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Yang-Lee Zeros of theQ-State Potts Model in the Complex Magnetic Field Plane
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The microcanonical transfer matrix is used to study the distribution of Yang-Lee zeros of theQ-
state Potts model in the complex magnetic field (x ­ ebh) plane for the first time. Finite size scaling
suggests that at (and below) the critical temperature the zeros lie close to, but not on, the unit circ
with the two exceptions of the critical pointx ­ 1 (h ­ 0) itself and the zeros in the limitT ­ 0.
[S0031-9007(98)07026-4]
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The Q-state Potts model [1,2] in two dimension
is very fertile ground for the analytical and numerica
investigation of first- and second-order phase transitio
With the exception of theQ ­ 2 Potts (Ising) model in
the absence of a magnetic field [3], exact solutions f
arbitraryQ are not known. However, some exact resul
have been established for theQ-state Potts model. For
Q ­ 2, 3, and 4 there is a second-order phase transiti
while for Q . 4 the transition is first order [4]. From
the duality relation the critical temperature is known t
be kBTcyJ ­ 1y lns1 1

p
Q d [1]. For Q ­ 3 and 4

the critical exponents [5] are known, while forQ . 4
the latent heat [4], spontaneous magnetization [6], a
correlation length [7] atTc are also known.

By introducing the concept of the zeros in thecomplex
magnetic field plane of the grand partition function (Yang
Lee zeros), Yang and Lee [8] proposed a mechanism
the occurrence of phase transitions in the thermodynam
limit and gained a new insight into the unsolved proble
of the Ising model in an arbitrary nonzero externa
magnetic field. They have shown that the distributio
of the zeros of a model determines its critical behavio
Lee and Yang [9] also formulated the celebrated circ
theorem which states that the zeros of the grand partit
function of the Ising ferromagnet in the complex magnet
field plane lie on the unit circle. In the 1960s, Fisher [10
initiated the study of the partition function zeros in th
complex temperature plane (Fisher zeros) for the squ
lattice Ising model, and since that time this problem h
attracted continuous interest. In particular, the Fish
zeros of theQ-state Potts model in the absence of
magnetic field have been studied extensively [11–14]. B
numerical methods it has been shown [12] that for se
dual boundary conditions the Fisher zeros of theQ-state
Potts model on a finite square lattice are located on t
unit circle in the complexp plane for Respd . 0, where
p ­ sy21 2 1dy

p
Q and y ­ e2b. The study of the

Yang-Lee zeros of the Ising model has a long history, a
some results have been reported in one [9], two [9,1
three [16], and four [17] dimensions. However, exce
for the one-dimensional Potts model [18], the Yang-Le
zeros of theQ . 2 Potts models have never been studie
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In this paper we discuss the Yang-Lee zeros of theQ-state
Potts model in two dimensions.

We use anexactnumerical technique for the evaluatio
of grand partition functions, the microcanonical transf
matrix (mTM) [14,15,19]. The bond energy for the
Q-state Potts model is (in dimensionless units)

E ­
X
ki,jl

f1 2 dssi, sjdg , (1)

where ki, jl indicates a sum over nearest-neighbor pai
si ­ 0, . . . , Q 2 1, andE is a positive integer0 # E #

Nb, whereNb is the number of bonds on the lattice. W
study the grand partition function of the Potts model in a
external field which couples to the order parameter

Mq ­
X

k

dssk, qd , (2)

whereq is a fixed integer between 0 andQ 2 1. Note
that0 # Mq # Ns is also an integer andNs is the number
of sites on the lattice. BymTM it is possible to obtain
exact integer values for the number of states with fixe
energyE and fixed order parameterM, VQsM, Ed. The
grand partition function in a magnetic fieldh is then a
polynomial given by

ZQsx, yd ­
NsX

M­0

NbX
E­0

VQsM, EdxMyE , (3)

where x ­ ebh and y ­ e2b. We have calculated the
grand partition function of theQ-state Potts model on
finite L 3 L square lattices with self-dual boundar
conditions [12] and cylindrical boundary conditions fo
3 # Q # 8.

