ro = dVims/dlms for a fixed dissipation in the array of
10~ W. This measurement technique allowed us to use
an excitation just large enough for a detectable signal,
while at the same time small enough so that we could 10t
probe thelinear response of the array as it undergoes
the transition. Ry, was thus measured as a function of T (mK)
temperature and magnetic field. FIG. 3. Comparison of two arrays witN = 255 (solid line)
The temperature dependenceRf is shown in Fig. 3 and N = 63 (dashed line). Ry(T) is measured at the same
for several values of the magnetic field for two arrays.magnetlc fields in each set of curves (from bottom to top

. _ B =0, 27, 47, 53, 57, 60, 62, and 64 G). The crossing
Each set of curves (solidv = 255, dashedN = 63) point is circled, where the resistance is the sameMo# 255

shows qualitatively similar behavior: At zero magneticand N = 63. As we approach the critical magnetic field, the
field, we see that as each array is cool®g,decreases temperature of this crossing point goes to zero (connected
to a value which is temperature independent. As thelotted line). At the critical point (labeled™) the T = 0
magnetic field is increased, the resistance of this flat taflésistance is independent of array length.

increases, until it reaches a critical value, wh&gT)

curves make a sharp turn to increasing resistance as

the temperature goes to zero. Further increasing of thef the quantum 1D JJ array. Theoretical treatment of the
magnetic field drives the array into the insulating stateguantum 1D JJ array, where both the charging and cou-
with a well defined zero current state below the thresholgling energy were included, has mapped this problem to
voltage. the (1 + 1)D classical uniformXY model [1,15], the ex-

A comparison of the two sets of curves in Fig. 3 re-tra dimension being imaginary timeés/kzT. The map-
veals some very interesting and counterintuitive behaviomping could be carried out for a model wheée <« C
Concentrating on the bottom curve of each set=0  and the dimensionless coupling constant was found to be
for N = 63, dashed line, an&V = 255, solid line), we (E;/E¢,)"/?, whereE¢, = ¢/2C,. For our case, where
find that the high temperature resistance is proportional’ > Cy, the effective charging energy is presumably
to the array length. However, as the temperature is lowE¢,/A, so that the dimensionless coupling constant is
ered, these two curves cross, and at low temperatures tlhie= (E;/AEC)V2.
resistance of the longer array is smaller than the shorter In this picture, quantum “phase slips,” or finite voltage
array. Comparing the sets of curves in Fig. 3 pairwiseacross the 1D array at zero temperature, correspond to
we can follow how this crossover behavior evolvesFas the appearance of free vortices in the 20y model.
is tuned with magnetic field (open circles and dotted lineTemperature enters into the picture by setting the finite
in Fig. 3). Thus we can determineTa= 0 critical point,  size of the system in the imaginary time dimension. In a
where the array resistance appears to be independent i@fal experiment, finite size effects will play an important
length. This point, which is labeled” in Fig. 3 is the role. The temperature independent “flat tail” may result
point where theR(T') curves begin to turn upwards, indi- when we cool the real system so that the imaginary
cating insulating behavior & — 0 in each array. time dimension is larger, and the finite size in real space

We can find explanation for this nonclassical dependetermines the energy for free vortex formation. Taking
dence ofRy on temperature and array length in the theorythe resistance at the minimum temperatuRe(Tmin) as
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