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A new idea of controlling nonadiabatic transitions by an external field is proposed. The b
principle is to periodically sweep an external field at each level crossing to make the overall trans
probability from an initial state to any desirable final state equal to unity. The recently comple
semiclassical theory of nonadiabatic transition enables us to analytically deal with this problem.
present idea may be applicable to various physical and chemical problems, whenever level crossin
created by an external field. [S0031-9007(98)07054-9]
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Recently, there has been a growing interest, bo
experimentally and theoretically, in controlling atomi
and molecular processes by external fields. Cont
of reactions by using either laser coherence (coheren
control) or laser pulse (pulse shape driven control) is o
typical example [1–4]. Control of dynamic processe
can also be realized to some extent by creating so-cal
dressed states in a laser field [2,5,6]. Time-depend
electric and/or magnetic fields are also used to cont
various transitions; examples are the current driven tun
junction and field driven Zener tunneling [7–11]. In
many of the processes mentioned above, nonadiab
transitions at level or potential curve crossings pla
crucial roles, since they are effective to enhance tra
sitions. Recently, a complete set of practically usef
analytical solutions have been derived for the Landa
Zener-Stueckelberg–type curve crossing problems
both time-independent [12–16] and time-depende
[16] cases.

In this Letter, based on this achievement, we propo
a new idea to control nonadiabatic processes so that
overall transition probability to any specified state in
multichannel curve crossing system becomes unity. Th
can be realized by periodically sweeping the external fie
in time at the crossing point. By periodically changin
the field, we can use not only the nonadiabatic transiti
probability for one passage of crossing point but also t
phases and the number of periods as control paramet
Taking a simple two-state curve crossing as a function
time (see Fig. 1), we explain and formulate our basic ide
It should be emphasized that the theory proposed h
can be applied to general multichannel problems, sin
the basic theory of Zhu and Nakamura works nicely fo
them [17].

The transition matrixI which describes the transition
from Fa to Fb (see Fig. 1) is given by
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while the transpose of this matrix,It, describes the
backward transition fromFb to Fa. Here p represents
the nonadiabatic transition probability by one passag
of the crossing pointFx , f is the Stokes phase, and
s0, s1, and s2 are the phase factors which are defined
respectively, by

s0 ­ Re
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dt
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2

Z tb

tx
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FIG. 1. Schematic two diabatic (dotted lines) and two adia
batic (solid lines) potentials. External field oscillates betwee
Fa and Fb , striding the avoided crossing pointFx . The phase
s1 ss2d can be controlled by changingFa sFbd.
© 1998 The American Physical Society
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where DEsFd is the adiabatic energy difference at th
field strengthF, Fp is the solution ofDEsFpd ­ 0, and
Fx is the field strength corresponding to the crossi
point. The timeta for a ­ a, b, x, andp is the time at
which Fstad ­ Fa is satisfied. SinceDE fi 0 on the real
axis, Fp and tp are complex numbers. Explicit compac
expressions ofp and f can be found in Refs. [12–16].
It should be noted that compact analytical expressio
of these quantities are available even for the cases
e

ng

t

ns
that

the two diabatic potentials tangentially touch each oth
sFb ­ Fxd or avoid crossingsFb , Fxd.

The final overall transition matrixTn aftern periods of
oscillation betweenFa andFb is expressed as

Tn ­ Tn, (5)

whereT is the transition matrix for one period which is
given by
T ; ItI ­

"
hp 1 s1 2 pde2icje2is 22i
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ps1 2 pd sinc
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with c ; f 1 s0 1 s1 ands ; 2s0 1 s1 2 s2.
In the case ofn and half periods of traversing the

crossing point, the overall transition matrix is given by

Tn11y2 ­ IsItIdn ­ ITn. (7)

