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Control of Time-Dependent Nonadiabatic Processes by an External Field
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A new idea of controlling nonadiabatic transitions by an external field is proposed. The basic
principle is to periodically sweep an external field at each level crossing to make the overall transition
probability from an initial state to any desirable final state equal to unity. The recently completed
semiclassical theory of nonadiabatic transition enables us to analytically deal with this problem. The
present idea may be applicable to various physical and chemical problems, whenever level crossings are
created by an external field. [S0031-9007(98)07054-9]

PACS numbers: 32.80.Bx, 33.80.Be, 34.50.Rk, 75.40.Gb

Recently, there has been a growing interest, bothvhile the transpose of this matrixj’, describes the
experimentally and theoretically, in controlling atomic backward transition fromF, to F,. Here p represents
and molecular processes by external fields. Controlhe nonadiabatic transition probability by one passage
of reactions by using either laser coherence (coherena&f the crossing pointF,, ¢ is the Stokes phase, and
control) or laser pulse (pulse shape driven control) is onery, o, and o, are the phase factors which are defined,
typical example [1-4]. Control of dynamic processesrespectively, by
can also be realized to some extent by creating so-called F. dt f
dressed states in a laser field [2,5,6]. Time-dependentoo = Re( AE(F)EdF> = Re(/ AE(I)dt),

1

electric and/or magnetic fields are also used to control Fx

various transitions; examples are the current driven tunnel . (2)
junction and field driven Zener tunneling [7—11]. In oy = _/ AE(F)—dF - = / ’ AE(n)dr, (3)
many of the processes mentioned above, nonadiabatic ta

transitions at level or potential curve crossings playan "

crgmal roles, since they are effective to enhance tran- oy = 1 AE(F)—dF _ f AE(1)dt, (4)
sitions. Recently, a complete set of practically useful 2 JF,

analytical solutions have been derived for the Landau-
Zener-Stueckelberg—type curve crossing problems in
both time-independent [12-16] and time-dependent
[16] cases. /
In this Letter, based on this achievement, we propose
a new idea to control nonadiabatic processes so that an
overall transition probability to any specified state in a
multichannel curve crossing system becomes unity. This
can be realized by periodically sweeping the external field
in time at the crossing point. By periodically changing
the field, we can use not only the nonadiabatic transition
probability for one passage of crossing point but also the
phases and the number of periods as control parameters.
Taking a simple two-state curve crossing as a function of
time (see Fig. 1), we explain and formulate our basic idea.
It should be emphasized that the theory proposed here
can be applied to general multichannel problems, since
the basic theory of Zhu and Nakamura works nicely for
them [17]. F
The transition matrixx which describes the transition a
from F, to F,, (see Fig. 1) is given by Field Strength F

JT = peidtarta) _\/ﬁei(tfo*tfzﬂﬂ) FIG. 1. Schematic two diabatic (dotted lines) and two adia-
I = —i(go—0oata) T— —i(p+ar+om) batic (solid lines) potentials. External field oscillates between
Jpe v pe F, and F,, striding the avoided crossing poift.. The phase
(1) oy (02) can be controlled by changing, (F,).
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where AE(F) is the adiabatic energy difference at thethe two diabatic potentials tangentially touch each other
field strengthF, F. is the solution ofAE(F.) = 0, and (F, = F,) or avoid crossindF, < F,).

F,. is the field strength corresponding to the crossing The final overall transition matrif, aftern periods of
point. The timer, for « = a, b, x, andx* is the time at  oscillation betweerF, andF,, is expressed as

which F(t,) = F, is satisfied. SincAE # 0 on the real

axis, F. andt. are complex numbers. Explicit compact T, =T", (5)
expressions ofp and ¢ can be found in Refs. [12-16].

It should be noted that compact analytical expressiongvhereT is the transition matrix for one period which is
of these quantities are available even for the cases fhgiven by

T = ItI — {P + (1 - p)62i$}e*io' _ZIVp(l - p)Sin¢ (6)
=2i\[p(I = p)sing {p + (1 — ple 2"}e'”

| 2

withy = ¢ + o9 + oy ando = 209 + o1 — 03. P(n)z‘/\’}i—_/\n—T
. . 12 12
In the case ofn and half periods of traversing the Ay — A=
crossing point, the overall transition matrix is given by Sir?
_ 4 Sim(ng) p(1 — p)sirty =0  (14)
Tpv1p = 1U'D)" = IT". (7) sié

It should be noted that the adiabatic potentials and thu(s)r i

the parameterp, ¢, ando; (i = 0-2) are dependent on pi’? —4 5'7(”‘5) p(1 — p)sifty = 1. (15)
the external field. Roughly speaking, the nonadiabatic sinté

transition probability p, the Stokes phaseb, and the In the case of Eqg. (14) we simply have the condition
phaseo, are dependent on the local functionality of thesin(n¢) = 0 or singg = 0. It is more interesting and
adiabatic potentials around the crossing point, namelyworthwhile to consider Eq. (15). upg’;) = 1 holds forn
the sweep velocitfdF /dt) of the external field at the periods, thenPg") — 0 must be satisfied fon periods;

crossing point, while the phase factoss and o2 are 1,5 Eq. (15) fom may be divided into the following two

dependent on the global functionality of the adiabatic,yqitions:
potentials in the rangé,,, F;,) of the field. We try to find .
conditions for the parametefs, p, ¥, o; (i =~1-2)] to sin2n¢) = 0 (16)
satisfy and
Py = (Tl =0 or 1 ) 4p(1 = p)sirty = sin¢. (17)
or Since siiné) # 0 in general because of Eg. (15),
. Eq. (16) leads to
P§2+1/2) = |(Ty+12)12I* =0 or 1. 9 Sirt(ng) = 1 (18)
Using the Lagrange-Sylvester formula, we obtain This equation determines for a givenn, and Eq. (17)
I W O e Wi AL — A" gives a condition fop andy for a given¢. The phaser
Ih=T"= Ae — A E Ar — A T, may be determined form Eq.. (12). E'q.uation (17) implies
(10) thatp must satisfy the following condition:
1 .
whereE is the unit matrix and\. are the eigenvalues of p(1 — p) = ;siré, (19)
T, which are given by which is the same as Eq. (13).

