
VOLUME 81, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 7 SEPTEMBER1998

ia

s of

try
hase

ar,

2012
First-Order Nonthermal Phase Transition after Preheating

S. Khlebnikov,1 L. Kofman,2 A. Linde,3 and I. Tkachev1,4

1Department of Physics, Purdue University, West Lafayette, Indiana 47907
2Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822

3Department of Physics, Stanford University, Stanford, California 94305-4060
4Institute for Nuclear Research of the Academy of Sciences of Russia, Moscow 117312, Russ

(Received 28 April 1998)

During preheating after inflation, parametric resonance rapidly generates very large fluctuation
scalar fields. In models where the inflaton fieldf oscillates in a double-well potential and interacts
with another scalar fieldX, fluctuations ofX can keep thef ! 2f symmetry temporarily restored.
If the coupling off to X is much stronger than the inflaton self-coupling, the subsequent symme
breaking is a first-order phase transition. We demonstrate the existence of this nonthermal p
transition with lattice simulations of the full nonlinear dynamics of the interacting fields. In particul
we observe nucleation of an expanding bubble. [S0031-9007(98)07045-8]
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Cosmological phase transitions are one of the cent
topics of modern cosmology [1]. Recently, this theory wa
supplemented by the possibility ofnonthermalcosmologi-
cal phase transitions [2], i.e., phase transitions driven
fluctuations produced so rapidly that they did not have tim
to thermalize. Large nonthermal fluctuations natural
occur in inflationary models during preheating [3].

Fluctuations of Bose fields generated by the paramet
resonance during preheating have large occupation nu
bers and can be considered as interacting classical wa
which allows one to study the dynamics of fluctuation
during and after preheating by using lattice simulation
[4]. Numerical calculations, as well as analytical estimat
[4–11], have shown that the maximal values achieved
fluctuations can be large enough to cause cosmologica
interesting phase transitions. Nevertheless, until now th
was no direct demonstration of the existence of such ph
transitions; several groups which studied this issue nume
cally [12] either concentrated on models where phase tra
sitions cannot occur or neglected essential feedback effe
such as rescattering of created particles.

We have performed a number of lattice simulations
nonthermal phase transitions, which demonstrated the f
mation of various types of topological defects [13]. I
this Letter we report results that prove that nontherm
phase transitions may take place after preheating even
a scale as large as the grand unified theory (GUT) sc
,1016 GeV. The phase transition that we found isfirst
order, which may have particularly important cosmologi
cal implications. First-order phase transitions have a ve
clear signature: They proceed through nucleation and
subsequent expansion of a bubble of the new phase ins
the old phase. In our opinion, the presence of this distin
tive signature eliminates all doubts about the possibility
nonthermal phase transitions in the class of theories un
investigation.

As a prototype we will use the model
0031-9007y98y81(10)y2012(4)$15.00
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f2X2. (1)

The inflaton scalar fieldf has a double-well potential
and interacts with anN-component scalar fieldX; X2 PN

i1 X2
i . For simplicity, the fieldX is taken massless and

without self-interaction. The fields couple minimally to
gravity in a Friedman-Robertson-Walker (FRW) univers
with a scale factor ofastd.

The initial conditions at the beginning of preheating a
determined by the preceding stage of inflation. One c
define the moment when preheating starts as the mom
when the velocity of the fieldf is zero in conformal time
h, dh  dtyastd, as0d  1. This happens whenfs0d ø
0.35MPl [5]. We will use rescaled conformal timet p

l fs0dh. Inhomogeneous modes off and all modes
of X are taken to be in their conformal vacua att  0.
We consider the casey & 1023MPl, g2 ¿ l, and take
l  10213 [1]. The strength of the resonance depen
nonmonotonically on the resonance parameterq  g2y4l,
being maximal at aboutq  n2y2 [10]. The condition
g2yl ø 2n2 ¿ 1 means that the evolution begins in th
regime of a broad parametric resonance.

