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I demonstrate that the amplitude for the high-energy scattering can be factorized into a product o
independent functional integrals over “fast” and “slow” fields which interact by means of Wilson-
operators—gauge factors ordered along the straight lines. [S0031-9007(98)07033-1]
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The starting point of almost every perturbative QC
calculation is a factorization formula of some sort.
classical example is the factorization of the structu
functions of deep inelastic scattering into coefficie
functions and parton densities. The form of facto
ization is dictated by process kinematics (for a r
view, see [1]). In case of deep inelastic scatterin
there are two different scales of transverse momentu
and it is therefore natural to factorize the amplitud
in the product of contributions of hard and soft par
coming from the regions of small and large transver
momenta, respectively. On the contrary, in the ca
of high-energy (Regge-type) processes, all the tra
verse momenta are of the same order of magnitu
but colliding particles strongly differ in rapidity. Con-
sequently, it is natural to look for factorization in th
rapidity space.
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The basic result of the paper is that the high-energ
scattering amplitude can be factorized in a convolutio
of contributions due to “fast” and “slow” fields. To be
precise, we choose a certain rapidityh0 to be a “rapidity
divide,” and we call fields withh . h0 fast and fields
with h , h0 slow whereh0 lies in the region between
spectator rapidity and target rapidity. (The interpretatio
of these fields as fast and slow is literally true only in th
rest frame of the target, but we will use this terminolog
for any frame.)

Our starting point is the operator expansion for high
energy scattering [2] where the explicit integration ove
fast fields gives the coefficient functions for the Wilson
line operators representing the integrals over slow field
For a 2 ) 2 particle scattering in Regge limits ¿ m2

[wherem is a common mass scale for all other momen
in the problem t , p2

A , sp0
Ad2 , p2

B , sp0
Bd2 , m2]

we have
AspA, pB ) p0
A, p0

Bd 
X Z

d2x1 · · · d2xn Ci1...in sx1, . . . , xnd kpBjTrhUi1sx1d · · · Uin sxndj jp0
Bl . (1)
e

n

e

[As usual,s  spA 1 pBd2 andt  spA 2 p0
Ad2.] Here

xisi  1, 2d are the transverse coordinates (orthogonal
both pA and pB) and Uisxd  Uysxd i

g
≠

≠xi
Usxd where

the Wilson-line operatorUsxd is the gauge link ordered
along the infinite straight line corresponding to the ra
pidity divide h0. Both coefficient functions and matrix
elements in Eq. (1) depend on theh0 but this dependence
is canceled in the physical amplitude just as the scalem

(separating coefficient functions and matrix elements) d
appears from the final results for structure functions
case of usual factorization. Typically, we have the fac
tors,sg2 ln sym2 2 h0d coming from the fast integral and
the factors,g2h0 coming from the slow integral so they
combine in a usual log factorg2 ln sym2. In the leading
log approximation these factors sum up into the Balitsk
Fadin-Kuraev-Lipatov (BFKL) pomeron [3,4] (for a re-
view see Ref. [5]). Note, however, that, unlike usua
factorization, the coefficient functions and matrix ele
ments enter the expansion (1) on equal footing. We cou
have integrated first over slow fields (having the rapid
ties close to that ofpB) and the expansion would have
the form
to
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Ass, td 
X Z

d2x1 · · · d2xn Di1···in sx1, . . . , xnd

3 kpAjTrhUi1 sx1d · · · Uin sxndjjp0
Al . (2)

In this case, the coefficient functionsD are the results of
integration over slow fields, and the matrix elements of th
U operators contain only the large rapiditiesh . h0. The
symmetry between Eqs. (1) and (2) calls for a factorizatio
formula which would have this symmetry between slow
and fast fields in explicit form.

Our goal is to demonstrate that one can combine th
operator expansions (1) and (2) in the following way:

Ass, td 
X in

n!

Z
d2x1 · · · d2xn

3 kpAjUa1i1 sx1d · · · Uanin sxnd jp0
Al

3 kpBjU
a1
i1

sx1d · · · U
an
in

sxnd jp0
Bl , (3)

whereUa
i ; TrslaUid (la are the Gell-Mann matrices).

