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I demonstrate that the amplitude for the high-energy scattering can be factorized into a product of two

independent functional integrals over “fast” and “slow” fields which interact by means of Wilson-line
operators—gauge factors ordered along the straight lines. [S0031-9007(98)07033-1]

PACS numbers: 12.38.Bx, 11.10.Jj, 11.55.Jy

The starting point of almost every perturbative QCD The basic result of the paper is that the high-energy
calculation is a factorization formula of some sort. A scattering amplitude can be factorized in a convolution
classical example is the factorization of the structureof contributions due to “fast” and “slow” fields. To be
functions of deep inelastic scattering into coefficientprecise, we choose a certain rapidijy to be a “rapidity
functions and parton densities. The form of factor-divide,” and we call fields withn > 7, fast and fields
ization is dictated by process kinematics (for a re-with n < o slow wheren, lies in the region between
view, see [1]). In case of deep inelastic scatteringspectator rapidity and target rapidity. (The interpretation
there are two different scales of transverse momentungf these fields as fast and slow is literally true only in the
and it is therefore natural to factorize the amplituderest frame of the target, but we will use this terminology
in the product of contributions of hard and soft partsfor any frame.)
coming from the regions of small and large transverse Our starting point is the operator expansion for high-
momenta, respectively. On the contrary, in the casenergy scattering [2] where the explicit integration over
of high-energy (Regge-type) processes, all the trandfast fields gives the coefficient functions for the Wilson-
verse momenta are of the same order of magnituddine operators representing the integrals over slow fields.
but colliding particles strongly differ in rapidity. Con- For a2 = 2 particle scattering in Regge limit > m?
sequently, it is natural to look for factorization in the [wherem is a common mass scale for all other momenta

rapidity space. | in the problems ~ p3 ~ (ph)? ~ p3 ~ (pp)? ~ m?]
we have
A(pa.ps = Ph.Ph) = Zf d®xp -+ dPx, C' ' (xy, . x) (I TH{UG (k1) -+~ Uy, (xa)} ) - (1)
2 I'\2 I ..
[As usual,s = (ps + pp)* andt = (pa — pa)”.] Here A(s,t) = Z/ d?*xy - d?x, D (xy, LX)
x;(i = 1,2) are the transverse coordinates (orthogonal to
both ps4 and ps) and Ui(x) = UT(x)% 7 U(x) where X (palTe{U;, () - Uy, )} pl) . (2)

the Wilson-line operatol/(x) is the gauge link ordered
along the infinite straight line corresponding to the ra-
pidity divide ny. Both coefficient functions and matrix

glements in Eq' ) depend on W’.@ but Fhis dependence symmetry between Egs. (1) and (2) calls for a factorization
is canceled in the physical amplitude just as the sgale

i Hicient f | q ol i formula which would have this symmetry between slow
(separating coefficient functions and matrix elements) disz - ta<t fields in explicit form.

appears from the final results for structure functions in Our goal is to demonstrate that one can combine the

case of usual factorization. Typically, we have the fac- ; ; ; .
. ' : operator expansions (1) and (2) in the following way:
tors~(g?Ins/m? — ng) coming from the fast integral and P P @) 2) g way

In this case, the coefficient functio® are the results of
integration over slow fields, and the matrix elements of the
U operators contain only the large rapiditigs> no. The

the factors~g2n, coming from the slow integral so they _ i f 2. .2

combine in a usual log factg? Ins/m?. In the leading Als 1) Z n! doxy-edix

log approximation these factors sum up into the Balitsky- X palU(x1) - - U (x,) | ph)
Fadin-Kuraev-Lipatov (BFKL) pomeron [3,4] (for a re- a a, /

view see Ref. [5]). Note, however, that, unlike usual X pplUi, (x1) - U (x2) | p) » 3)

factorization, the coefficient functions and matrix ele-whereU; = Tr(A“U;) (A are the Gell-Mann matrices).
ments enter the expansion (1) on equal footing. We couldt is possible to rewrite this factorization formula in a
have integrated first over slow fields (having the rapidi-more visual form if we agree that operatdisact only
ties close to that ofpg) and the expansion would have on statesB and B’ and introduce the notatioW; for the
the form same operator a; only acting on thed andA’ states:
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. . *t — Ay L=
Als,1) = <pA|<pB|exp<if d*x V‘”(x)U,-“(x)) ’fdﬁ(z*)mwmm- (6)
X I pi) | pg). (4)  We use the notations, = z,,pi andz. = z,p5 which

