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Yang-Lee Zeros of theQ-State Potts Model in the Complex Magnetic Field Plane
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The microcanonical transfer matrix is used to study the distribution of Yang-Lee zeros @i-the
state Potts model in the complex magnetic field< ¢#") plane for the first time. Finite size scaling
suggests that at (and below) the critical temperature the zeros lie close to, but not on, the unit circle
with the two exceptions of the critical point= 1 (2 = 0) itself and the zeros in the limil’ = 0.
[S0031-9007(98)07026-4]
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The Q-state Potts model [1,2] in two dimensions In this paper we discuss the Yang-Lee zeros of@hstate
is very fertile ground for the analytical and numerical Potts model in two dimensions.
investigation of first- and second-order phase transitions. We use arexactnumerical technique for the evaluation
With the exception of thed = 2 Potts (Ising) model in of grand partition functions, the microcanonical transfer
the absence of a magnetic field [3], exact solutions fomatrix («TM) [14,15,19]. The bond energy for the
arbitrary Q are not known. However, some exact resultsQ-state Potts model is (in dimensionless units)
have been established for thie-state Potts model. For
Q = 2, 3, and 4 there is a second-order phase transition, E= Y[l - 8(oi,0))], (1)
while for O > 4 the transition is first order [4]. From (i.j)
the duality relation the critical temperature is known towhere (i, j) indicates a sum over nearest-neighbor pairs,
be kgT./J =1/In(1 + /Q) [1]. For 0 =3 and 4 4; =0,...,0 — 1, andE is a positive integed = E =
the critical exponents [5] are known, while f@ >4  n,, whereN, is the number of bonds on the lattice. We
the latent heat [4], spontaneous magnetization [6], andtudy the grand partition function of the Potts model in an

correlation length [7] af’. are also known. external field which couples to the order parameter
By introducing the concept of the zeros in tbemplex

magnetic field plane of the grand partition function (Yang- M, = Z 8(or,q), (2)

Lee zeros), Yang and Lee [8] proposed a mechanism for k

the occurrence of phase transitions in the thermodynamiahere g is a fixed integer between 0 ar@ — 1. Note
limit and gained a new insight into the unsolved problemthat0 = M, = N, is also an integer antl; is the number
of the Ising model in an arbitrary nonzero externalof sites on the lattice. By.TM it is possible to obtain
magnetic field. They have shown that the distributionexactinteger values for the number of states with fixed
of the zeros of a model determines its critical behaviorenergyE and fixed order parametéd, (0o(M,E). The
Lee and Yang [9] also formulated the celebrated circlegrand partition function in a magnetic field is then a
theorem which states that the zeros of the grand partitiopolynomial given by

function of the Ising ferromagnet in the complex magnetic N, N
field plane lie on the unit circle. In the 1960s, Fisher [10] Zo(x,y) = > > QoM E)xMyE, 3)
initiated the study of the partition function zeros in the M=0E=0

complex temperature plane (Fisher zeros) for the squareherex = ¢#" andy = ¢ #. We have calculated the
lattice Ising model, and since that time this problem hagrand partition function of the)-state Potts model on
attracted continuous interest. In particular, the Fishefinite L X L square lattices with self-dual boundary
zeros of theQ-state Potts model in the absence of aconditions [12] and cylindrical boundary conditions for
magnetic field have been studied extensively [11-14]. BB = Q = 8.

