
VOLUME 81, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 7 SEPTEMBER1998

rge

2020
Integrability of Three-Particle Evolution Equations in QCD
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We show that Brodsky-Lepage evolution equation for the spin-3y2 baryon distribution amplitude is
completely integrable and reduces to the three-particleXXXs­21 Heisenberg spin chain. Trajectories
of the anomalous dimensions are identified and calculated using the1yN expansion. Extending this
result, we prove integrability of the evolution equations for twist-3 quark-gluon operators in the la
Nc limit. [S0031-9007(98)07031-8]

PACS numbers: 11.10.Hi, 11.15.Pg, 11.30.Na, 12.38.– t
f
l

of

l)
ot
-
the
r-
s

of
.,

-

t

-
t
a-
-
d
e
e
l-

ns
Three-particle distribution amplitudes (DAs) appear in
QCD in various contexts and attract increasing attentio
Perhaps the most important example is provided by th
baryon DA which specifies momentum fraction distribu
tion between the three valence quarks in the minimal Foc
state and is defined by the baryon-to-vacuum transitio
matrix element of the nonlocal three-quark operator [1]:

Bsa, b, cd ­ ´ijkqisaudqjsbudqkscud . (1)

Here q is a quark field andu is an auxiliary lightlike
vectoru2 ­ 0; taking the leading-twist part and insertion
of gauge factors is implied. Another example is provide
by twist-3 quark-gluon operators

S6
m sa, b, cd ­ q̄saud fiGmnsbud 6 G̃mnsbudg5gunuyqscud ,

(2)

T sa, b, cd ­ q̄saudumunsr
mGnrsbudGqscud , (3)

whereG ­ hI , ig5j, which give rise to twist three nucleon
parton distributions and/or twist-3 DAs of vector mesons

Parton distributions in QCD are scale dependent; fo
their momentsthis dependence corresponds to renorma
ization group (RG) behavior of the relevant local operator
obtained by expansion at short distances. This conne
tion is well understood and worked out in great detail fo
two-particle operators corresponding to leading twist nu
cleon parton densities or meson DAs. In this case a sing
independent local operator exists for each moment. T
corresponding anomalous dimension can be continued a
lytically to noninteger (complex) moments, defining the
Altarelli-Parisi evolution kernel. Mixing with total deriva-
tives can be resolved to one-loop accuracy by going over
the conformal basis [2–4]: coefficients in the expansion o
meson DAs in Gegenbauer polynomials are renormalize
multiplicatively and with the same anomalous dimension
as in deep inelastic scattering.
0031-9007y98y81(10)y2020(4)$15.00
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Three-particle distributions bring in a complication o
principle. For fixed operator dimension alias fixed tota
numberN of covariant derivativesN 1 1 independent lo-
cal operators exist corresponding to geniune degrees
freedom. One is left with a nontrivialsN 1 1d 3 sN 1 1d
mixing matrix and has to diagonalize it explicitly order by
order; see, e.g., [4–6]. The resultingN 1 1 multiplica-
tively renormalizable operators have different (in genera
anomalous dimensions which analytic expressions are n
known (see, however, [7,8]). Apart from mathematical in
completeness, absence of analytic results means that
general structure of the spectrum is unknown and, in pa
ticular, analytic continuation of the anomalous dimension
to nonintegerN is not possible. This, in turn, implies
that partonic interpretation of different “components” is
not fully understood beyond the tree level.

Main result of this Letter is that the three-particle
Schrödinger equation describing the renormalization
spin 3y2 baryon operators (1) is completely integrable, i.e
has a nontrivial integral of motion. In addition, we prove
integrability of the RG equations for twist-3 quark-gluon
operators (2)–(3) in the limit of a large number of col
ors Nc. Our finding is similar in spirit to the recent dis-
covery [9,10] of integrability of the system of interacting
reggeized gluons in QCD, but is obtained in a differen
context. A physical interpretation is that we identify a
new “hidden” quantum number which distinguishes com
ponents in three-particle parton distributions with differen
scale dependence. It turns out that the evolution equ
tion for spin 3y2 baryon operators is related to the equa
tion for the odderon trajectory, and the results obtaine
in the latter context [11,12] can be adapted to unravel th
spectrum of baryon operators. Using this connection, w
identify trajectories of the anomalous dimensions and ca
culate them using the1yN expansion. Explicit formulas
are given for the highest and lowest anomalous dimensio
© 1998 The American Physical Society
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in the spectrum. Further applications will be present
elsewhere [13].

