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First-Order Nonthermal Phase Transition after Preheating
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During preheating after inflation, parametric resonance rapidly generates very large fluctuations of
scalar fields. In models where the inflaton fiefdoscillates in a double-well potential and interacts
with another scalar fiel(, fluctuations ofX can keep thep — —¢ symmetry temporarily restored.
If the coupling of ¢ to X is much stronger than the inflaton self-coupling, the subsequent symmetry
breaking is a first-order phase transition. We demonstrate the existence of this nonthermal phase
transition with lattice simulations of the full nonlinear dynamics of the interacting fields. In particular,
we observe nucleation of an expanding bubble. [S0031-9007(98)07045-8]

PACS numbers: 98.80.Cq

Cosmological phase transitions are one of the central
topics of modern cosmology [1]. Recently, this theory was
supplemented by the possibility nbnthermalcosmologi- 2
cal phase transitions [2], i.e., phase transitions driven by — = (¢p? — v?)? - g d2X>. (1)
fluctuations produced so rapidly that they did not have time 2
to thermalize. Large nonthermal fluctuations naturallyThe inflaton scalar fieldp has a double-well potential
occur in inflationary models during preheating [3]. and interacts with av-component scalar field; X> =

Fluctuations of Bose fields generated by the parametriﬂ\’:1 X?. For simplicity, the fieldX is taken massless and
resonance during preheating have large occupation numvithout self-interaction. The fields couple minimally to
bers and can be considered as interacting classical wavagavity in a Friedman-Robertson-Walker (FRW) universe
which allows one to study the dynamics of fluctuationswith a scale factor ofi(z).
during and after preheating by using lattice simulations The initial conditions at the beginning of preheating are
[4]. Numerical calculations, as well as analytical estimatesletermined by the preceding stage of inflation. One can
[4—-11], have shown that the maximal values achieved byefine the moment when preheating starts as the moment
fluctuations can be large enough to cause cosmologicallwhen the velocity of the field is zero in conformal time
interesting phase transitions. Nevertheless, until now ther@, dy = dt/a(t), a(0) = 1. This happens whet (0) =
was no direct demonstration of the existence of such phase35Mp, [5]. We will use rescaled conformal time =
transitions; several groups which studied this issue numeriy/A ¢(0)n. Inhomogeneous modes ¢f and all modes
cally [12] either concentrated on models where phase traref X are taken to be in their conformal vacuaat= 0.
sitions cannot occur or neglected essential feedback effecte consider the case < 107 3Mp;, g> > A, and take
such as rescattering of created particles. A = 10713 [1]. The strength of the resonance depends

We have performed a number of lattice simulations ofnonmonotonically on the resonance paramegter g2/4A,
nonthermal phase transitions, which demonstrated the fobeing maximal at abouy = n?/2 [10]. The condition
mation of various types of topological defects [13]. In g?/A = 2rn? > 1 means that the evolution begins in the
this Letter we report results that prove that nonthermategime of a broad parametric resonance.
phase transitions may take place after preheating even onThe equations of motion fop andX are
a scale as large as the grand unified theory (GUT) scale .
~10'6 GeV. The phase transition that we foundfist ¢ + 3H¢ — V¢ /a> + M¢> — v + g°X*¢ =0,
order, which may have particularly important cosmologi- (2
cal implications. First-order phase transitions have a very .. .
clear signature: They proceed through nucleation and the Xi + 3HX; — V’X;/a® + ¢?¢°X; =0,  (3)
subsequent expansion of a bubble of the new phase inside . .
the old phase.  In our opinion, the presence of this distinc/VNereéH = a/a. Substitutingd = ¢, + 56, whereg,
tive signature eliminates all doubts about the possibility ofS the inflaton’s homogeneous ("zero”) mode, into (2) and
nonthermal phase transitions in the class of theories und&ssgmblmg terms linear o, we obtain the effective mass
investigation. of ¢:

As a prototype we will use the model mie = —Av? + 3X(8¢)%) + gX(X?). (4)

1 1
L= E(au(f?)z + E(B#X)z
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Angular brackets denote spatial averaging. Because fluevheneverv is small enough compared to fluctuations, it
tuations rapidlybecome classical [4], their variances can bis safe to make the replacemeritn.) — a. As for the
computed as spatial averages; tk$) is the variance of condition (ii), we note that the scale of the momentaof
X. The maximal value ofX?) grows withN, while that  particles is set by the frequency of the inflaton’s oscilla-
of (64)*) = {(¢p — ¢o)?) does not [6,11]. We therefore tions, p. ~ /A $(0)/a, although numerical factors are to
expect that, at larg®/, fluctuations ofX will play a more  be expected in this estimate. Both conditions (i) and (ii)

important role in (4) than those ap, at least for some gre met if‘izT(qO) < v? < VN £9 we see that the win-
time. In general, there is no guarantee that a useful effegiow allowed forv? grows withg and withN. Therefore
tive potential can be defined for a state far from thermalye il explore caseg?/A > 1 andN = 1.

