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Semiclassical Time Evolution and Trace Formula for Relativistic Spin-¥2 Particles
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We investigate the Dirac equation in the semiclassical limit 0. A semiclassical propagator and
a trace formula are derived and are shown to be determined by the classical orbits of a relativistic
point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas
precession of a classical spin transported along the particle orbits. For the second factor we provide an
interpretation in terms of dynamical and geometric phases. [S0031-9007(98)07032-X]

PACS numbers: 03.65.Sq, 03.65.Pm

The first one to seek a semiclassical treatment of thenatrix Hamiltonians with no (globally) degenerate eigen-
Dirac equation in the spirit of the WKB method appearsvalues. Subsequently, Emmrich and Weinstein [6] out-
to be Pauli [1], who gave a solution for a special caselined how to proceed in the degenerate case that, e.g.,
He found that in the semiclassical limit the translationaloccurs for the Dirac equation, and pointed out the prob-
motion is independent of the spin degrees of freedomlems of formulating a Bohr-Sommerfeld quantization.
Because of this fact the formalism was criticized by deThey, moreover, uncovered the global geometric mean-
Broglie [2] with the remark that one would expect “classi- ing of the additional phases. A semiclassical quantization
cal objects” like electromagnetic moments to influence thdor special configurations, based on the complex WKB
trajectories. This controversy was clarified by Rubinowmethod, is presented in [7]. Based on the method de-
and Keller [3] in a paper that seems to have been overwveloped in [5], the effect of spin-orbit coupling, which
looked by some later authors. Rubinow and Keller pointedollows from the Dirac equation, is investigated semiclas-
out that the moments of an electron are proportiondi to sically in a nonrelativistic context in [8].
so that in leading order @ — 0 the influence of spin on In this paper we will follow an alternative approach in
the trajectories vanishes. However, in next-to-leading orthat we investigate the semiclassical time evolution and
der the dynamical equation for Thomas precession [4] ishen set up a trace formula. This procedure avoids (some)
obtained from the Dirac equation. Since only the ratio ofdifficulties that one encounters with semiclassical approxi-
the magnetic moment and spin enters this equation, it commations to eigenspinors and, furthermore, is not restricted
tains no/ and therefore can be interpreted as describingo classically integrable systems. We basically follow the
the dynamics of a classical spin. approach that was developed by Gutzwiller [9] for the

The general setup for semiclassical quantization in th&chrodinger equation. Hence the basic object to be studied
case of multicomponent wave equations was developeid the integral kernek (x, y, r) of the time evolution opera-
by Littlejohn and Flynn [5]. In a short-wavelength ap- tor U(¢). Gutzwiller represented the kernel by a path in-
proximation they replaced the matrix-valued wave operategral and evaluated this semiclassically. However, here
tor by a matrix-valued Hamiltonian function, such thatwe prefer to use a representation of the kernel in terms
its eigenvalues generate Hamiltonian dynamics in phasef an oscillatory integral. This procedure can be made
space. But even if these are integrable, an application ahathematically rigorous as, e.g., explained in [10] for the
Einstein-Brillouin-Keller (EBK) quantization was found Schrédinger equation. In a second step we pass to the en-
to be obstructed by the presence of additional phases. krgy domain via Fourier transform, and then take the trace
[5] a formalism was presented that allows one to treabver spatial coordinates as well as over spin degrees of
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freedom. This results in a periodic orbit formula for spec-aj |,—o + aj ;=0 = lix4. Inserting (5) into (1) and com-
tral functions. Special attention is paid to the role of spin.paring like orders in7z yields to lowest order matrix
Our philosophy of a systematic semiclassical expansioequations which have solutions with nonzesp only if
in the context of the Dirac equation automatically ensuresp = satisfy the Hamilton-Jacobi equations

that spin is treated quantum mechanically from the outset, .

without anyad hocsemiclassical approximation. As men- H*(V,p*,x) + 96~ _ 0 @
tioned above, the semiclassical asymptotics introduces an 0

adiabatic decoupling of (slow) translational and (fast) spinyith the (classical) Hamiltonians

degrees of freedom. This happens in such a way that to
lowest orders ini the expected dynamical equations for . _ v |2 e 2 4

both kinds of degrees of freedom emerge. In addition, our 7~ (P-X) = e@(x) = q/c (1’ - ?A(x)> +omiet
procedure allows one to reinterpret the additional phases (8)

in terms of dynamical and geometric phases associa-

ted with a precessing spin. The degree of freedom that i$hese are the (twofold degenerate) elgenvalues of the
lost upon passing from a quantum mechanical descriptiofatrix-valued symbota - (p — e/cA) + ,Bmc + ep

of spin in terms of SU(2) matrices to a classical descriptiorPf Hp. Because of (7) one can separatén ¢~ accord-

in terms of vectors € R with fixed lengthls| can be re- INg t0 ¢~ = S*(x,&,1) — y - £. When one applies the
constructed from one of these phases. A detailed accoufitéthod of stationary phase to (5) As— 0, it turns out

of our approach will be presented elsewhere [11]. that at stationary point§™ generates a canonical transfor-
Let us now briefly summarize the calculations andmation that describes the dynamics of a relativistic point
results. We investigate the Dirac equation particle fromy tox in time 7. _
We now turn to the equations that occur in next-to-
ik oW1 _ HpV(x, 1) (1) leading order inZ, and which contain terms involving
at both ay andaj. Here we restrict to the index. An
with the (quantum) Hamiltonian equation forag only is obtained through a multiplication
i e on the left with the Hermitian conjugalé{r of the4 X 2—
Hp =ca - |:—,V — —A(x)} + ,8m02 + e ¢(x) matrix
1 C
(2) 1 € + mc?
~Viey ) = = (! ) ©
that acts on a suitable domain in the Hilbert space J2e(e + me?) \ co - @