To one-loop accuracy, the divergent part of the no
local operatorFsa1, a2, a3d whereF ­ B, S6, T , has the
form s1yedHFsaid, and the explicit expression for the in
tegral operatorH is known for all cases under consid
eration [6,8,14]. An arbitrary local operatorO with N
covariant derivatives can be represented by the asso
ated polynomial in three variablescsa1, a2, a3d of degree
N such thatOc ­ cs≠a, ≠b , ≠cdFsa, b, cda,b,c!0 where
≠a ­ ≠y≠a, etc. In order to find multiplicatively renor-
malizable local operators one has to solve the Schrödin
equation for thec functions,eHc ­ E c, whereeH is easy
to find if H is given.

It proves convenient to define the integral transform
tion [15] csaid ! ĉszid by

ĉszid ;
Y

i

Z `

0
dti

e2ti t
li1si21
i

Gsli 1 sid
csz1t1, . . . , z3t3d , (4)

where li and si are the canonical dimension and spi
projection of theith field, respectively:l ­ 3y2, s ­ 1y2
for quarks (antiquarks) andl ­ 2, s ­ 1 for gluons. We
can reformulate the above eigenvalue problem in terms
ĉ functions, and it is easy to check that the correspondi
Hamiltonian bH coincides with the initial Hamiltonian for
the nonlocal operator,bH ; H. Note thatH has a two-
particle structure,H ­

P
i,k Hik. Conformal invariance

implies that the two-particle HamiltoniansHik commute
with SLs2d generatorsJ6,3 ­

P3
i­1 J

6,3
i , where

J1
i ­ z2

i ≠i 1 sli 1 sidzi , J2
i ­ 2≠i ,

J3
i ­ zi≠i 1 sli 1 sidy2 ,

(5)

and are Hermitean with respect to the scalar product

kĉ1jĉ2l ­ c1s≠1, . . . , ≠3dĉ2sz1, . . . , z3djzi­0 . (6)

Thus, the equationHĉ ­ E ĉ decays into the set of
eigenvalue problems on the subspaces of functions w
fixed value of J3, J3ĉ ­ j3ĉ and annihilated byJ2,
J2ĉ ­ 0. The latter condition is simply shift invariance
[15]. Therefore, eigenfunctions of two-particle Hamil
tonians are given by simple powerŝcl ­ szi 2 zkdl

instead of Jacobi polynomials in standard variables [3].
The SLs2d invariance imposes stringent restrictions o

the form of two-particle operators, so that only a fe
structures are allowed. One such structure correspond
the “vertex correction” involving the gluon field from (one
of) the covariant derivatives (in Feynman gauge):

Hy
12ĉszd ­ 2

Z 1

0

da

a
hal11s121fĉsza

12, z2, z3d 2 ĉszdg

1 al21s221fĉsz1, za
21, z3d 2 ĉszdgj ,

(7)

where z ; hz1, z2, z3j, za
ik ­ zia 1 zka, and a ­ 1 2

a. Another structure originates from gluon exchang
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between quarks (or between a quark and a gluon):

He
12ĉszd ­ 2

Z 1

0
Da

a
l11s1
1 a

l21s2
2

sa1a2d2 ĉsza1
12 , z

a2
21 , z3d , (8)

whereDa ;
Q3

i­1 dai ds1 2
P

aid.
Because of SLs2d invariance the two-particle Hamiltoni-

ans must depend on the corresponding Casimir operato
Lik ; s $Ji 1 $Jkd2 ­ JiksJik 2 1d only. This dependence
can be easily reconstructed from the spectrum ofHik .
Since the form of the eigenfunctions is knownĉl ­ szi 2

zkdl, it is straightforward to derive

H
y,sqqd
ik ­ 2fcsJikd 2 cs2dg ,

H
y,sqgd
ik ­ csJik 1 1y2d 1 csJik 2 1y2d

(9)

2 cs3d 2 cs2d ,

where csxd ; G0sxdyGsxd. The superscriptssqqd and
sqgd indicate quark-quark and quark-gluon operators, re
spectively. Similarly, we obtain

H
e,sqqd
ik ­ 2J21

ik sJik 2 1d21,

H
e,sqgd
ik ­ 2sJik 2 3y2d21sJik 1 1y2d21.