Figure 1 shows the Yang-Lee zeros for the three-st
Potts model in the complexx plane at the critical tem-
peratureyc ­ 1ys1 1

p
3 d ­ 0.366, . . . for L ­ 4 and

L ­ 10 with cylindrical boundary conditions. Note that
unlike the Ising model, the zeros of the three-state Po
model lie close to, but not on, the unit circle. The ze
farthest from the unit circle is in the neighborhood o
argsxd ­ p, while the zero closest to the positive rea
axis lies closest to the unit circle. Note that the zer
for L ­ 10 lie on a locus interior to that forL ­ 4. We
© 1998 The American Physical Society
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FIG. 1. Zeros of the three-state Potts model in the comp
x plane at y ­ yc for L ­ 4 and L ­ 10 with cylindrical
boundary conditions.

observe similar behavior for larger values ofQ. We
expect that in the thermodynamic limit the locus of zer
cuts the realx axis at the pointx ­ 1, corresponding to
h ­ 0. Table I shows the distance from the origin an
the imaginary part of the first two zeros of the thre
state Potts model for3 # L # 12. By using the Bulirsch-
Stoer (BST) algorithm [20], we extrapolated our resul
for finite lattices to infinite size. The error bars ar
twice the difference between thesn 2 1, 1d andsn 2 1, 2d
approximants. As one can see, these zeros converge to
critical point,x ­ 1, as described by Yang and Lee [8,9

While we lack the circle theorem of Lee and Yang t
tell us the location of the zeros, something can be s
about their general behavior as a function of temperatu
2
9
5
8
6
5
2
6
9
2

TABLE I. The distance from the origin and the imaginary part of the first two zeros of the
three-state Potts model. Abssx1d and Imsx1d are the modulus and the imaginary part of the
first zero,x2 is the second zero, and the last row is the BST extrapolation to infinite size.

L Abssx1d Imsx1d Abssx2d Imsx2d

3 1.133269811535 0.525147232092 1.154497346584 1.06454735470
4 1.080426920767 0.309148097981 1.095611066859 0.71195132560
5 1.054600270108 0.205103734779 1.065723514328 0.48867703459
6 1.039822577595 0.146911393618 1.048300166208 0.35384547067
7 1.030488924546 0.110897277587 1.037169667607 0.26801626595
8 1.024179322221 0.086960474252 1.029587245456 0.21030772477
9 1.019696144103 0.070189130073 1.024169532034 0.16967930823

10 1.016386584326 0.057951942531 1.020153066105 0.13998147103
11 1.013868175716 0.048731329669 1.017086499226 0.11759613006
12 1.011903888317 0.041599753769 1.014688183571 0.10028811977

` 1.0000(1) 0.00002(7) 1.0000(3) 0.000(1)
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At zero temperature (y ­ 0) from Eq. (3), the grand
partition function is

ZQsx, 0d ­
X
M

VQsM, 0dxM

­ sQ 2 1d 1 xNs . (4)

Therefore, the Yang-Lee zeros atT ­ 0 are given by

xk ­ sQ 2 1d1yNs expfis2k 2 1dpyNsg , (5)

wherek ­ 1, ..., Ns. The zeros atT ­ 0 are uniformly
distributed on the circle with radiussQ 2 1d1yNs which
approaches unity in the thermodynamic limit, independe
of Q. At infinite temperature (y ­ 1), Eq. (3) becomes

ZQsx, 1d ­
NsX

M­0

NbX
E­0

VQsM, EdxM . (6)

Because
P

E VQsM, Ed is simply s Ns
M d sQ 2 1dNs2M , at

T ­ `, the grand partition function is given by

ZQsx, 1d ­ sQ 2 1 1 xdNs , (7)

and its zeros areNs degenerate atx ­ 1 2 Q, indepen-
dent of lattice size. Figure 2 shows the zeros for th
three-state Potts model at several temperatures with cyl
drical boundary conditions. Aty ­ 0.5yc the zeros are
uniformly distributed close to the unit circle. As the tem
perature is increased the edge singularity moves aw
from the real axis and the zeros detach from the un
circle. Finally, asy approaches unity, the zeros converg
on the pointx ­ 22.