The equations of motion forf andX are

f̈ 1 3H Ùf 2 =2fya2 1 lsf2 2 y2df 1 g2X2f  0 ,
(2)

Ẍi 1 3H ÙXi 2 =2Xiya2 1 g2f2Xi  0 , (3)

whereH  Ùaya. Substitutingf  f0 1 df, wheref0
is the inflaton’s homogeneous (“zero”) mode, into (2) an
assembling terms linear inf0, we obtain the effective mass
of f:

m2
eff  2ly2 1 3lksdfd2l 1 g2kX2l . (4)
© 1998 The American Physical Society
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Angular brackets denote spatial averaging. Because fl
tuations rapidlybecome classical [4], their variances can
computed as spatial averages; thuskX2l is the variance of
X. The maximal value ofkX2l grows withN , while that
of ksdfd2l  ksf 2 f0d2l does not [6,11]. We therefore
expect that, at largeN , fluctuations ofX will play a more
important role in (4) than those off, at least for some
time. In general, there is no guarantee that a useful ef
tive potential can be defined for a state far from therm
equilibrium. We have found that in our case Eq. (4) giv
a good working definition for the effective mass.

The idea of nonthermal phase transitions [2] is th
large fluctuations ofkX2l [and ksdfd2l] generated during
preheating can change the shape of the effective pote
and lead to symmetry restoration. Afterwards, the unive
expands,kX2l and ksdfd2l drop down, and the phas
transition with symmetry breaking occurs.

If kX2l and ksdfd2l do not depend onf, the phase
transition is of second order. However, in general,kX2l
and ksdfd2l do depend onf, which makes the theory o
the phase transition more complicated. It is well know
that the analogous phase transition at finite temperatur
of the first order forg2yl ¿ 1 [14]. Let us establish the
necessaryconditions for the nonthermal phase transition
occur and to be of first order.

(i) At the time of the phase transition, the pointf  0
should be a local minimum of the effective potentia
From (4), we see that this means thatg2kX2l . ly2.

(ii) At the same time, the typical momentumpp of X
particles should be smaller thangy. This is the condition
for the existence of a potential barrier. Particles w
momentap , gy cannot penetrate the state withjfj ø y,
so they cannot change the shape of the effective poten
at jfj ø y. Therefore, if both conditions (i) and (ii) are
satisfied, the effective potential has a local minimum
f  0 and two degenerate minima atf ø 6y.

(iii) Before the minima atf ø 6y become deeper than
the minimum atf  0, the inflaton’s zero mode shoul
decay significantly, so that it performs small oscillatio
near f  0. Then, after the minimum atjfj ø y be-
comes deeper than the minimum atf  0, fluctuations of
f drive the system over the potential barrier, creating
expanding bubble.

Before performing a numerical investigation of any pa
ticular model, one may want to find out in which cas
these conditions can be satisfied. If the initial value off0
is much larger thany, the first stages of preheating proce
in the same way as in the conformal theories (y  0); this
is a well-established case. The maximal value ofkX2l is
reached at some timetmax. The previous studies [6,11
indicated thatkX2lmax ,

p
N f2s0dyqa2stmaxd. We need,

however, an estimate forkX2l at the time of the phase tran
sition. If, at t . tmax, kX2l merely decreased with time
due to the redshift, we could estimate it by simply replaci
astmaxd with the current value ofa. In reality, fluctuations
of X decrease somewhat slower because of the cont
ing decay of the inflaton but, since the condition (i) hol
uc-
be
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whenevery is small enough compared to fluctuations, i
is safe to make the replacementastmaxd ! a. As for the
condition (ii), we note that the scale of the momenta ofX
particles is set by the frequency of the inflaton’s oscilla
tions,pp ,

p
l fs0dya, although numerical factors are to

be expected in this estimate. Both conditions (i) and (i
are met if f2s0d

a2q ø y2 ø
p

N
f2s0d

a2 . We see that the win-
dow allowed fory2 grows withq and withN. Therefore
we will explore casesg2yl ¿ 1 andN $ 1.