It is possible to rewrite this factorization formula in a
more visual form if we agree that operatorsU act only
on statesB and B0 and introduce the notationVi for the
same operator asUi only acting on theA andA0 states:
© 1998 The American Physical Society
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Ass, td  kpAj kpBj exp

√
i
Z

d2x V aisxdUa
i sxd

!
3 jp0

Al jp0
Bl . (4)

In a sense, this formula amounts to writing the coefficie
functions in Eq. (1) [or Eq. (2)] as matrix elements o
Wilson-line operators. (Such an idea was first discuss
in Ref. [6].) Equation (4) is our main result, and the re
of the paper is devoted to the derivation of this formu
and the discussion of its possible applications.

Let us now briefly remind ourselves how to obtai
the operator expansion (1). For simplicity, consider t
classical example of high-energy scattering of virtu
photons with virtualities,2m2.

Ass, td  2ik0jT hjspAdjsp0
AdjspBdjsp0

Bdj j0l , (5)

where jspd is the Fourier transform of electromagneti
current jmsxd multiplied by some suitable polarization
emspd. At high energies it is convenient to use th
Sudakov decomposition:pm  app

m
1 1 bpp

m
2 1 p

m
'

where p
m
1 and p

m
2 are the lightlike vectors close topA

andpB, respectively (p
m
A  p

m
1 2 p

m
2 p2

Ays, p
m
B  p

m
2 2

p
m
1 p2

Bys). We want to integrate over the fields with
a . s where s is defined in such a way that the cor
responding rapidity ish0. ( In explicit form h0  ln s

s̃

where s̃ ; m2

ss .) The result of the integration will be
given by Green functions of the fast particles in slo
“external” fields [2] (see also Ref. [7]). Since the fas
particle moves along a straight-line classical trajecto
the propagator is proportional to the straight-line order
gauge factorU. For example, whenx1 . 0, y1 , 0 it
has the form [2]
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dz dszpd
sxy 2 zydpy2

2p2sx 2 zd4 Usz'd
zy 2 yy

2p2sz 2 yd4 . (6)

We use the notationsz≤ ; zmp
m
1 and zp ; zmp

m
2 which

are essentially identical to the light-front coordinat
z1  zpy

p
s, z2  z≤y

p
s. The Wilson-line operatorU

is defined as

Usx'd  f`p1 1 x', 2`p1 1 x'g , (7)

where fx, yg is the straight-line ordered gauge link su
pended between the pointsx andy:

fx, yg
def
; P exp

(
ig

Z 1

0
du sx 2 ydmAmfux 1 s1 2 udyg

)
.

(8)

The origin of Eq. (6) is more clear in the rest frame
the “A” photon. Then the quark is slow and the extern
fields are approaching this quark at high speed. Beca
of the Lorentz contraction, these fields are squeezed
shock wave located atzp  0. Therefore, the propagato
(6) of the quark in this shock-wave background is
product of three factors which reflect (i) free propagati
from x to the shock wave, (ii) instantaneous interacti
with the shock wave which is described by the opera
Usz'd, and (iii) free propagation from the point o
interactionz to the final destinationy.

The propagation of the quark-antiquark pair in th
shock-wave background is described by the product of t
propagators of Eq. (6) type which contain two Wilso
line factorsUszdUysz0d where z0 is the point where the
antiquark crosses the shock wave. If we substitute
quark-antiquark propagator in the original expression
the amplitude (5) we obtain [2]
Z
d4x d4z eipAx1iqzkT hjsx 1 zdjszdjlA .

Z d2p'

4p2 Isp', q'dTrhUsp'dUysq' 2 p'dj , (9)
y
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where Usp'd is the Fourier transform ofUsx'd and
Isp', q'd is the so-called “impact factor” which is a
function ofp2

', p' ? q', and photon virtuality [2,8]. Thus,
we have reproduced the leading term in the expansion (
[To recognize it, note thatUsx'dUys y'd  P exph2ig 3Rx

y dzi Uisz'dj where the precise form of the path betwee
points x' andy' does not matter since this is actually a
formula for the gauge link in a pure gauge fieldUisz'd].

