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Integrability of Three-Particle Evolution Equations in QCD

V.M. Braun
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen &, Denmark

S. E. Derkachov
Department of Mathematics, St.-Petersburg Technology Institute, St.-Petersburg, Russia

A.N. Manashov

Department of Theoretical Physics, Sankt-Petersburg State University, St.-Petersburg, Russia
(Received 5 May 1998

We show that Brodsky-Lepage evolution equation for the spih{3aryon distribution amplitude is
completely integrable and reduces to the three-parfdié(;—_, Heisenberg spin chain. Trajectories
of the anomalous dimensions are identified and calculated using/tieexpansion. Extending this
result, we prove integrability of the evolution equations for twist-3 quark-gluon operators in the large
N, limit.  [S0031-9007(98)07031-8]
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Three-particle distribution amplitudes (DAs) appear in  Three-particle distributions bring in a complication of
QCD in various contexts and attract increasing attentionprinciple. For fixed operator dimension alias fixed total
Perhaps the most important example is provided by theumberN of covariant derivative® + 1 independent lo-
baryon DA which specifies momentum fraction distribu- cal operators exist corresponding to geniune degrees of
tion between the three valence quarks in the minimal Fockreedom. One is left with a nontriviégh + 1) X (N + 1)
state and is defined by the baryon-to-vacuum transitiomnixing matrix and has to diagonalize it explicitly order by
matrix element of the nonlocal three-quark operator [1]: order; see, e.g., [4—6]. The resultidg + 1 multiplica-

B ; ; X tively renormalizable operators have different (in general)
Bla,b.c) = eijq'(au)g’ (bu)q"(cu). (1) anomalous dimensions which analytic expressions are not
Here ¢ is a quark field and: is an auxiliary lightlike —known (see, however, [7,8]). Apart from mathematical in-
vectoru? = 0; taking the leading-twist part and insertion completeness, absence of analytic results means that the
of gauge factors is implied. Another example is provideddeneral structure of the spectrum is unknown and, in par-
by twist-3 quark-gluon operators ticular, analytic continuation of the anomalous dimensions

. B to nonintegerN is not possible. This, in turn, implies

S,(a,b,c) = glaw)[iG ., (bu) £ G, (bu)yslu"jg(cu),  that partonic interpretation of different “components” is
(2)  not fully understood beyond the tree level.
_ = W v, p Main result of this Letter is that the three-particle
Ha.b,¢) = glawpuu’ o, Gy (bu)lg(cw),  (3) Schrodinger equation describing the renormalization of
wherel" = {I, iys}, which give rise to twist three nucleon spin 3/2 baryon operators (1) is completely integrable, i.e.,
parton distributions and/or twist-3 DAs of vector mesons.has a nontrivial integral of motion. In addition, we prove

Parton distributions in QCD are scale dependent; fointegrability of the RG equations for twist-3 quark-gluon
their momentshis dependence corresponds to renormaloperators (2)—(3) in the limit of a large number of col-
ization group (RG) behavior of the relevant local operatorors N.. Our finding is similar in spirit to the recent dis-
obtained by expansion at short distances. This connecovery [9,10] of integrability of the system of interacting
tion is well understood and worked out in great detail forreggeized gluons in QCD, but is obtained in a different
two-particle operators corresponding to leading twist nucontext. A physical interpretation is that we identify a
cleon parton densities or meson DAs. In this case a singleew “hidden” quantum number which distinguishes com-
independent local operator exists for each moment. Thponents in three-particle parton distributions with different
corresponding anomalous dimension can be continued anseale dependence. It turns out that the evolution equa-
lytically to noninteger (complex) moments, defining thetion for spin 32 baryon operators is related to the equa-
Altarelli-Parisi evolution kernel. Mixing with total deriva- tion for the odderon trajectory, and the results obtained
tives can be resolved to one-loop accuracy by going over tm the latter context [11,12] can be adapted to unravel the
the conformal basis [2—4]: coefficients in the expansion ospectrum of baryon operators. Using this connection, we
meson DAs in Gegenbauer polynomials are renormalizedlentify trajectories of the anomalous dimensions and cal-
multiplicatively and with the same anomalous dimensionsulate them using thé/N expansion. Explicit formulas
as in deep inelastic scattering. are given for the highest and lowest anomalous dimensions
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in the spectrum. Further applications will be presentedetween quarks (or between a quark and a gluon):
elsewhere [13]. | R