The condition (iii) cannot be verified using only the
results of the previous studies. Nevertheless, we m
expect a fairly rapid decay of the zero mode by analog
with such a decay in the model with a massive inflaton [6
The analogy is relevant when the amplitude off0 in the
present model becomes comparable toy, so that deviations
from the conformal invariance set in. This expectation i
well confirmed by our numerical results.

For numerical studies, the full nonlinear equations o
motion (2) and (3) were solved directly in the configu
ration space. The computations were done on643 lat-
tices for N  1, 2, 9 and on1283 lattices for N  1,
2. Below, we present the results for the model with pa
rametersg2yl  200 andy  0.7 3 1023MPl ø 0.8 3

1016 GeV, and a two-componentX, obtained on a1283

lattice, with the expansion of the universe assumed to b
radiation dominated.

Time dependence of the zero modef0 is shown in
Fig. 1. Initially, f0 oscillates with a large amplitudēf ¿
y. If all fluctuations were absent, the zero modef0, in the
expanding universe, would soon start oscillations near o
of its vacuum values,6y. This would happen when the
amplitude of the oscillations became smaller than

p
2 y.

In Fig. 1 we see that the actual dynamics is complete
different. The zero mode of the fieldf continues to
oscillate nearf  0 even when its amplitude becomes
much smaller thany. In other words, the field oscillates
on top of the local maximum of the bare potential. This
can occur only because the effective potential acquires

FIG. 1. Time dependence of the zero-momentum mode
f in units of its vacuum value for two runs with different
realizations of random initial conditions for fluctuations. All
other parameters were the same in both runs;t is the conformal
time in units offlf2s0dg21y2.
2013
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minimum atf  0 due to the interaction of the fieldf
with kX2l.

At still later times,t * 720 in Fig. 1, the zero mode
of f decays completely. This should be interpreted
the restoration of the symmetryf ! 2f by nonthermal
fluctuations. Finally, att * 860 a phase transition oc
curs, and the symmetry breaks down.

Variances of the fieldsX andf as functions of time are
shown in Fig. 2. One can readily estimate that fluctuatio
of X (whose variance is multiplied by a larger couplin
constantg2) give a dominant contribution to the effectiv
potential, compared to fluctuations off itself. At the
moment of the phase transition (t ø 860 in Fig. 2),g2kX2l
is still larger thanly2. This means that the effectiv
potential still has a local minimum atf  0 even after
the phase transition, which confirms that the transition
of first order.

To make sure that the phase transition itself is no
lattice artifact, we have varied the sizeL of the integration
box and the number of grid points. Values ofL should
be chosen in such a way that, on the one hand, ther
enough control over the ultraviolet part of the spectru
for the results to be cutoff independent and, on the ot
hand, the infrared part of the spectrum is represen
well enough, so that the order of the phase transit
is determined correctly. Good choices ofL are made
by monitoring power spectra of the fields, such as tho
shown in Fig. 3.

At late times (but prior to the phase transition) th
power spectra weakly depend on time and are power
functions at smallk with an exponential tail at largek
[conformal momentumk is defined in units of

p
l fs0d,

k ; pay
p

l fs0d]. We made sure that the exponential ta
of the power spectra is resolved in our simulations. Un
that condition, the power laws do not significantly chan
with L, with the number of grid points, and, additionally
with the number of components ofX. The power law forX
is fitted byPXskd ~ k22.2 for k . 1. At t ø 700, k ø 10
corresponds to physical momentump ø gy. Later on,

FIG. 2. Variance ofX (solid line), variance off (dotted line),
and amplitude of the zero-momentum mode off (dashed line)
as functions of time.
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this value of the physical momentum corresponds to larg
k, and at the moment of the phase transition it correspon
to momenta on the exponential tail of the power spectrum
which signifies that the condition (ii) is fulfilled (see
Fig. 3). Note the enhancement of power spectra at sm
k occurring during and after the phase transition. This
a signature of a bubble of the new phase and of the “sof
fluctuations produced in bubble collisions [15].