Note that formally we have obtained the operatorsU
ordered along the lightlike lines. Matrix elements o
such operators contain divergent longitudinal integratio
which reflect the fact that lightlike gauge factor corre
sponds to a quark moving with the speed of light (i.e
with infinite energy). As demonstrated in [2], we may
regularize this divergence by changing the slope of th
supporting line: if we wish the longitudinal integration
stop at h  h0, we should order our gauge factorsU
along a line parallel ton  sp1 1 s̃p2. Then the co-
efficient functions in front of Wilson-line operators will
contain logarithms,g2 ln 1ys. For example, there are
1).

n
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corrections of such type to the impact factorIsp, qd, and
if we sum them, the impact factor will be replaced bP

sg2 ln 1ysdnKnIsp, qd whereK is the BFKL kernel.
In order to understand how this expansion can be gen

ated by the factorization formula of Eq. (3) type we hav
to rederive the operator expansion in axial gaugeA≤ 
0 with an additional conditionApjxp2`  0 (the exis-
tence of such a gauge was illustrated in [9] by an explic
construction). It is important to note that with power ac
curacy (up to corrections,s) our gauge condition may
be replaced byemAm  0. In this gauge the coefficient
functions are given by Feynman diagrams in the extern
field

Bisxd  Uisx'dQsxpd, B≤  Bp  0 , (10)

which is a gauge rotation of our shock wave [it is easy
see that the only nonzero component of the field streng
tensorF≤isxd . Uisx'ddsxpd corresponds to shock wave]
The Green functions in external field (10) can be obtain
from a generating functional with a source responsible f
2025
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this external field. Normally, the source for given externa
field Ām is just Jn  D̄mF̄mn so in our case the only
nonvanishing contribution isJpsBd  D̄iF̄ip. However,
we have a problem because the field which we try
create by this source does not decrease at infinity.
illustrate the problem, suppose that we use another lightli
gaugeAp  0 for a calculation of the propagators in the
external field (10). In this case, the only would-be nonze
contribution to the source term in the functional integra
D̄iF̄i≤

Ap vanishes, and it looks like we do not need
source at all to generate the fieldBm. (This is, of course,
wrong sinceBm is not the classical solution.) What it
really means is that the source in this case lies entire
at the infinity. Indeed, when we are trying to make a
external fieldĀ in the functional integral by the source
Jm we need to make a shiftAm ! Am 1 Ām in the
functional integralZ

DA exp

(
iSsAd 2 i

Z
d4x Ja

msxdAamsxd

)
, (11)

after which the linear term̄DmF̄mnAn cancels with our
source termJmAm and the terms quadratic inA make
the Green functions in the external field̄A. [Note that the
classical actionSsĀd for our external fieldĀ  B (10)
vanishes.] However, in order to reduce the linear terR

d4x F̄mnD̄mAn in the functional integral to the formR
d4x D̄mF̄mnAnsxd we need to make an integration by

parts, and if the external field does not decrease there w
be additional surface terms at infinity. In our case we a
trying to make the external field̄A  B so the linear term
which needs to be canceled by the source is

2
s

Z
dx≤ dxp d2x' F̄i≤D̄pA

i 
Z

dxp d2x'

3 F̄i≤Aijx≤`
x≤2` .

It comes entirely from the boundaries of integration.
we recall that in our casēF≤isxd . Uisx'ddsxpd we can
finally rewrite the linear term asZ

d2x' Uisx'd hAis2`p2 1 x'd 2 Ais`p2 1 x'dj .

(12)

The source term which we must add to the exponent in t
functional integral to cancel the linear term after the shi
is given by Eq. (12) with the minus sign. Thus, Feynma
diagrams in the external field (10) in the lightlike gaug
Ap  0 are generated by the functional integral
2026
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Z
DA exp

(
iSsAd 1 i

Z
d2x' Uaisx'd

3 fAa
i s`p2 1 x'd 2 Aais2`p2 1 x'dg

)
.

