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Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1yyy2 Particles

Jens Bolte* and Stefan Keppeler†

Abteilung Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
(Received 14 May 1998)

We investigate the Dirac equation in the semiclassical limith̄ ! 0. A semiclassical propagator and
a trace formula are derived and are shown to be determined by the classical orbits of a relativistic
point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas
precession of a classical spin transported along the particle orbits. For the second factor we provide a
interpretation in terms of dynamical and geometric phases. [S0031-9007(98)07032-X]

PACS numbers: 03.65.Sq, 03.65.Pm
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The first one to seek a semiclassical treatment of t
Dirac equation in the spirit of the WKB method appear
to be Pauli [1], who gave a solution for a special cas
He found that in the semiclassical limit the translationa
motion is independent of the spin degrees of freedom
Because of this fact the formalism was criticized by d
Broglie [2] with the remark that one would expect “classi
cal objects” like electromagnetic moments to influence th
trajectories. This controversy was clarified by Rubinow
and Keller [3] in a paper that seems to have been ove
looked by some later authors. Rubinow and Keller pointe
out that the moments of an electron are proportional toh̄
so that in leading order as̄h ! 0 the influence of spin on
the trajectories vanishes. However, in next-to-leading o
der the dynamical equation for Thomas precession [4]
obtained from the Dirac equation. Since only the ratio o
the magnetic moment and spin enters this equation, it co
tains noh̄ and therefore can be interpreted as describin
the dynamics of a classical spin.

The general setup for semiclassical quantization in th
case of multicomponent wave equations was develop
by Littlejohn and Flynn [5]. In a short-wavelength ap-
proximation they replaced the matrix-valued wave oper
tor by a matrix-valued Hamiltonian function, such tha
its eigenvalues generate Hamiltonian dynamics in pha
space. But even if these are integrable, an application
Einstein-Brillouin-Keller (EBK) quantization was found
to be obstructed by the presence of additional phases.
[5] a formalism was presented that allows one to tre
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matrix Hamiltonians with no (globally) degenerate eigen
values. Subsequently, Emmrich and Weinstein [6] ou
lined how to proceed in the degenerate case that, e.
occurs for the Dirac equation, and pointed out the prob
lems of formulating a Bohr-Sommerfeld quantization
They, moreover, uncovered the global geometric mea
ing of the additional phases. A semiclassical quantizatio
for special configurations, based on the complex WK
method, is presented in [7]. Based on the method d
veloped in [5], the effect of spin-orbit coupling, which
follows from the Dirac equation, is investigated semiclas
sically in a nonrelativistic context in [8].

In this paper we will follow an alternative approach in
that we investigate the semiclassical time evolution an
then set up a trace formula. This procedure avoids (som
difficulties that one encounters with semiclassical approx
mations to eigenspinors and, furthermore, is not restricte
to classically integrable systems. We basically follow th
approach that was developed by Gutzwiller [9] for the
Schrödinger equation. Hence the basic object to be stud
is the integral kernelKsx, y, td of the time evolution opera-
tor Ustd. Gutzwiller represented the kernel by a path in
tegral and evaluated this semiclassically. However, he
we prefer to use a representation of the kernel in term
of an oscillatory integral. This procedure can be mad
mathematically rigorous as, e.g., explained in [10] for th
Schrödinger equation. In a second step we pass to the
ergy domain via Fourier transform, and then take the tra
over spatial coordinates as well as over spin degrees
© 1998 The American Physical Society 1987
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freedom. This results in a periodic orbit formula for spec
tral functions. Special attention is paid to the role of spin
Our philosophy of a systematic semiclassical expansi
in the context of the Dirac equation automatically ensur
that spin is treated quantum mechanically from the outs
without anyad hocsemiclassical approximation. As men
tioned above, the semiclassical asymptotics introduces
adiabatic decoupling of (slow) translational and (fast) sp
degrees of freedom. This happens in such a way that
lowest orders inh̄ the expected dynamical equations fo
both kinds of degrees of freedom emerge. In addition, o
procedure allows one to reinterpret the additional phas
in terms of dynamical and geometric phases assoc
ted with a precessing spin. The degree of freedom tha
lost upon passing from a quantum mechanical descripti
of spin in terms of SU(2) matrices to a classical descriptio
in terms of vectorss [ R3 with fixed lengthjsj can be re-
constructed from one of these phases. A detailed acco
of our approach will be presented elsewhere [11].

Let us now briefly summarize the calculations an
results. We investigate the Dirac equation

ih̄
≠Csx, td

≠t
 HDCsx, td (1)

with the (quantum) Hamiltonian

HD : c a ?