It should be noted that the adiabatic potentials and th
the parametersp, c, andsi si ­ 0 2d are dependent on
the external field. Roughly speaking, the nonadiaba
transition probabilityp, the Stokes phasef, and the
phases0 are dependent on the local functionality of th
adiabatic potentials around the crossing point, name
the sweep velocitysdFydtd of the external field at the
crossing point, while the phase factorss1 and s2 are
dependent on the global functionality of the adiabat
potentials in the rangesFa, Fbd of the field. We try to find
conditions for the parametersfn, p, c, si si ­,1 2dg to
satisfy

P
snd
12 ; jsTnd12j

2 ­ 0 or 1 (8)

or

P
sn11y2d
12 ; jsTn11y2d12j

2 ­ 0 or 1 . (9)

Using the Lagrange-Sylvester formula, we obtain

Tn ­ Tn ­
l1l2sln21

2 2 ln21
1 d
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whereE is the unit matrix andl6 are the eigenvalues of
T , which are given by

l6 ­ e6ij , (11)

where

cosj ­ s1 2 pd coss2c 2 sd 1 p cosssd . (12)

The unitarity of the matrixT requires j to be real.
Equation (12) implies that the nonadiabatic transitio
probabilityp should satisfy

1 2 j cosjj

2
# p #

1 1 j cosjj

2
. (13)

Then the requirements of Eq. (8) lead, respectively, to
us
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ps1 2 pd sin2c ­ 0 (14)

or

P
snd
12 ­ 4

sin2snjd
sin2j

ps1 2 pd sin2c ­ 1 . (15)

In the case of Eq. (14) we simply have the conditio
sinsnjd ­ 0 or sinc ­ 0. It is more interesting and
worthwhile to consider Eq. (15). IfP

snd
12 ­ 1 holds forn

periods, thenP
s2nd
12 ­ 0 must be satisfied for2n periods;

thus Eq. (15) forn may be divided into the following two
conditions:

sins2njd ­ 0 (16)

and

4ps1 2 pd sin2c ­ sin2j . (17)

Since sinsnjd fi 0 in general because of Eq. (15)
Eq. (16) leads to

sin2snjd ­ 1 . (18)

This equation determinesj for a given n, and Eq. (17)
gives a condition forp andc for a givenj. The phases
may be determined form Eq. (12). Equation (17) implie
thatp must satisfy the following condition:

ps1 2 pd $
1
4 sin2 j , (19)

which is the same as Eq. (13).
The above analysis can be summarized as follow

(i) For a given system, the nonadiabatic transition pro
ability p is estimated as a function of the external field
(ii) From Eq. (18),j is determined for an appropriately
specifiedn. If p is not in the range of Eq. (13), the exter
nal field (mainly the sweep velocity) and/orn should be
modified so that this condition is satisfied. (ii) The phas
c is controlled by changings1 to satisfy Eq. (17), while
s is controlled by changings2 to satisfy Eq. (12). These
can be realized by adjusting the oscillation periodn and
the rangesFa, Fbd of the field. When the above proce
dure is completed, then we can achieveP

snd
12 ­ 1. The
2033
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required range ofp as a function ofj given by Eq. (13)
can easily be drawn and be used to search for appropr
conditions for the parameters.

Let us next considern and half periods of oscillation
of the external field [see Eq. (9)]. This case together wi
then-period case discussed above is useful to treat gene
multilevel problems, since this enables us to follow an
specified path from any initial state to any desirable fin
state. If either one of the conditions of Eq. (9) is satisfie
for n and half periods, thenP

s2n11d
12 ­ 0 must be satisfied

for 2n 1 1 periods. Then from Eq. (14) we have

sin2fs2n 1 1djg ­ 0 . (20)

Now, the conditionP
sn11y2d
12 ­ 0 can be explicitly ex-

pressed as

4s1 2 pd sin2sc 2 sd ­
sin2j

sin2snjd
, (21)

which tells

s1 2 pd $
sin2j

4 sin2snjd
. (22)

On the other hand, the conditionP
sn11y2d
12 ­ 1 can be

reduced to the following equation:

4p sin2sc 2 sd ­
sin2j

sin2snjd
, (23)

which implies

FIG. 2. Adiabatic spin states as a function of an extern
magnetic field,gmbH: Three lowest levels (scaled by the
anisotropy energyD) are shown, whereg is the Landé
g-factor,mB is the Bohr magneton, andH is the magnetic field.
The nonadiabatic probabilitiesp at avoided crossingsA C are
0.039, 0.977, and 0.977, respectively.
2034
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4 sin2snjd
. (24)

From Eqs. (20), (22), and (24), we end up with the sa
condition for the range ofp as Eq. (13).