(13)

In an arbitrary gauge the source term in the exponent
Eq. (13) can be rewritten in the form

2i
Z

d2x' Tr

(
Uisx'd

Z `

2`

dy f2`p2 1 x', yp2 1 x'g

3 Fpisyp2 1 x'd

3 fyp2 1 x', 2`p2 1 x'g

)
. (14)

Thus, we have found the generating functional for ou
Feynman diagrams in the external field (11). Howeve
it is easy to see (by inspection of the first rung of th
BFKL ladder diagram) that the longitudinal integrals ove
a in these diagrams will be unrestricted from below while
we need the restrictiona . s. Fortunately, we already
faced that problem on the other side—in matrix elemen
of operatorsU —and we have solved it by changing the
slope of the supporting line. Similar to the case of matri
elements, it can be demonstrated that if we want th
logarithmical integrations over largea to stop ata  s,
we need to order the gauge factors in Eq. (14) along th
same vectorn  sp1 1 s̃p2; cf. Eq. (2). Therefore, the
final form of the generating functional for the Feynman
diagrams (witha . s cutoff) in the external field (11) isZ

DAD C̄D CeiSsA,Cd1i
R

d2x' Uai sx'dV a
i sx'd , (15)

where

Visx'd 
Z `

2`

dy f2`n 1 x', yn 1 x'g

3 nmFmisyn 1 x'd fyn 1 x', 2`n 1 x'g
(16)

andV a
i ; TrslaVid as usual. For completeness, we hav

added integration over quark fields soSsA, Cd is the full
QCD action.

Now we can assemble the different parts of the facto
ization formula (4). We have written down the generat
ing functional integral for the diagrams witha . s in the
external fields witha , s and what remains now is to
write down the integral over these external fields. Sinc
this integral is completely independent of (15) we wil
use a different notationB and x for the a , s fields.
We have
Z

D AD C̄D CeiSsA,CdjspAdjsp0
AdjspBdjsp0

Bd 
Z

DAD c̄D ceiSsA,cdjspAdjsp0
Ad

Z
DBD x̄D xjspBdjsp0

Bd

3 eiSsB ,xd exp

(
i
Z

d2x' Uaisx'dV a
i sx'd

)
. (17)

The operatorUi in an arbitrary gauge is given by the same formula (16) as operatorVi with the only difference that the
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gauge links andF≤i are constructed from the fieldsBm.
This is our main result (4) in the functional integra
representation.

The functional integrals overA fields give logarithms
of the type g2 ln 1ys while the integrals over slowB
fields give powers ofg2 lnsssym2d. With logarithmic
accuracy, they add up tog2 ln sym2. However, there will
be additional terms,g2 due to mismatch coming from
the region of integration near the dividing pointa , s

where the details of the cutoff in the matrix element
l

s

of the operatorsU and V become important. Therefor
one should expect the corrections of order ofg2 to the
effective action

R
dx' UiVi.

In conclusion, let us discuss possible uses of this
proach. First thing which comes to mind is to use
factorization formula for the analysis of high-energy
fective action. Consider another rapidityh

0
0 in the region

betweenh0 and lnm2ys. If we use the factorization for
mula (17) once more, this time dividing between the
pidities greater and smaller thanh

0
0, we get
ks

The
9) and

e
it is not
Z
DAeiSsAdjspAdjsp0

AdjspBdjsp0
Bd 

Z
DAeiSsAdjspAdjsp0

Ad
Z

DBeiSsB djspBdjsp0
BdeiSeffsVi ,Yi ;sys0d , (18)

where the effective action for the rapidity interval betweenh andh0 is defined as

eiSeffsVi ,Yi ;sys0d 
Z

DC eiSsC dei
R

d2x' V ai sx'dUa
i sx'd1i

R
d2x' Wai sx'dYa

i sx'd . (19)

(For brevity, we do not display the quark fields.) In this formula the operatorsUi are constructed fromC fields while
the operatorsWi (made fromC fields) andYi (made fromB fields) are given by the same Eq. (16) with gauge lin
aligned along the directionn0  s0p1 1 s̃0p2 corresponding to the rapidityh0 (as usual, lns0ys̃0  h0 where
s̃0  m2yss0).