To one-loop accuracy, the divergent part of the nonge j(;) = 2/ Da Z %2 5% % 1) 8
local operatord (a;, a», a3) where® = B, S*, T, has the il o (aap)? vz 2 ®)
form (1/e)H®(a;), and the explicit expression for the in-

tegral operatort{ is known for all cases under consid- Because of SQ) invariance the two-particle Hamiltoni-

eration [6,8,14]. An arbitrary local operat with N ans must depend on the corresponding Casimir operators
covariant derivatives can be represented by the assocj- p P 9 P

=T + T =T — i
ated polynomial in three variable®(a;, a», a;) of degree Lix = (Ji + Ji)” = JaUi — 1) only. This dependence
N such that@y = (da, 9y, 8 )®(a, b, )apco Where can be easily reconst_ructed frpm t_he spectrumHgf.
d, = 90/0a, etc. In order to find multiplicatively renor- Since the form of the eigenfunctions is known= (z; —

P . ;
malizable local operators one has to solve theNSchrt')dingé(‘) . itis straightforward to derive

whereDa = l_[?=1 da; 5(1 — Y a;).

equation for they functions,Hy = F s, whereH is easy H;(qq) = AyUy) — )],

to find if H is given. v.(ag) 9)
It proves convenient to define the integral transforma- Hy ™ = ¢Uu + 1/2) + $Ui — 1/2)

tion [15] ¢(a;) — §(z;) by — (3 — 92,

—t li+s;—1

i) = l—[fo‘” dr, e it Wit zats). (@) where (x) = I'"(x)/T'(x). The superscriptdgqg) and

(gg) indicate quark-quark and quark-gluon operators, re-

_ . _ _ spectively. Similarly, we obtain
where [; and s; are the canonical dimension and spin

projection of theith field, respectivelyl = 3/2,s = 1/2 HYY =202 U — )7L

for quarks (antiquarks) and= 2, s = 1 for gluons. We e _ _
ganqreformfjlateqthe atgove eigenvalue proglem in terms of H”‘(qg) =20k = 3/27 U + 1/2)7".
¢ functions, and it is easy to check that the corresponding \ye are now in a position to specify RG equations for
Hamiltonian# coincidgs with the initial Hamiltonian for  the operators in (1)—(3) explicitly. One has to distinguish
the nonlocal operato/ = H. Note thatd has a two-  three-quark operators belonging (®/2,0) and (1,1/2)
particle structureH = ., Hy. Conformal invariance representations, which correspond to DAs for spjf2 3
implies that the two-particle Hamiltoniard;, commute  and spin ¥2 baryons, respectively. We get [16]:

with SL(2) generatorg =3 = 33_, 1, where

L + ;)

(10)

Hy)y = Hlvz,(qq) 4 Hfj(qq) + H;S,(qq)’ (11a)

' (1b)

JE=zle; + Ui + sz, Ji = —0;, e(qq) e
(5) Hyp = Hyp — (1/2HR'" — (1/2)H3 ™.

1 1

I =z + (I + 50)/2,
' _ Omitting subleading inN,. terms, the quark-antiquark-
and are Hermitean with respect to the scalar product gluon Hamiltonians are [7,8]

Pldn) = 1(01,..., 03zt 2= (6)  Heo = HGYS + gYSD — oo, (12a)

Thus, the equatiorHyy = F¢ decays into the set of Hg = HY Y 4 Hys — pgye?) (12b)
eigenvalue problems on the subspaces of functions with He = gils) o gra _ pelas)  pelsq) 12¢
fixed value ofJ3, J3y = jz and annihilated byJ_, 12 23 12 » o (129