∑
h̄
i

= 2
e
c

Asxd
∏

1 bmc2 1 e wsxd

(2)

that acts on a suitable domain in the Hilbert spac
L2sR3d ≠ C4. The Dirac algebra is realized by

a 

µ
0 s
s 0

∂
and b 

µ '232 0
0 2'232

∂
, (3)

where s is the vector of Pauli matrices. The time
evolution kernel is defined by

Csx, td 
Z

R3
Ksx, y, td C0syd d3y (4)

so that it has to fulfill the Dirac equation fort . 0 with
initial condition Ksx, y, 0d  '434dsx 2 yd. Anticipat-
ing the occurrence of solutions of appropriate classic
equations of motion for positive and negative energie
respectively, we choose the semiclassical ansatz

Ksx, y, td 
1

s2p h̄d3

Z
R3

fa1
h̄ esiy h̄df1

1 a2
h̄ esiy h̄df2

g d3j

(5)

with phase functionsf6  f6sx, y, t; j d. The ampli-
tudes a6

h̄ are 4 3 4 matrices with semiclassical expan
sions

a6
h̄ sx, y, t; j d 

X̀
k0

s2ih̄dk a6
k sx, y, t; j d . (6)

In order to account for the initial condition of the
kernel, we have to choosef6jt0  sx 2 yd ? j and
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a1
h̄ jt0 1 a2

h̄ jt0  '434. Inserting (5) into (1) and com-
paring like orders inh̄ yields to lowest order matrix
equations which have solutions with nonzeroa6

0 only if
f6 satisfy the Hamilton-Jacobi equations

H6s=xf6, xd 1
≠f6

≠t
 0 (7)

with the (classical) Hamiltonians

H6sp, xd  ewsxd 6

s
c2

µ
p 2

e
c

Asxd
∂2

1 m2c4 .

(8)

These are the (twofold degenerate) eigenvalues of
matrix-valued symbolca ? sp 2 eycAd 1 bmc2 1 ew

of HD . Because of (7) one can separatey in f6 accord-
ing to f6  S6sx, j , td 2 y ? j . When one applies the
method of stationary phase to (5) ash̄ ! 0, it turns out
that at stationary pointsS6 generates a canonical transfo
mation that describes the dynamics of a relativistic po
particle fromy to x in time t.

We now turn to the equations that occur in next-t
leading order inh̄, and which contain terms involving
both a6

0 and a6
1 . Here we restrict to the index1. An

equation fora1
0 only is obtained through a multiplication

on the left with the Hermitian conjugateV
y
t of the4 3 2–

matrix

Vt : V sx, y, t; j d 
1p

2ese 1 mc2d

µ
e 1 mc2

c s ? p

∂
(9)

with e :
p

c2p2 1 m2c4 and p  =xf 2
e
c A, whose

columns are the eigenvectors associated withH1. (We
will denote byWt the corresponding matrix of eigenvec
tors associated withH2.) We then define a2 3 2 matrix
b1 by

a1
0  Vtb1V

y
0 (10)

and remark that only this construction withVt on the
left, together with the appropriatef1, ensures that the
equation tolowest order in h̄ is fulfilled. Moreover, at
t  0 the initial condition b1jt0  '232 ensures that
a1

0 jt0  V0V
y
0 is the projector on theH1 eigenspace.

A respective remark applies toa2
0 so that the initial con-

dition for a1
0 1 a2

0 is fulfilled. An obvious interpretation
of this ansatz is as follows. Given an initial 4-spinorC0

at timet  0, V
y
0 projects it onto theH1 eigenspace and

converts it to a 2 spinor. This is propagated to timet
and thenVt maps the 2 spinor back to the 4-spinor repr
sentation. Using the ansatz (10) in the equation of ne
to-leading order inh̄ then yields the following transport
equation forb  b1:∑

=pH1s=xS1, xd ? =x 1
≠

≠t

∏
b  2sM1 1 iM2db ,

(11)
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with the Hermitian2 3 2 matrices

M1 :
1
2

3X
j1

√
3X

k1

≠2H1

≠pj≠pk

≠2S1

≠xk≠xj
1

≠2H1

≠pj≠xj

!
'232 ,

M2 : 2
ec
2e

s ? B 1
ec2

2ese 1 mc2d
s ? sp 3 Ed .