We have found that the transition grew stronger whe
we captured more of the infrared region, either through a
increase of the grid size at fixed maximal momentum o
through an increase ofL itself. Thus we expect that the
phase transition will be even more strongly first order i
we use larger lattices for our simulations.

The transition also became more strongly first orde
when we increasedg2yl or the numberN of fields Xi .
Nevertheless, we observed a first-order transition even
N  1.

Direct demonstrations of the first-order nature of th
transition are obtained by plotting a probability distribu
tion of values off over grid points and the actual field
configuration in space. These are shown in Figs. 4 and

Prior to the phase transition, we observed a single pe
in the probability distribution function off. The peak is
centered atf ø 0, although its position oscillates slightly,
synchronously with the oscillations of the zero mode. Th
width of the peak is related to the varianceksdfd2l. At
the moment of the phase transition, a distinctive secon
peak appears near the vacuum value of the field (th
position of this second peak is shifted somewhat from th
vacuum value, because fluctuations still give a significa
contribution to the effective potential). After that, the
second peak grows, while the peak atf  0 decreases
and eventually disappears. During this period, position
of both peaks do not change. For some realizations
random initial conditions for fluctuations, the second pea
appeared atf ø y; for others, atf ø 2y. The time
of the phase transition was also changing somewhat w
the realization. This is an unambiguous signature of th
spontaneous nucleation of a bubble of the new phase in
volume occupied by the old phase.

FIG. 3. Power spectra of the fieldsX1ya (solid line) andfya
(dashed line) before and after the phase transition.
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FIG. 4. Probability distribution offsxd at several moments
of time just before (dashed line), during (solid line), and at th
end of the phase transition (dotted line).

By plotting the actual field configuration in space
we have indeed directly observed nucleation of a sing
bubble and the bubble’s subsequent expansion until
was occupying the whole integration volume. The fiel
configuration at the beginning of the phase transition
shown in Fig. 5. To the best of our knowledge, this is th
first time that lattice simulations allowed one to see th
nucleation of bubbles during a first-order phase transitio

Let us describe some cosmological implications of ou
results. Models that exhibit behavior shown in Fig. 1 wil
lead to domain structure surviving till the present. Thi
conclusion is important because it allows us to rule o
a large class of cosmological models that lead to doma
wall creation. A different behavior of the zero mode
is observed at smaller values ofg2yl or N (but still
g2yl ¿ 1). There, the phase transition occurs when th
zero mode still oscillates nearf  0 with a relatively large
amplitude. This is a new, specifically nonthermal, type o
phase transition. In such cases, bubbles of1y and 2y

FIG. 5. Bubble of the new phase. We plot a surface o
the constant fieldf  20.7y at the beginning of the phase
transition. Inside the surfacef , 20.7y.
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phases will be nucleated in turn, but their abundances ne
not be equal, and, for certain values of the parameters, o
of the phases may happen not to form infinite domain
Such models are not ruled out and, in fact, may hav
an interesting observable consequence, an enhanced
bubble wall collisions) background of relic gravitationa
waves produced by the mechanism proposed in Ref. [
In models where the fieldf has many components, the
phase transition can lead to the creation of strings
monopoles, instead of domain walls [13]. Finally, if
the ratio g2yl is sufficiently large, one may expect a
short secondary stage of inflation [2]. To investigate th
possibility one would need to study models withg2yl ¿
102 or, equivalently,g2 ¿ 10211, which is quite realistic.
However, numerical investigation of this regime require
lattices of a much greater size than we currently use. W
hope to return to this issue in a future publication.
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