numerical methods it has been shown [12] that for self- Figure 1 shows the Yang-Lee zeros for the three-state
dual boundary conditions the Fisher zeros of thestate  Potts model in the complex plane at the critical tem-
Potts model on a finite square lattice are located on thperaturey. = 1/(1 + +/3) = 0.366,... for L = 4 and
unit circle in the complex plane for R¢p) > 0, where L = 10 with cylindrical boundary conditions. Note that,
p=("1-1/J0 andy = ¢ #. The study of the unlike the Ising model, the zeros of the three-state Potts
Yang-Lee zeros of the Ising model has a long history, andgnodel lie close to, but not on, the unit circle. The zero
some results have been reported in one [9], two [9,15]farthest from the unit circle is in the neighborhood of
three [16], and four [17] dimensions. However, exceptargx) = 7=, while the zero closest to the positive real
for the one-dimensional Potts model [18], the Yang-Leeaxis lies closest to the unit circle. Note that the zeros
zeros of theD > 2 Potts models have never been studiedfor L = 10 lie on a locus interior to that fof. = 4. We
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FIG. 1. Zeros of the three-state Potts model in the complex = % the grand partition function is given by
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At zero temperature y( = 0) from Eg. (3), the grand
partition function is

(4)

Therefore, the Yang-Lee zerosht= 0 are given by

(5)

wherek = 1,...,N;. The zeros af" = 0 are uniformly
distributed on the circle with radiue® — 1)V which
approaches unity in the thermodynamic limit, independent
. of 0. Atinfinite temperaturey{ = 1), Eqg. (3) becomes

(6)

Becaused ; Qo (M. E) is simply (3;)(Q — DY, at

x plane aty = y. for L =4 and L = 10 with cylindrical

boundary conditions.

observe similar behavior for larger values of. We

ZQ(X’ 1) = (Q -1+ x)NJ’

(7)

and its zeros aréV; degenerate at = 1 — Q, indepen-

dent of lattice size. Figure 2 shows the zeros for the

expect that in the thermodynamic limit the locus of zerosthree-state Potts model at several temperatures with cylin-
cuts the real axis at the pointt = 1, corresponding to drical boundary conditions. Ay = 0.5y. the zeros are

h = 0. Table | shows the distance from the origin anduniformly distributed close to the unit circle. As the tem-
the imaginary part of the first two zeros of the three-perature is increased the edge singularity moves away

state Potts model f&r = L = 12. By using the Bulirsch-

from the real axis and the zeros detach from the unit

Stoer (BST) algorithm [20], we extrapolated our resultscircle. Finally, asy approaches unity, the zeros converge

for finite lattices to infinite size.

twice the difference between tlie — 1,1) and(n — 1,2)

approximants. As one can see, these zeros converge to tkeme behaviors as those in Figs. 1 and 2 for cylindrical

critical point,x = 1, as described by Yang and Lee [8,9]. boundary conditions.N, = L? and N, = 2L* — L for
While we lack the circle theorem of Lee and Yang tocylindrical boundary conditions, whil&/, = L?> + 1 and

tell us the location of the zeros, something can be sai&v, = 2L for self-dual boundary conditions [12]. One

about their general behavior as a function of temperaturenf the main differences between two boundary conditions

TABLE |I.

The error bars areon the pointx = —2.
For self-dual boundary conditions [12] we observe the

The distance from the origin and the imaginary part of the first two zeros of the

three-state Potts model. Als) and Imx;) are the modulus and the imaginary part of the
first zero,x; is the second zero, and the last row is the BST extrapolation to infinite size.

L Abs(x;) Im(x;) Abs(x,) Im(x,)
3 1.133269811535 0.525147232092 1.154497346584 1.064547354702
4 1.080426920767 0.309148097981 1.095611066859 0.711951325609
5 1.054600270108 0.205103734779 1.065723514328 0.488677034595
6 1.039822577595 0.146911393618 1.048300166208 0.353845470678
7 1.030488924546 0.110897277587 1.037169667607 0.268016265956
8 1.024179322221 0.086960474252 1.029587245456 0.210307724775
9 1.019696144103 0.070189130073 1.024169532034 0.169679308232
10 1.016386584326 0.057951942531 1.020153066105 0.139981471036
11 1.013868175716 0.048731329669 1.017086499226 0.117596130069
12 1.011903888317 0.041599753769 1.014688183571 0.100288119772

1.0000(1)

0.00002(7)

1.0000(3)

0.000(1)
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FIG. 2. Zeros of the three-state Potts model in the complex
plane for several values of (L = 6 and cylindrical boundary

conditions).

is the number of zeros, which is equal Aa. Figure 3

zeros near the critical point of the Potts model is very
small, and in the rest of this paper we will consider only
cylindrical boundary conditions.