. . .. _are essentially identical to the light-front coordinates
In a sense, this formula amounts to writing the coefficien + = 2./:/5,2- = z.//s. The Wilson-line operatot/

functions in Eq. (1) [or Eq. (2)] as matrix elements of ;o yafined as
Wilson-line operators. (Such an idea was first discusse(?
in Ref. [6].) Equation (4) is our main result, and the rest U(xy) = [oepr + x1, —%pp + x1], (7)
of the paper is devoted to the derivation of this formula,nere [x,y] is the straight-line ordered gauge link sus-
and the discussion of its possible applications. pended between the pointsandy:

Let us now briefly remind ourselves how to obtain 1
the operator expansion (1). For simplicity, consider the[x y]dg Pexp{igf du(x — y)*A[ux + (1 — w)y]
classical example of high-energy scattering of virtual =’ 0 K’ '
photons with virtualities~—m?>. 8)

A(s,t) = —i0IT{j(pa)i(ph)i(pp)i(pp)}0)y, (5) The origin of Eq. (6) is more clear in the rest frame of
. ) , . the "A” photon. Then the quark is slow and the external

where j(p) is the Fourier transform of electromagnetic gie|ys are approaching this quark at high speed. Because
current j, (x) _multlplled_ by _Some sunat_)le polarization ¢ the | orentz contraction, these fields are squeezed in a
e*(p). At high energies it is convenient t0 use the ghock wave located at = 0. Therefore, the propagator
SudakO\L decor}r)posmon:pf‘ = appr + Bpp2 T PL () of the quark in this shock-wave background is a
where p; and p; are the lightlike vectors close 14 product of three factors which reflect (i) free propagation
aﬂdlng respectively px = pi — p2 pa/s.ps = P2 —  from x to the shock wave, (i) instantaneous interaction
pips/s). We want to integrate over the fields with yith the shock wave which is described by the operator
a>o v_vherecr_ is d_eflned in Sucf_l a way that theUCOI’— U(z,), and (i) free propagation from the point of
responding rapidity ispo. (In explicit form 79 =InZ  interaction; to the final destination.
where & = ==.) The result of the integration will be  The propagation of the quark-antiquark pair in the
given by Green functions of the fast particles in slowshock-wave background is described by the product of two
“external” fields [2] (see also Ref. [7]). Since the fast propagators of Eq. (6) type which contain two Wilson-
particle moves along a straight-line classical trajectoryline factorsU(z)U*(z') wherez’ is the point where the
the propagator is proportional to the straight-line orderedantiquark crosses the shock wave. If we substitute this
gauge factorU. For example, whenr; > 0,y < 0 it  quark-antiquark propagator in the original expression for

has the form [2] | the amplitude (5) we obtain [2]
. . d?
fd4x d*z e HIT{j(x + 2)j(2)}a = ] 4:; I(pr.q)Tr{U(p)U (gL — p1)}, 9)