(12)

We need to solve (11) only along the orbits in phas
space, in which case the left-hand side can be viewed
the total time derivativeÙb along these orbits. To arrive at
(11) we used Coulomb gauge, but this doesn’t restrict t
result because it only contains the fieldsE and B. The
contribution to (11) coming fromM1 is well known from
the Schrödinger case [10], and therefore the ansatz

b 

s
det

µ
≠2S1

≠xj≠jk

∂
d , (13)

with some2 3 2 matrix d, proves useful. From (11) one
then obtains the transport equation

Ùd 1 iM2d  0, djt0  '232 , (14)

for d, which involves only the spin degrees of freedom
e
as

he

.

Because of the unitarity of the time evolution and th
initial condition,d has to be an SU(2) matrix.

The additional phases discussed in [5,6] are caused
M2. The second term inM2, see (12), can be shown to
beVys=pH1 ? =x 1

≠

≠t dV , and thus is a projection of the
natural connection on the trivialC4 bundle over phase
space onto theH1 eigenbundle. According to [6,12], it
hence is the Berry term identified in [5]. We call this SU(2
Berry term in order to distinguish it from the U(1) phas
originally introduced by Berry [13]. The first term inM2
then is the “no name term” of [5] that has been shown to
related to a Poisson curvature in [6]. In fact, it measur
to what extent the classical time evolution tends to lea
theH1 eigenspace. In physical terms, the first (curvatur
term is the interaction of spin and magnetic field, an
the second [SU(2)-Berry] term represents the spin-or
coupling. Analogous considerations apply toH2. We
remark that we did not need to perform the diagonalizati
procedure introduced in [5]. Thus the classical orbits a
determined by the Hamiltonian (8) and the phases en
separately through (14).

We are now in a position to state the followin
semiclassical expression for the time evolution kernel:
Ksx, y, td 
1

s2pih̄d3y2

" X
g1xy

Vtd1V
y
0 D1

g1
xy

e
siy h̄dR1

g
1
xy

2ispy2dng
1
xy 1

X
g2xy

Wtd2W
y
0 D2

g2
xy

e
siy h̄dR2

g
2
xy

2ispy2dng
2
xy

#
h1 1 O sh̄dj ,

with D6
g6

xy


vuutÇ
det

µ
2

≠2R6
g6

xy

≠xj≠yk

∂ Ç
, (15)
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whereg6
xy labels the classical orbits that connecty andx

in time t. R6 is Hamilton’s principal function, which is
the Legendre transform ofS6 with respect toj , andn6

is the Morse index of the corresponding orbit.
We are still left with the calculation ofd. Since

d [ SU s2d, we can use the representation

d 

µ
u 2y

y u

∂
with juj2 1 jyj2  1 . (16)

A candidate for a “classical spin” should be a vecto
s [ R3 with fixed length, which we find convenient to
choose asjsj  1. We thus seek a mapd ° s from SU(2)
to S2 , R3. To achieve this we propose to use the we
known Hopf mappH : SU s2d ! S2 defined by

pHsdd  s :

0B@ 2 Resuyd
2 Imsuyd

juj2 2 jyj2

1CA  su, yds
µ

u
y

∂
. (17)

The last equality reveals thats is also connected to a
suitable spin expectation value. From (17) and (14)
follows thats fulfills the classical equation

Ùs  s 3

∑
ec
e

B 2
ec2

ese 1 mc2d
p 3 E

∏
,

sjt0 

0B@ 0
0
1

1CA , (18)
r
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describing a precessing spin. After [4], this is common
called Thomas precession; see also [14]. Because
the initial condition, s [ S2 will stay on the northern
hemisphere for sufficiently small times. We then choo
polar coordinates,

s 

0B@ sinu cosf

sinu sinf

cosu

1CA , (19)

which allows one to calculated up to a phaseh, where
uyjuj  eih,

d 

µ
cossuy2deih 2 sinsuy2de2ish2fd

sinsuy2deish2fd cossuy2de2ih

∂
. (20)

The equation forh, which is obtained upon inserting
(20) into (14) and multiplying bydy, can immediately
be integrated,

h 
1
2

Z t

0
s ?

µ
ec
e

B 2
ec2

ese 1 mc2d
p 3 E

∂
dt0

1
1
2

Z t

0
s1 2 cosud Ùf dt0. (21)

The first term is a dynamical phase associated with t
energy of a (classical) magnetic moment in given electr
magnetic fields, whereas the second term is a geome
1989
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phase. We remark that onces enters the southern hemi-
sphere ofS2, one should change the phase conventi
in that yyjyj  eil is used to describe the nonclassica
degree of freedom. In (21) this amounts to replacin
1y2s1 2 cosuddf by 21y2s1 1 cosuddf. These two
expressions are the well known gauges of the vector p
tential for a magnetic monopole of strength1y2 situated at
the origin of the sphere. The geometric phase caused
this connection is reminiscent of (but not identical to) th
quantum mechanical Berry phase of a precessing spin [1

Now all terms appearing in the semiclassical time ev
lution kernel are fixed. A nonrelativistic approximation i
obtained, if in (15) one keeps only the leading asympto
term asc ! `. As a result, one is left with a block diago-
nal formula. On the other hand, we also performed t
above program of a systematic semiclassical expansion
the case of the Pauli equation. Its result coincides w
the upper left block of the former approximation.