It is clear that the Yang-Lee zeros of tiiestate Potts
model do not lie on the unit circle fo@ > 2 for any
value of y and any finite value of.. However, there
is some cause to speculate that fo= y. the zerosdo
lie on the unit circle in the thermodynamic limit. Since
the zero in the neighborhood of &y = 7 is always the
farthest from the unit circle, if this zero can be shown to
approachlx(7)| = 1 in the limit L — o, all of the zeros
should lie on the unit circle in this limit. In Fig. 4 we
show values folx(7)| extrapolated to infinite size using
the BST algorithm [20] foB = Q = 8 aty = 0.5y, and
y = y.. From these results it is clear that, while the locus
of zeros liescloseto the unit circle aty = y,, it does not
coincide with it, except at the critical poinrt= 1.

Figure 5 shows the BST estimate of the modulus of
the locus of zeros as a function of angle for the three-
state Potts model at = 0.5y., y = y., andy = 1.2y,.

To calculate the extrapolated values for each argle
we selected the zero whose arguments were closest to
for lattices of size3 = L = 12 for 0 = 0.0,0.5,...,2.5,
and7. The BST algorithm was then used to extrapolate
these values for finite lattices to infinite size. The large

shows the Yang-Lee zeros of the three-state Potts modufriation in the size of the error bars is due to the fact
aty =y, for L = 7 with self-dual and cylindrical bound- that for a givené there may be no zerelose to ¢
ary conditions. The difference in the number of zerosfor the smaller lattices. In Fig. 5 at =y, the first
between two boundary conditions results in the differencdour angles are shifted slightly from the original values

in the locations of zeros near= —1. However, as ap-

# = 0.0, 0.5, 1.0, and 1.5) to be distinguished from

proaches 1, the zeros for the two different boundary conthe results ay = 0.5y.. Fory = 0.5y. andy = y. the
ditions are nearly identical. We observe that the effect ofist zeros definitely lie on the point(¢ = 0) =1 in
the boundary condition on the location of the Yang-Leethe thermodynamic limit. However, foy = 1.2y, the

0.5

Im(x)

-0.5

FIG. 3. Zeros of the three-state Potts model in the complex

+

o
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BST estimates of the modulus and angle of the first zero
are 1.054(2) and 0.09(6). Therefore, yat= 1.2y, the
locus of zeros does not cut the positive real axis in the
thermodynamic limit, consistent with the absence of a
physical singularity foy > y..
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2002

boundary conditions.



VOLUME 81, NUMBER 10

PHYSICAL REVIEW LETTERS

7 SPTEMBER1998

102+  —e— y=0.5yc
—o— y=1.0yc
190F  —2— y=12y
1.08 I . I 1 x
1.06
i
e 1.04 '
3 ¢
1.02 -
1.00 0@ @Peis j ................... | IS L L SO
0.98 -
0.96 .
0 1 2 3

FIG. 5. Modulus of the locus of zeros as a function of angle

for the three-state Potts modelyat= 0.5y, y., and1.2y. with
cylindrical boundary conditions.
for data fory = y, is for clarity only. However, the offset of
the edge singularity fop = 1.2y. from 6 = 0 is real.

The slight horizontal offset

(11]

[12]

From these results, we come to the conclusion that, iy 3

fact, the locus of zeros in the thermodynamic linsithot

the unit circle, although, due to the relatively small lattices[14]
studied here, we certainly do not offer this as a proof.
Rather, we believe the nature of the locus of zeros remains

an open and interesting question.
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