where U(p,) is the Fourier transform otU(x,) and | corrections of such type to the impact facigp, ¢), and
I(p.1,q.) is the so-called “impact factor” which is a if we sum them, the impact factor will be replaced by
function of p7, p, - ¢, and photon virtuality [2,8]. Thus, Y (g2In1/0)"XK"I(p,q) whereX is the BFKL kernel.
we have reproduced the leading term in the expansion (1). In order to understand how this expansion can be gener-
[Torecognize it, note that (x  )UT(y ) = Pexp(—ig X ated by the factorization formula of Eq. (3) type we have
ff dz; U;(z1)} where the precise form of the path betweento rederive the operator expansion in axial gauge=
pointsx; andy, does not matter since this is actually a0 with an additional conditiom.|, ——~ = 0 (the exis-
formula for the gauge link in a pure gauge fidlg(z )] tence of such a gauge was illustrated in [9] by an explicit
Note that formally we have obtained the operatdbrs construction). It is important to note that with power ac-
ordered along the lightlike lines. Matrix elements of curacy (up to corrections-o’) our gauge condition may
such operators contain divergent longitudinal integrationde replaced by#A, = 0. In this gauge the coefficient
which reflect the fact that lightlike gauge factor corre-functions are given by Feynman diagrams in the external
sponds to a quark moving with the speed of light (i.e. field
with infinite energy). As demonstrated in [2], we may . . .
regularize this divergence by changing the slope of the Bi(x) = Ui(x)Ox.), B.=B. =0, (10)
supporting line: if we wish the longitudinal integration which is a gauge rotation of our shock wave [it is easy to
stop atnp = no, we should order our gauge factots see that the only nonzero component of the field strength
along a line parallel to: = op; + p,. Then the co- tensorF.;(x) = U,;(x, )8 (x.) corresponds to shock wavel].
efficient functions in front of Wilson-line operators will The Green functions in external field (10) can be obtained
contain logarithms~g?In1/o. For example, there are from a generating functional with a source responsible for
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this external field. Normally, the source for given external i ) ) .
field A, is justJ, = D*F,, so in our case the only [ DA exp{:S(ﬂl) + l/d x1 U (x1)
nonvanishing contribution i9.(B) = D'F;.. However,

we have a problem because the field which we try to X [A%epy + x1) — A% (—opy + x1)]t.
create by this source does not decrease at infinity. To
illustrate the problem, suppose that we use another lightlike (13)

gaugeA. = 0 for a calculation of the propagators in the |n an arbitrary gauge the source term in the exponent in
external field (10). In this case, the only would-be nonzercgq. (13) can be rewritten in the form

contribution to the source term in the functional integral

D'F; A. vanishes, and it looks like we do not need azif d*x, Tr
source at all to generate the fighj,. (This is, of course,

wrong sinceB,, is not the classical solution.) What it X Fii(vpy + x1)
really means is that the source in this case lies entirely
at the infinity. Indeed, when we are trying to make an
external field A in the functional integral by the source

Ju we need to make a shitd, — A, + A, inthe  Thys we have found the generating functional for our
functional integral Feynman diagrams in the external field (11). However,
it is easy to see (by inspection of the first rung of the
] Dﬂexp{is(ﬂ) - if d*x Jz(x);zlaﬂ(x)], (11) BFKL ladder diagram) that the longitudinal integrals over
« in these diagrams will be unrestricted from below while
] ] _ ) we need the restrictionn > o. Fortunately, we already
after which the linear ternb*F,, /A" cancels with our  faced that problem on the other side—in matrix elements
source term/,, A* and the terms quadratic itA make  of pperators/—and we have solved it by changing the
the Green functions in the external fiell. [Note thatthe gjope of the supporting line. Similar to the case of matrix
classical actior§(A) for our external fieldA = B (10)  elements, it can be demonstrated that if we want the
vanishes.] Howeyer, in ordgr to r_educe the linear termogarithmical integrations over large to stop ata = o,
[d*xF**D, A, in the functional integral to the form e need to order the gauge factors in Eq. (14) along the
[ d*x D*F,, A”(x) we need to make an integration by same vecton = o p; + & p»; cf. Eq. (2). Therefore, the
parts, and if the external field does not decrease there wifna| form of the generating functional for the Feynman

be additional surface terms at infinity. In our case we argjiagrams (withe: > o cutoff) in the external field (11) is
trying to make the external fieldd = B so the linear term

which needs to be canceled by the source is f DADTDESAVH [dx. vtV (1)

U"(xl)f dv[—op; + x,vpy + x]