(10)

We are now in a position to specify RG equations fo
the operators in (1)–(3) explicitly. One has to distinguish
three-quark operators belonging tos3y2, 0d and s1, 1y2d
representations, which correspond to DAs for spin 3y2
and spin 1y2 baryons, respectively. We get [16]:

H3y2 ­ H
y,sqqd
12 1 H

y,sqqd
13 1 H

y,sqqd
23 , (11a)

H1y2 ­ H3y2 2 s1y2dHesqqd
12 2 s1y2dHe,sqqd

23 . (11b)

Omitting subleading inNc terms, the quark-antiquark-
gluon Hamiltonians are [7,8]

HS1 ­ H
y,sqgd
12 1 H

y,sgqd
23 2 H

e,sqgd
12 , (12a)

HS2 ­ H
y,sqgd
12 1 H

y,sgqd
23 2 H

e,sgqd
23 , (12b)

HT ­ H
y,sqgd
12 1 H

y,sgqd
23 2 H

e,sqgd
12 2 H

e,sgqd
23 . (12c)

The properly defined anomalous dimensions are give
in terms of eigenvalues of the above operators includ
ing color factors and trivial contributions of self-energy
insertions:

g3y2,1y2sNd ­ s1 1 1yNcdE3y2,1y2sNd 1 s3y2dCF ,
(13)

gS,T sNd ­ NcES,T sNd 1 s7y2dNc

whereCF ­ sN2
c 2 1dys2Ncd.

The operatorsHS6 are equivalent; hereafter, we conside
HS1 . The 1yN2

c corrections to (12) and RG equations
for three-gluon operators involve additional structures [13
and will not be discussed here.

We have been able to find integrals of motionQi,
fHi , Qig ­ 0, for all Hamiltonians in question with the
exception ofH1y2. Explicit expressions for the conserved
2021
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chargesQi present the main result of this Letter:

Q3y2 ­ ıfL12, L13g ­ ı≠1≠2≠3z12z23z31 , (14)

QS1 ­ hL12, L23j 2
9
2

L23 2
1
2

L12 , (15)

QT ­ hL12, L23j 2
9
2

L12 2
9
2

L23 , (16)

where h, j stands for an anticommutator. Remarkabl
H3y2 is nothing but the familiar Hamiltonian of the
XXXs­21 three-particle Heisenberg spin chain. The e
pression in (14) for the corresponding conserved char
Q3y2 is well known; see, e.g., [10].

To check that fHT , QT g ­ 0, fHS , QSg ­ 0 it is
convenient to introduce the basis of functions [15
ĉ

N ,j
12 sz1, z2; z3d which diagonalize the full three-particle

Casimir operatorL123 ­ s $J1 1 $J2 1 $J3d2 and the two-
particle Casimir in the (1,2)-channel simultaneously:

L123ĉ
N ,j
12 ­ sN 1 7y2d sN 1 5y2dĉN ,j

12 ,

L12ĉ
N ,j
12 ­ js j 2 1dĉN ,j

12 .
(17)

A remarkable property of this basis is that the other tw
two-particle Casimir operators become three-diagonal, i.
k jjL23jj0l fi 0 for j j 2 j0j # 1 only. Explicit expres-
sions forĉ

N ,j
12 can easily be constructed in terms of hype

geometric functions [13]. Using them, it is easy to deriv
that

fQT , H
s12d
T g ­ 2fL12, L23g , (18)

where H
s12d
T ­ H

y,sqgd
12 2 H

e,sqgd
12 and, similarly,

fQT , H
s23d
T g ­ 2fL23, L12g. Hence fQT , HT g ­ 0. The

proof of the relationfHS , QSg ­ 0 is analogous.
Once conserved charges are known, one can consider

eigenvalue problem for these charges instead of the Ham
tonians, which is simpler. For the Heisenberg spin cha
a detailed study exists due to Korchemsky [11,12]. Th
spectrum ofQ3y2 is shown in Fig. 1a. For generic intege
N there existN 1 1 eigenvalues which come in pairs6q.
Note that for evenN Q3y2 has zero eigenvalueq ­ 0. The
corresponding value of energy can be calculated exactl

E3y2sN , q ­ 0d ­ 4csN 1 3d 1 4gE 2 6 ; (19)

see the dotted curve in Fig. 1b. Eigenvalues ofQ3y2 lie
on trajectories which were found in [11] using a “sem
classical” expansion in the conformal spinh ­ N 1 3:

qsN , kdyh3 ­
X
m

qsmdskdyhm,

qs0d ­ 1y
p

27 , qs1dskd ­ 2sk 1 1dy
p

3 , . . . .
(20)

The qsmdskd are polynomials of degreem; the first eight
of them are given in Eq. (5.14) in Ref. [11].k is a
nonnegative integer which numerates the trajectory. T
asymptotic expansion in (20) is valid forq . 0 only and
the analytic continuation of the trajectory toq , 0 can
2022
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FIG. 1. The spectrum of eigenvalues for the conserve
chargeQ3y2 (a) and for the spin 3y2 Hamiltonian H3y2 (b),
see text.

be obtained by using symmetry properties of the solution
[11]: qsN , kd ! 2 qsN , N 2 kd.