equilibrium. We have found that in our case Eq. (4) gives The condition (jii) cannot be verified using only the

a good working definition for the effective mass. results of the previous studies. Nevertheless, we may

The idea of nonthermal phase transitions [2] is thaleypect a fairly rapid decay of the zero mode by analogy
large fluctuations ofX~) [and ((5¢)")] generated during  yith such a decay in the model with a massive inflaton [6].

preheating can change the shape of the effective potentigi,q analogy is relevant when the amplitudedaf in the
and lead to symmetry restoration. Afterwards, the univers%resem model becomes comparable teo that deviations
expands,(X?) and ((8¢)*) drop down, and the phase from the conformal invariance set in. This expectation is
transition with symmetry breaking occurs. well confirmed by our numerical results.

If (x) and ((8¢)) do not depend onp, the phe;se For numerical studies, the full nonlinear equations of
transition is of second order. However, in genetaly)  motion (2) and (3) were solved directly in the configu-

and((8¢)?) do depend onp, which makes the theory of |ation space. The computations were done6eh lat-
the phase transition more complicated. It is well knownijces for ;v = 1, 2, 9 and on128? lattices forN = 1,
that the analogous phase transition at finite temperature is  gejow, we present the results for the model with pa-
of the first order forg?/A > 1 [14]. Let us establish the rameterse?/A = 200 andv = 0.7 X 1073Mp ~ 0.8 X
necessargonditions for the nonthermal phase transition to; j16 Gevy, and a two-componerX, obtained on al28?

occur and to be of first order. y _ lattice, with the expansion of the universe assumed to be
(i) At the time of the phase transition, the poit= 0 radiation dominated.

should be a local minimum of the effective potential. Time dependence of the zero modg is shown in

H 2 2 . .. . . . —
From (4), we see that this means tRa{X?) > Av?. Fig. 1. Initially, ¢, oscillates with a large amplitudg >
(ii) At the same time, the typical momentum of X, ™ || fluctuations were absent, the zero mapig in the
particles should be smaller thgw. This is the condition  exnanding universe, would soon start oscillations near one
for the existence of a potential barrier. Particles withys its vacuum values+v. This would happen when the

momentep < gv cannot penetrate the state withl ~ v, amplitude of the oscillations became smaller thébuv.
so they cannot change the shape of the effective potentig) Fig. 1 we see that the actual dynamics is completely

at|¢| = v. Therefore, if both conditions (i) and (ii) are gifrerent. The zero mode of the fielg continues to

satisfied, the effective potential has a local minimum atygqijate nearé = 0 even when its amplitude becomes

¢ = 0 and two degenerate mm'ﬂ“a&” *v. much smaller tham. In other words, the field oscillates
(iii) Before the minima aw ~ *v become deeper than o top of the local maximum of the bare potential. This

the minimum at¢ = 0, the inflaton’s zero mode should ¢4, occur only because the effective potential acquires a
decay significantly, so that it performs small oscillations

near ¢ = 0. Then, after the minimum dip| = v be-

comes deeper than the minimumdat= 0, fluctuations of MM e M M s s
¢ drive the system over the potential barrier, creating an t
expanding bubble.

Before performing a numerical investigation of any par-
ticular model, one may want to find out in which cases
these conditions can be satisfied. If the initial valuebgf
is much larger thaw, the first stages of preheating proceed
in the same way as in the conformal theories= 0); this i
is a well-established case. The maximal valugXf) is }
reached at some time,a. The previous studies [6,11] . i\i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

P 2 - 2 2 I . ]
indicated thatX*)max ~ VN ¢2(0)/qa*(Tma). We need, 200 300 400 B00 600 300 800 800

T

bo(T)/V

however, an estimate fgk>) at the time of the phase tran-
sition. If, at 7 > Tmax (X?) merely decreased with time i
due to the redshift, we could estimate it by simply replacing'©- 1- .Tlm;a.dependence ‘I’f thfe zero-momen.tuhmd.rf‘rfmde of

ith the current value af. In reality, fluctuations ¢ In units of its vacuum value for two runs with different
a(Tmax) Wit : Y, . realizations of random initial conditions for fluctuations. All
of X decrease somewhat slower because of the continther parameters were the same in both ruris;the conformal