X [vpy + x1,—%p, + xl]]. (14)

o h
2 [ dxe dxs d?x, Fj DL AT = f dx. dx, where

_ — V. — dv [—oon + ’ n
X Fi'ﬂlli:;fx- z(-xL) ‘/700 U[ n X, Un XL]

It comes entirely from the boundaries of integration. If i Fuilon + x)on + xp, =en + x0]

we recall that in our casé&.;(x) = U;(x,)8(x.) we can (16)
finally rewrite the linear term as andV{ = Tr(AV;) as usual. For completeness, we have
added integration over quark fields SQA, W) is the full

2 i(_ _ qi QCD action.

f d°x Ui(x ){ A (=opy + x1) = Al(®@py + x1)} Now we can assemble the different parts of the factor-

(12) ization formula (4). We have written down the generat-
ing functional integral for the diagrams with > o in the

The source term which we must add to the exponent in thexternal fields witha < o and what remains now is to

functional integral to cancel the linear term after the shiftwrite down the integral over these external fields. Since

is given by Eq. (12) with the minus sign. Thus, Feynmanthis integral is completely independent of (15) we will

diagrams in the external field (10) in the lightlike gaugeuse a different notatio8 and y for the a < o fields.

A. = 0 are generated by the functional integral | We have

f DADTD VSN j(p)i(ph)i(pe)i(ph) = f DADFD e j(p)i(ph) f DBD YD xi(ps)i(p)

X ¢iS(B.x) exp{i[ d*x U“"(xL)Vf(M)}- (17)

The operatoU; in an arbitrary gauge is given by the same formula (16) as opevatwith the only difference that the
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gauge links and-,; are constructed from the field8,.  of the operatord/ andV become important. Therefore,
This is our main result (4) in the functional integral one should expect the corrections of ordergdfto the
representation. effective action f dx, U'V;.

The functional integrals ovefA fields give logarithms In conclusion, let us discuss possible uses of this ap-
of the typeg?In1/o while the integrals over slowB  proach. First thing which comes to mind is to use the
fields give powers ofg?In(os/m?). With logarithmic  factorization formula for the analysis of high-energy ef-
accuracy, they add up ¢ Ins/m?. However, there will ~ fective action. Consider another rapidity in the region
be additional terms~g? due to mismatch coming from betweenn, and Inm?/s. If we use the factorization for-
the region of integration near the dividing poiat~ o  mula (17) once more, this time dividing between the ra-
where the details of the cutoff in the matrix elemeqtspidities greater and smaller thay}, we get

f DA™V j(pa)j(P1)(Pp)(Py) = f DA j(pa)j(ph) f DB j(pp)j(pye™1io/7) - (18)
where the effective action for the rapidity interval betwegand ' is defined as
piSen(ViYio /o) _ f DC iSO i [ VIV + [ dxs W)Y (5) (19)

(For brevity, we do not display the quark fields.) In this formula the operdip@re constructed frort’ fields while
the operatord¥; (made fromC fields) andY; (made fromB fields) are given by the same Eq. (16) with gauge links
aligned along the directiom’ = o’p, + &'p, corresponding to the rapidity;’ (as usual, Ir'/d’ = 5’ where

o' = m?/sa).

The formula (19) gives a rigorous definition of the effective action for a given interval in rapidity (cf. Ref. [5]). The
next step would be to perform the integrations over the longitudinal momenta in the right-hand side of Eq. (19) and
obtain the answer for the integration over our rapidity region (frprto ') in terms of two-dimensional theory in the
transverse coordinate space which hopefully would give us the unitarization of the BFKL pomeron. At present, it is not
known how to do this. For illustration, let us present a couple of first terms in the effective action [10,11]:

3 2 g abc) mnc
64%7'3 In o |:[ d’x d*y Vf,»(x)lnz(x - y)ij?fj(y) + % f d*x' d*y’
a m b n (X - Z)2 (y - Z)2 d
X VE@VE ()Y DY (y) I o — /2 In (v — y)2 \ a9z
C N G
(x = x> (y =)

Seff = f d*x VE(x)Y“ (x) —

X In
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