For self-dual boundary conditions [12] we observe th
same behaviors as those in Figs. 1 and 2 for cylindric
boundary conditions.Ns ­ L2 and Nb ­ 2L2 2 L for
cylindrical boundary conditions, whileNs ­ L2 1 1 and
Nb ­ 2L2 for self-dual boundary conditions [12]. One
of the main differences between two boundary condition
2001
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FIG. 2. Zeros of the three-state Potts model in the complexx
plane for several values ofy (L ­ 6 and cylindrical boundary
conditions).

is the number of zeros, which is equal toNs. Figure 3
shows the Yang-Lee zeros of the three-state Potts mo
at y ­ yc for L ­ 7 with self-dual and cylindrical bound-
ary conditions. The difference in the number of zero
between two boundary conditions results in the differen
in the locations of zeros nearx ­ 21. However, asx ap-
proaches 1, the zeros for the two different boundary co
ditions are nearly identical. We observe that the effect
the boundary condition on the location of the Yang-Le

FIG. 3. Zeros of the three-state Potts model in the complexx
plane aty ­ yc for L ­ 7 with self-dual boundary conditions
(plus symbols) and cylindrical boundary conditions (ope
circles).
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zeros near the critical point of the Potts model is ve
small, and in the rest of this paper we will consider on
cylindrical boundary conditions.

It is clear that the Yang-Lee zeros of theQ-state Potts
model do not lie on the unit circle forQ . 2 for any
value of y and any finite value ofL. However, there
is some cause to speculate that fory # yc the zerosdo
lie on the unit circle in the thermodynamic limit. Since
the zero in the neighborhood of argsxd ­ p is always the
farthest from the unit circle, if this zero can be shown
approachjxspdj ­ 1 in the limit L ! `, all of the zeros
should lie on the unit circle in this limit. In Fig. 4 we
show values forjxspdj extrapolated to infinite size using
the BST algorithm [20] for3 # Q # 8 at y ­ 0.5yc and
y ­ yc. From these results it is clear that, while the locu
of zeros liescloseto the unit circle aty ­ yc, it does not
coincide with it, except at the critical pointx ­ 1.

Figure 5 shows the BST estimate of the modulus
the locus of zeros as a function of angle for the thre
state Potts model aty ­ 0.5yc, y ­ yc, and y ­ 1.2yc.
To calculate the extrapolated values for each angleu

we selected the zero whose arguments were closest tou,
for lattices of size3 # L # 12 for u ­ 0.0, 0.5, . . . , 2.5,
andp. The BST algorithm was then used to extrapola
these values for finite lattices to infinite size. The larg
variation in the size of the error bars is due to the fa
that for a givenu there may be no zeroclose to u

for the smaller lattices. In Fig. 5 aty ­ yc the first
four angles are shifted slightly from the original value
(u ­ 0.0, 0.5, 1.0, and 1.5) to be distinguished from
the results aty ­ 0.5yc. For y ­ 0.5yc andy ­ yc the
first zeros definitely lie on the pointrsu ­ 0d ­ 1 in
the thermodynamic limit. However, fory ­ 1.2yc, the
BST estimates of the modulus and angle of the first ze
are 1.054(2) and 0.09(6). Therefore, aty ­ 1.2yc, the
locus of zeros does not cut the positive real axis in t
thermodynamic limit, consistent with the absence of
physical singularity fory . yc.

FIG. 4. Modulus of the zero atu ­ p extrapolated to infinite
size for 3 # Q # 8 at y ­ 0.5yc and y ­ yc with cylindrical
boundary conditions.
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FIG. 5. Modulus of the locus of zeros as a function of ang
for the three-state Potts model aty ­ 0.5yc, yc, and1.2yc with
cylindrical boundary conditions. The slight horizontal offse
for data fory ­ yc is for clarity only. However, the offset of
the edge singularity fory ­ 1.2yc from u ­ 0 is real.

From these results, we come to the conclusion that,
fact, the locus of zeros in the thermodynamic limitis not
the unit circle, although, due to the relatively small lattice
studied here, we certainly do not offer this as a proo
Rather, we believe the nature of the locus of zeros rema
an open and interesting question.
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