Our next goal is to derive a semiclassical trace formu
from (15). SinceHD always has a continuous spectrum
which contains at leasts2`, 2mc2d < smc2, `d, we find
it convenient to introduce an energy localization such th
finally only the discrete spectrum ofHD enters. We thus
assume that the spectrum ofHD is purely discrete on an
intervalI  sEa, Ebd. Then we choose a smooth functio
xsEd which is nonzero only onI, such thatxsEnd  1
for all eigenvaluesEn. This can always be achieved i
there is no accumulation of eigenvalues atEa or Eb .
Instead of the full time evolution operator we then stud
its restriction xsHDdUstd. To leading order inh̄, this
restriction only causes additional factorsxsEgxy d in (15).
For Schrödinger operators this procedure is described
[10]. The restricted time evolution kernel has a spectr
representationeKsx, y, td 

X
n

xsEnd CnsxdCy
n syde2siy h̄dEnt (22)

with orthonormal eigenspinorsCn. We define a regular-
ized Green’s function by

eG% sx, y, Ed :
1

2p

Z 1`

2`

%̂ stdesiy h̄dEt eKsx, y, td dt , (23)
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where % is a smooth test function such that its Fourie
transform%̂ vanishes outside a finite interval. Taking th
trace of eG% over spatial variables and matrix componen
yields

sTr eG% d sEd  Tr434

Z
R3

eG% sx, x, Ed d3x


X
n

xsEnd %

µ
En 2 E

h̄

∂
. (24)

The trace formula can now be derived from (23) an
(24) when one introduces the semiclassical approximat
(15), but now modified as described above in order
apply to the kerneleK. As in the case of the Schrödinge
equation, the integrals necessary to calculate (24) can
evaluated with the method of stationary phase. The fi
and foremost contribution then derives from the stationa
points with t  0. In leading semiclassical order this
term (also called Weyl term) involves the volumesjV

6
E j

of the energy shells in phase space,

jV6
E j 

Z
R3

Z
R3

dfH6sp, xd 2 Eg d3p d3x . (25)

Up to termsO sh̄`d, all further contributions are caused
by the nontrivial periodic orbits of the classical dynamic
generated byH1 and H2. In the case that all periodic
orbits are isolated and unstable (i.e., hyperbolic or inver
hyperbolic) these contributions will be given explicitly
Their calculation is exactly parallel to the case of th
Schrödinger equation. The only additional factor th
enters comes from the trace over the spin degrees
freedom. IfT is the period of a periodic orbit,VT  V0
so that

Tr434sVT d1V
y
0 d  Tr232sVy

0 VT d1d  Tr232d1

 2 cossuy2d cosh . (26)

We now chooseE [ I such thatxsEd  1, and thus
obtain the trace formula
X
n

xsEnd %

µ
En 2 E

h̄

∂


%̂ s0d
p

jV
1
E j 1 jV

2
E j

s2p h̄d2 h1 1 O sh̄dj 1
X
g6

p

%̂ sTg6
p

d
2p

Ag6
p

e
siy h̄dSg

6
p

sEd2ispy2dmg
6
p h1 1 O sh̄dj

with Ag6
p


2T#

g6
p

cossug6
p

y2d coshg6
pq

j detsMg6
p

2 'dj
. (27)
i tic
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On the right-hand side the sum extends over the class
periodic orbitsg6

p of energy E. Furthermore,SsEd H
p ? dx is the action,T the period,m the Maslov index,

and M is the (linearized) Poincaré map;T# denotes
the associatedprimitive period. We remark that these
quantities derive from the relativistic equations of motio
cal

n

generated by (8) in the same way as in the nonrelativis
case [9], and thus they are not influenced by the spin. T
factor2 cossuy2d cosh emerging from the spin degrees o
freedom has to be interpreted as follows. The angleu

measures the discrepancy between the directions of
spin vector after this has been transported along a giv
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periodic orbit with the dynamics dictated by (18). Th
contribution of the periodic orbit to the trace formula i
then weighted with cossuy2d. The second term arises
from quantum mechanics and, as explained above,
composed of a dynamical as well as of a geometric pha
The factor of 2 finally indicates the presence of two sp
directions.
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