A search for the best condition of the parameters can
done in the same way as in then-period case. In the case
of the requirementP

sn11y2d
12 ­ 0, Eq. (18) in the above

step (ii) should be replaced by Eq. (20), and Eq. (17) h
to be replaced by Eq. (21). In the case ofP

sn11y2d
12 ­ 1,

on the other hand, Eqs. (20) and (23) take the place
Eqs. (18) and (17) in the procedure.

An example of multilevel crossing is shown in Fig. 2
which is taken from the quantum tunneling of the ma
netization of Mn12Ac in a time-dependent magnetic fiel
[18–20]. Here, we consider the lowest three adiaba
states 1–3, and demonstrate control of the nonadiab
processes by our idea presented above. The Hamilton
is taken from Eq. (1) of Ref. [20]. In Fig. 2, the energ
is scaled by the anisotropy energyD. Figure 3 shows the
time evolution of the state probability from the point “a”

FIG. 3. Controlled nonadiabatic processes, starting from “a”
on state 1 and ending at “b” on state 3 via avoided crossing
A and B (see Fig. 2). (a) Variation of the external magnet
field as a function of time,tDyh̄. The first four-period
oscillation aroundgmbHyD ­ 0 corresponds to the contro
at the avoided crossingA. The second five-period oscillation
around gmbHyD ­ 1.0 corresponds to the control atB.
(b) Time evolution of the probabilityP1 for the system to be
staying on the state 1. (c) Time evolution ofP2. (d) Time
evolution ofP3.
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FIG. 4. The same as Fig. 3 but for a process froma to c.

on state 1 to “b” on state 3 via two avoided crossings
A and B. At the avoided crossingAsBd four-(five-) pe-
riod oscillations of the field are applied. This is shown i
Fig. 3a. The probability of the state1sP1d becomes zero
after the four periods, as is seen in Fig. 3b. The prob
bility P2 reaches unity whenP1 becomes zero, and af-
ter five periods atB it becomes zero (Fig. 3c) at which
time P3 reaches unity (Fig. 3d). Figure 4 demonstrate
another path from “a” on state 1 to “c” on state 3 via
two avoided crossingsA andC. In this case we have ap-
plied 4 1 1y2 (five) periods of oscillation of the field at
the avoided crossingAsCd. This example clearly demon-
strates that we can choose any path to reach any spec
final state with unity probability.

Figures 3 and 4 are the results of the numeric
solution of the coupled Schrödinger equation, but we ha
confirmed that the semiclassical theory developed by t
present authors [16] based on the Zhu-Nakamura the
for time-independent Landau-Zener–type nonadiaba
transition gives results almost indistinguishable fro
Figs. 3b–3d and 4b–4d except for the humps and d
which appear when the probability jumps abruptly. Th
guarantees that we do not have to solve multichann
coupled equations numerically, and that we can formula
all necessary conditions of control analytically.

The present idea of controlling nonadiabatic process
may be widely applied to various physical and chemic
problems, whenever level crossings are induced by
n
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external field. Examples are Rydberg atoms in an electr
magnetic field [21], current driven tunnel junction, field
driven Zener tunneling [7–11], and isomerization of
molecule [22]. Collision as well as reaction processe
which contain potential curve crossing may be controlle
by the same idea. Even when the system does not cont
any curve crossing, we can apply a static field to crea
crossing dressed states and control transition there
applying an oscillatory field.
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