J—¢ = 0. The latter condition is simply shift invariance The properly defined anomalous dimensions are given
[15]. Therefore, eigenfunctions of two-particle Hamil- i terms of eigenvalues of the above operators includ-

tonians are given by simple powers; = (zi — z)'  ing color factors and trivial contributions of self-energy
instead of Jacobi polynomials in standard variables [3]. insertions:

The SL(2) invariance imposes stringent restrictions on
the form of two-particle operators, so that only a few y;,,,(N) = (1 + 1/N.)E3212(N) + (3/2)Cr, 13)
structures are allowed. One such structure corresponds to _
the “vertex correction” involving the gluon field from (one vs1(N) = NeEsr(N) + (T/2)N.

of) the covariant derivatives (in Feynman gauge): whereCr = (N2 — 1)/(2N.).

N Yda o0 1on n The operatoréls- are equivalent; hereafter, we consider
v li+s—1 a
Hiy(2) = _fo 7{“1 e 2 ) — @] Hs-. The 1/N? corrections to (12) and RG equations
4511 ] @ o4 for three-gluon operators involve additional structures [13]
Tar kg 5) = @1 n g il ot be discussed here.
(7) We have been able to find integrals of motigh,

where z = {z1,22, 23}, zix = zi@ + za, anda = 1 — [H;, Q;] = 0, for all Hamiltonians in question with the

a. Another structure originates from gluon exchangeexception offH,,,. Explicit expressions for the conserved
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charges); present the main result of this Letter: 0.2 ‘ ‘ ‘ ‘ ‘
032 = i[L1p, L13] = 1010203212203z31,  (14) 015 r a +++*++i:xiiﬂi**””? 1
9 | 01 t -
Qs+ = {L12, L3} — 5L23 - ELIZ’ (15) % 0.05 |
+ 0 F+rfr ,,+f+,+ +14
9 9 E’ :
Qr ={Li2, Ly} — — Lo — — Las, (16) s 0.05 -
2 2 01
where {,} stands for an anticommutator. Remarkably, -0.15
Hj/, is nothing but the familiar Hamiltonian of the 02 ‘ ! ! ! ‘ ! !
XXX,—— three-particle Heisenberg spin chain. The ex- ' 0 5 10 15 20 25 30
pression in (14) for the corresponding conserved charge N

03> is well known; see, e.g., [10].

To check that[H7,Or] =0, [Hs,0s] =0 it is
ccgvnvenient to introduce the basis of functions [15]
@12”(11,12;@) which diagpnalige thg full three-particle
Casimir operatorL;»; = (J; + J, + J3)? and the two-
particle Casimir in the (1,2)-channel simultaneously:

~N,j ~N,j
Lindn’ = (N +7/2)(N + 5/,
~N,j . ~N,j
Liogny’ = j(j — Dy’
A remarkable property of this basis is that the other two
two-particle Casimir operators become three-diagonal, i.e.,
(JjlLaslj"y # 0 for | j — j'I =1 only. Explicit expres-
sions for«/?f\g” can easily be constructed in terms of hyper-
geometric functions [13]. Using them, it is easy to derive
that

(17)

Ea2(N)

[QTsH(TIZ)] = 2[Li2, L23], (18)

0O 5 10 15 20 25 30
where H(TIZ) _ Hrz,(qg) _ H;fi(qg)

and, similarly, N
(23)

[Qr,Hr '] = 2[L2;,L12]. Hence[Qr,Hr] =0. The FIG.1. The spectrum of eigenvalues for the conserved

proof of the relatiof Hg, Qs] = 0 is analogous. charge 03, (a) and for the spin &2 Hamiltonian H;,, (b),
Once conserved charges are known, one can consider thee text.

eigenvalue problem for these charges instead of the Hamil-

tonians, which is simpler. For the Heisenberg spin chain

a detailed study exists due to Korchemsky [11,12]. Th

spectrum ofQs,» is shown in Fig. 1a. For generic integer

N there existV + 1 eigenvalues which come in paitsg.