Two examples of the trajectories withk ­ 2 andk ­
7 are shown in Fig. 1a together with exact eigenvalue
(crosses) calculated numerically. Note that the two asym
totic expansions—for positive and negativeq—match
reasonably well. Analytic expressions for the trajectorie
in theq ! 0 region are available from [12].

The low-lying eigenvalues ofqsN , kd can be calculated
to Os1yN2d accuracy from the equation [13]

q̄ lnsh 2 1y2d 2 argfGs1 1 iq̄dg ­
p

6
sN 2 2kd ,

(21)

where q̄ ; qyhsh 2 1d, which is valid fork 2 Ny2 ø
N. The lowest value ofjqj for oddN is thus of order

q̄ ­ 6
p

6
flnsh 2 1y2d 1 gEg21 1 Os1y ln4 hd .

(22)
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The spectrum ofH3y2 is shown in Fig. 1b. Exact
eigenvalues obtained by explicit diagonalization of th
mixing matrix are shown by crosses. SinceE3y2sqd ­
E3y2s2qd all eigenvalues except for the ones forq ­
0 are double degenerate. The energy eigenvalues
on trajectories corresponding to the trajectories forq in
Fig. 1a, and, similar to the latter, can be calculated usin
“semiclassical” expansion [11]

E3y2sN , kd ­ ´s0d 2
X̀

m­1

´smdskdyhm,

´s0d ­ 6 lnsN 1 3d 1 6gE 2 6 2 3 ln 3, . . . .
(23)

The polynomialś smdskd are given in Eq. (6.5) of Ref. [11]
up to m ­ 7. The trajectories corresponding tok ­ 2
andk ­ 7 are shown in Fig. 1b by broken lines, wherea
the solid curves correspond to the asymptotic expans
in (23) [17]. Note that the expansion diverges close
the “deflection points” which occur at even integerN
and with the energy given by Eq. (19). Convergenc
of the 1yh expansion is somewhat worse for the energ
compared to the conserved chargeq, but it can be improved
systematically. Alternatively, one can derive analyt
approximations forqsN , kd andE3y2sqd applicable in the
q ! 0 region; see [12,13].

Using (22) we obtain an estimate for the lowest ener
eigenvalue for oddN :

E3y2sNd ­ 4 ln N 2 6 1 4gE 1
z s3d

18 ln2 N
. (24)

Numerically, the difference to Eq. (19) is very smal
compare exact eigenvalues with the dotted curve
Fig. 1b, and is probably irrelevant for phenomenologic
applications. One has to bear in mind, however, th
an approximation of taking into account operators wi
the lowest anomalous dimension only for eachN is
theoretically inconsistent since they belong to differe
trajectories.

The anomalous dimensions of quark-gluon operato
(15), (16) can be studied along similar lines [13]. To th
Os1yNd accuracy the spectrum of low-lying energy eigen
values is given in terms of eigenvalues of the correspon
ing integrals of motion as

E snd ­ 2 ln N 1 4gE 2 5 1 2 Refcs3y2 1 indg ,
(25)

where 2n
2
S,T ­ qS,T 2 3y2, and quantization conditions

for the effective charges read, to the same accuracy

nT ln N 1 F1snd 2 F3snd ­
pn
2

,

nS ln N 1
1
2

fF1snd 1 F2sndg 2 F3snd ­
pn
2

,

(26)

wheren ­ 1, 2, . . . and
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F1snd ­ s1y2d argf2F2
1 s3y2 1 in, 23y2

1 in, 1 1 2in, 1dg ,
(27)

F2snd ­ argf2F1s1y2 1 in, 21y2 1 in, 1 1 2in, 1dg ,

F3snd ­ argfGs3y2 1 indg .

These formulas are not applicable to the exact sol
tions with minimum anomalous dimensions, found in
Refs. [7,8], which correspond to imaginaryn and have
to be treated separately. These special solutions a
separated from the rest of the spectrum by a finite gap.
detailed study is in progress.

To summarize, we have shown that a few importan
three-particle evolution equations in QCD are exactl
integrable; that is, they possess nontrivial integrals o
motion. This gives a fairly complete description of the
spectrum of anomalous dimension of baryon operato
with spin 3y2, and a similar description can be develope
for the quark-gluon operators as well. The eigenfunction
can also be studied [12,13]. We believe that the approa
based on integrability may find many phenomenologica
applications to studies of higher-twist parton distribution
in QCD.
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