The formula (19) gives a rigorous definition of the effective action for a given interval in rapidity (cf. Ref. [5]).
next step would be to perform the integrations over the longitudinal momenta in the right-hand side of Eq. (1
obtain the answer for the integration over our rapidity region (fromh to h0) in terms of two-dimensional theory in th
transverse coordinate space which hopefully would give us the unitarization of the BFKL pomeron. At present,
known how to do this. For illustration, let us present a couple of first terms in the effective action [10,11]:

Seff 
Z

d2x V a
i sxdYaisxd 2

3g2

64p3 ln
s

s0

"Z
d2x d2y V a

i,isxd ln2sx 2 yd2Ya
j,js yd 1

fabcfmnc

12p2

Z
d2x0 d2y0

3 V a
i,isxdV m

j,js ydYb
k,ksx0dYn

l,ls y0d ln
sx 2 zd2

sx 2 x0d2 ln
s y 2 zd2

s y 2 y0d2

√
≠

≠zi

!2

3 ln
sx0 2 zd2

sx 2 x0d2 ln
s y0 2 zd2

s y 2 y0d2

#
1 . . . ,
t.

9

l.
where we use the notationV a
i,jsxd ; ≠

≠xj
V a

i sxd, etc. The
first term here looks like the corresponding term in th
factorization formula (17)—only the directions of the
supporting lines are now strongly different. The secon
term is the first-order expression for the Reggeizatio
of the gluon [4], and the third term is the two-Reggeo
Lipatov’s Hamiltonian [12] responsible for BFKL
logarithms.

This approach can also be used for the study of hig
energy heavy-ion collisions since it is well suited for th
study of the interaction of two colliding shock waves. In
deed, for heavy-ion collisions the coupling constant may
relatively small due to high density (see [13]). On the oth
hand, the fields produced by colliding ions are large so th
the productgA is not small—which means that the Wilson
line gauge factorsV andY are of order of 1. In this case
we need to know not only a couple of the first few terms i
the expansion of the effective action, but the whole serie

The author is grateful to L. N. Lipatov and A. V.
Radyushkin for valuable discussions. This work was su
ported by the U.S. Department of Energy under Contra
No. DE-AC05-84ER40150.
e

d
n
n

h-
e
-
be
er
at

-

n
s.

p-
ct

[1] J. C. Collins, D. R. Soper, and G. Sterman, inPerturbative
QCD, edited by A. H. Mueller (World Scientific, Singa-
pore, 1989).

[2] I. Balitsky, Nucl. Phys.B463, 99 (1996).
[3] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys.28,

822 (1978).
[4] V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Let

60B, 50 (1975).
[5] L. N. Lipatov, Phys. Rep.286, 131 (1997).
[6] J. C. Collins and R. K. Ellis, Nucl. Phys.B360, 3 (1991).
[7] L. McLerran and R. Venugopalan, Phys. Rev. D50, 2225

(1994); A. Ayala, J. Jalilian-Marian, L. McLerran, and
R. Venugopalan, Phys. Rev. D52, 2935 (1995).

[8] I. I. Balitsky and L. N. Lipatov, JETP Lett.30, 355 (1979).
[9] I. I. Balitsky, Nucl. Phys.B254, 166 (1985).

[10] H. Verlinde and E. Verlinde, Report No. PUPT-131
[e-print archive: hep-th/9302104].

[11] R. Kirschner, L. N. Lipatov, and L. Szymanowski, Nuc
Phys.B425, 579 (1994); L. N. Lipatov, Nucl. Phys.B452,
369 (1996).

[12] L. N. Lipatov, Sov. Phys. JETP63, 904 (1986).
[13] L. McLerran and R. Venugopalan, Phys. Rev. D49, 2233

(1994);49, 3352 (1994).
2027