Note that for evemv Qs/, has zero eigenvalug = 0. The

corresponding value of energy can be calculated exactly

be obtained by using symmetry properties of the solutions
T11]: (N, k) = — g(N,N — k).

Two examples of the trajectories with= 2 andk =
7 are shown in Fig. 1a together with exact eigenvalues
[(crosses) calculated numerically. Note that the two asymp-
totic expansions—for positive and negatiyve—match
Fs3p(N,g = 0) =4¢(N + 3) + 4y — 6;  (19) reasonably well. Analytic expressions for the trajectories
in the ¢ — 0 region are available from [12].

The low-lying eigenvalues of(N, k) can be calculated
to O(1/N?) accuracy from the equation [13]

see the dotted curve in Fig. 1b. Eigenvaluegaf, lie
on trajectories which were found in [11] using a “semi-
classical” expansion in the conformal sgin= N + 3:

_ . o
gN )/ =D g™ k) /nm, gin(h = 1/2) —ardI'(l + i)l = -~ (N = 2k),

(20) (21)

0 1
¢V =1N27. ¢V =~k + D/V3L whereg = q/h(h — 1), which is valid fork — N/2 <
The ¢ (k) are polynomials of degree:; the first eight ~N. The lowest value ofg| for odd N is thus of order
of them are given in Eg. (5.14) in Ref. [11]k is a
nonnegative integer which numerates the trajectory. The 7 — tl[ln(h —1/2) + v + 0(1/In*h).
asymptotic expansion in (20) is valid fgr> 0 only and 6
the analytic continuation of the trajectory tpo<< 0 can (22)
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The spectrum ofHsz;, is shown in Fig. 1b. Exact &(v) = (1/2)ard,F(3/2 + iv,—3/2
eigenvalues obtained by explicit diagonalization of the +iv 1+ 2iv1)]
mixing matrix are shown by crosses. Sin&g,,(q) = ’ e (27)
E;3/(—¢q) all eigenvalues except for the ones for= Dy(v) = ard,F1(1/2 + iv,—1/2 + iv,1 + 2iv,1)],
0 are double degenerate. The energy eigenvalues lie _ .
on trajectories corresponding to the trajectories foin ®s3(v) = ardT' (/2 + iv)].

Fig. 1a, and, similar to the latter, can be calculated using ahese formulas are not applicable to the exact solu-
“semiclassical” expansion [11] tions with minimum anomalous dimensions, found in

Refs. [7,8], which correspond to imaginasy and have

_ 0 - (m) m to be treated separately. These special solutions are
E5p(N k) = &7 = Z g™ (k)/h™, separated from the rest of the spectrum by a finite gap. A
= (23)  detailed study is in progress.
e® =6InN +3)+6y; —6—3In3,.... To summarize, we have shown that a few important

three-particle evolution equations in QCD are exactly
The polynomials:" (k) are given in Eq. (6.5) of Ref. [11] integrable; that is, they possess nontrivial integrals of
up tom = 7. The trajectories corresponding o= 2  motion. This gives a fairly complete description of the
andk = 7 are shown in Fig. 1b by broken lines, whereasspectrum of anomalous dimension of baryon operators
the solid curves correspond to the asymptotic expansiowith spin 32, and a similar description can be developed
in (23) [17]. Note that the expansion diverges close tdfor the quark-gluon operators as well. The eigenfunctions
the “deflection points” which occur at even integr  can also be studied [12,13]. We believe that the approach
and with the energy given by Eg. (19). Convergencebased on integrability may find many phenomenological
of the 1/h expansion is somewhat worse for the energyapplications to studies of higher-twist parton distributions
compared to the conserved chargéut it can be improved in QCD.
systematically. Alternatively, one can derive analytic V.B. is grateful to G. Korchemsky for many interesting
approximations foi (N, k) and £3,,(¢) applicable in the discussions and critical reading of the manuscript. The
q — 0 region; see [12,13]. work by S.D. and A.M. was supported by the RFFR

Using (22) we obtain an estimate for the lowest energyGrant No. 97-01-01152.

eigenvalue for oddv:
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