ing decay of the inflaton but, since the condition (i) holdstime in units of[A¢2(0)]~/2.
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minimum at¢ = 0 due to the interaction of the fiel¢  this value of the physical momentum corresponds to larger
with (X?). k, and at the moment of the phase transition it corresponds
At still later times, 7 = 720 in Fig. 1, the zero mode to momenta on the exponential tail of the power spectrum,
of ¢ decays completely. This should be interpreted asvhich signifies that the condition (ii) is fulfilled (see
the restoration of the symmetiy — — ¢ by nonthermal Fig. 3). Note the enhancement of power spectra at small
fluctuations. Finally, atr = 860 a phase transition oc- k occurring during and after the phase transition. This is
curs, and the symmetry breaks down. a signature of a bubble of the new phase and of the “soft”
Variances of the fieldX and¢ as functions of time are fluctuations produced in bubble collisions [15].
shown in Fig. 2. One can readily estimate that fluctuations We have found that the transition grew stronger when
of X (whose variance is multiplied by a larger coupling we captured more of the infrared region, either through an
constantg?) give a dominant contribution to the effective increase of the grid size at fixed maximal momentum or
potential, compared to fluctuations ¢f itself. At the through an increase df itself. Thus we expect that the
moment of the phase transition & 860 in Fig. 2),g%(X?)  phase transition will be even more strongly first order if
is still larger thanAv?. This means that the effective we use larger lattices for our simulations.
potential still has a local minimum abp = 0 even after The transition also became more strongly first order
the phase transition, which confirms that the transition isvhen we increaseg?/A or the numberN of fields X;.

of first order. Nevertheless, we observed a first-order transition even at
To make sure that the phase transition itself is not av = 1.
lattice artifact, we have varied the sizeof the integration Direct demonstrations of the first-order nature of the

box and the number of grid points. Values bfshould transition are obtained by plotting a probability distribu-
be chosen in such a way that, on the one hand, there t®n of values of¢p over grid points and the actual field
enough control over the ultraviolet part of the spectrumconfiguration in space. These are shown in Figs. 4 and 5.
for the results to be cutoff independent and, on the other Prior to the phase transition, we observed a single peak
hand, the infrared part of the spectrum is representeih the probability distribution function ofp. The peak is
well enough, so that the order of the phase transitiortentered ath = 0, although its position oscillates slightly,
is determined correctly. Good choices bfare made synchronously with the oscillations of the zero mode. The
by monitoring power spectra of the fields, such as thosevidth of the peak is related to the variané ¢)>). At
shown in Fig. 3. the moment of the phase transition, a distinctive second
At late times (but prior to the phase transition) thepeak appears near the vacuum value of the field (the
power spectra weakly depend on time and are power layosition of this second peak is shifted somewhat from the
functions at smallk with an exponential tail at largé  vacuum value, because fluctuations still give a significant
[conformal momentunk is defined in units ok/A ¢(0),  contribution to the effective potential). After that, the
k = pa/~A $(0)]. We made sure that the exponential tail second peak grows, while the peak @t= 0 decreases
of the power spectra is resolved in our simulations. Undeand eventually disappears. During this period, positions
that condition, the power laws do not significantly changeof both peaks do not change. For some realizations of
with L, with the number of grid points, and, additionally, random initial conditions for fluctuations, the second peak
with the number of components &f The power law folX  appeared atp = v; for others, at¢p = —v. The time
is fitted byPx (k) « k=22 fork > 1. At = 700,k =~ 10  of the phase transition was also changing somewhat with
corresponds to physical momentusn= gv. Later on, the realization. This is an unambiguous signature of the
spontaneous nucleation of a bubble of the new phase in a
volume occupied by the old phase.
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FIG. 2. Variance ofX (solid line), variance ofp (dotted line),
and amplitude of the zero-momentum modedofdashed line) FIG. 3. Power spectra of the fieldg /a (solid line) and¢ /a
as functions of time. (dashed line) before and after the phase transition.
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phases will be nucleated in turn, but their abundances need
not be equal, and, for certain values of the parameters, one
of the phases may happen not to form infinite domains.
Such models are not ruled out and, in fact, may have
an interesting observable consequence, an enhanced (by
bubble wall collisions) background of relic gravitational
waves produced by the mechanism proposed in Ref. [7].
In models where the fieldp has many components, the
phase transition can lead to the creation of strings or
monopoles, instead of domain walls [13]. Finally, if
the ratio g2/A is sufficiently large, one may expect a
short secondary stage of inflation [2]. To investigate this
possibility one would need to study models withy/ A >
10? or, equivalentlyg? > 10!, which is quite realistic.
FIG. 4. Probability distribution of¢(x) at several moments However, humerical investigation of this regime requires
of time just before (dashed line), during (solid line), and at the|attices of a much greater size than we currently use. We
end of the phase transition (dotted line). hope to return to this issue in a future publication.
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