Na = oTit (11) The above analysis can be summarized as follows:
’ (i) For a given system, the nonadiabatic transition prob-
where ability p is estimated as a function of the external field.
(ii) From Eg. (18),¢ is determined for an appropriately
cos{ = (1 — p)cos2y — o) + pcodo).  (12) specifiedn. If p is not in the range of Eq. (13), the exter-
The unitarity of the matrixT requires ¢ to be real. nal field (mainly the sweep velocity) and/ershould be
Equation (12) implies that the nonadiabatic transitionmodified so that this condition is satisfied. (ii) The phase

probability p should satisfy ¢ is controlled by changingr; to satisfy Eq. (17), while
o is controlled by changingr, to satisfy Eq. (12). These

1 —fcosé| _ _ 1+ [cosé] (13)  ¢an be realized by adjusting the oscillation periodnd
2 =pP= 2 ' the range(F,, F;,) of the field. When the above proce-

Then the requirements of Eq. (8) lead, respectively, to dure is completed, then we can achielvg) = 1. The
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required range op as a function of¢ given by Eq. (13)

can easily be drawn and be used to search for appropriate

conditions for the parameters.
Let us next consider and half periods of oscillation

of the external field [see Eq. (9)]. This case together with- 5
then-period case discussed above is useful to treat generg|,
multilevel problems, since this enables us to follow any

specified path from any initial state to any desirable fm%step (i) should be replaced by Eq. (20), and Eq. (17) has

state. If either one of the conditions of Eq. (9) is satisfie
for n and half periods, theﬁ%"ﬂ) = (0 must be satisfied

for 2n + 1 periods. Then from Eq. (14) we have

sif[2n + 1)&] = 0. (20)
Now, the conditionPiZH/z) = 0 can be explicitly ex-
pressed as
, _ sié
41 = p)sint(y — o) = 250 5 @
which tells
Sié
=P = ke (22)
.. o (n+1/2)
On the other hand, the conditiaf;, = 1 can be
reduced to the following equation:
: _ sié
4psit(y — o) = SmE)” (23)
which implies
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From Egs. (20), (22), and (24), we end up with the same
condition for the range op as Eq. (13).
search for the best condition of the parameters can be
ne in the same way as in theperiod case. In the case

Iof the requiremenﬂ’gﬂ/z) = 0, Eq. (18) in the above

(24)

to be replaced by Eq. (21). In the casemﬁﬂ/2 =1,
on the other hand, Eqgs. (20) and (23) take the place of
Egs. (18) and (17) in the procedure.

An example of multilevel crossing is shown in Fig. 2,
which is taken from the quantum tunneling of the mag-
netization of Mn,Ac in a time-dependent magnetic field
[18—20]. Here, we consider the lowest three adiabatic
states 1-3, and demonstrate control of the nonadiabatic
processes by our idea presented above. The Hamiltonian
is taken from Eq. (1) of Ref. [20]. In Fig. 2, the energy
is scaled by the anisotropy enerfly Figure 3 shows the
time evolution of the state probability from the point™
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FIG. 3. Controlled nonadiabatic processes, starting frarh “
on state 1 and ending ab™ on state 3 via avoided crossings
A and B (see Fig. 2). (a) Variation of the external magnetic
field as a function of time,D/h. The first four-period

FIG. 2. Adiabatic spin states as a function of an externabscillation aroundgugH/D = 0 corresponds to the control

magnetic field,gugH: Three lowest levels (scaled by the
anisotropy energyD) are shown, whereg is the Landé
g-factor, up is the Bohr magneton, anid is the magnetic field.
The nonadiabatic probabilitigs at avoided crossings—C are
0.039, 0.977, and 0.977, respectively.

2034

at the avoided crossing. The second five-period oscillation
around gugH/D = 1.0 corresponds to the control aB.
(b) Time evolution of the probability?, for the system to be
staying on the state 1. (c) Time evolution 8. (d) Time
evolution of P5.
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FIG. 4. The same as Fig. 3 but for a process frono c.

on state 1 to b” on state 3 via two avoided crossings
A and B. At the avoided crossing(B) four-(five-) pe-
riod oscillations of the field are applied. This is shown in
Fig. 3a. The probability of the statdP,) becomes zero
after the four periods, as is seen in Fig. 3b. The proba-

external field. Examples are Rydberg atoms in an electric/
magnetic field [21], current driven tunnel junction, field
driven Zener tunneling [7—11], and isomerization of a
molecule [22]. Collision as well as reaction processes
which contain potential curve crossing may be controlled
by the same idea. Even when the system does not contain
any curve crossing, we can apply a static field to create
crossing dressed states and control transition there by
applying an oscillatory field.
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