L*(R%) ® C*. The Dirac algebra is realized by _
with € ;= vc2@? + m2¢* andw = V,¢p — - A, whose
_(0 o _ ([ Lax2 0 columns are the eigenvectors associated \th. (We
@ and B 3) X ; ; .
0 0  —lax will denote by W, the corresponding matrix of eigenvec-
where o is the vector of Pauli matrices. The time tors associated withf —.) We then define @ X 2 matrix

evolution kernel is defined by b+ by
F = Vb Vi 10
Ve = [ Keypowmdy @ 0 = VibsVo 10
, : " ) ) , and remark that only this construction witj on the
so that it has to fulfill the Dirac equation fer> 0 with left, together with the appropriaté*, ensures that the

initial condition K (x, y,0) = 14x46(x — y). Anticipat- oy ation tolowestorder in 7 is fulfilled. Moreover, at
ing the occurrence of solutions of appropriate classmall — 0 the initial conditionb.|,—o = T,x, ensures that
equations of motion for positive and negative energies, +

. t . . Lo
. . . ug |i=0 = VoVy is the projector on theéd ™ eigenspace.
respectively, we choose the semiclassical ansatz A respective remark applies tg, so that the initial con-

. dition forag + aq is fulfilled. An obvious interpretation
f [ap ™" + age/N? ] of this ansatz is as follows. Given an initial 4-spinbg
(5) attimer = 0, VJ projects it onto thed * eigenspace and
converts it to a 2 spinor. This is propagated to time
and thenV, maps the 2 spinor back to the 4-spinor repre-
sentation. Using the ansatz (10) in the equation of next-

K(x,y,1) = o ﬁ)3

with phase functionsp™ = ¢=(x,y,t; &). The ampli-
tudesa; are4 X 4 matrices with semiclassical expan-

sions to-leading order ini then yields the following transport
. = N equation forb = b.:
ailey.€) = Y (-infafy.nd). 6 '
k=0 i " ] i _ .
In order to account for the initial condition of the [VI’H (VaS™,x) - Vi + o [P = (My + iM2)b
kernel, we have to choosé |, = (x — y) - & and (11)
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with the Hermitian2 X 2 matrices

3 3 2 + 20+ 2 +
1 O*H* 0§ 0*H
M] = E (Z 9 )]12><2,
Zi\i=i 9PjOpk 9xxdx;  Op;dx;
2
ec ec
My=—-——o B+ ——— 0 - < E).
2 ¥id rele + me?) o (7 )
(12)

We need to solve (11) only along the orbits in phas

space, in which case the left-hand side can be viewed a

the total time derivativé along these orbits. To arrive at

(11) we used Coulomb gauge, but this doesn't restrict th

result because it only contains the fielHsand B. The

contribution to (11) coming from; is well known from

the Schrodinger case [10], and therefore the ansatz
928+

b= de(axja§k>d’

with some2 X 2 matrix d, proves useful. From (11) one
then obtains the transport equation

d + iMyd = 0, (14)
for d, which involves only the spin degrees of freedom.

(13)

dli=0 = laxa,

Because of the unitarity of the time evolution and the
initial condition,d has to be an SU(2) matrix.

The additional phases discussed in [5,6] are caused by
M,. The second term ii,, see (12), can be shown to
be VJF(VPH+ -V, + %)V, and thus is a projection of the
natural connection on the trividl* bundle over phase
space onto thé/* eigenbundle. According to [6,12], it

dence is the Berry termidentified in [5]. We call this SU(2)

erry term in order to distinguish it from the U(1) phase
originally introduced by Berry [13]. The first term itf,

éhen is the “no name term” of [5] that has been shown to be

related to a Poisson curvature in [6]. In fact, it measures
to what extent the classical time evolution tends to leave
the H™" eigenspace. In physical terms, the first (curvature)
term is the interaction of spin and magnetic field, and
the second [SU(2)-Berry] term represents the spin-orbit
coupling. Analogous considerations apply #o. We
remark that we did not need to perform the diagonalization
procedure introduced in [5]. Thus the classical orbits are
determined by the Hamiltonian (8) and the phases enter
separately through (14).

We are now in a position to state the following
semiclassical expression for the time evolution kernel:

1 (/MR s —i(m /2w, —  (/RR-—i(m /2y,
K(x.y.1) = .—M[Z VidoVg Dy T 1 N wiaw D, s -'-‘}{1 + O(m),
2wih) YT » S ""
_ 2R
with D_. = | de(— . ) | (15)
= 0X;0yg

I

Whereyxiy labels the classical orbits that conngcandx

in time . R~ is Hamilton’s principal function, which is
the Legendre transform of* with respect to£, andv=
is the Morse index of the corresponding orbit.

We are still left with the calculation ofl. Since
d € SU(2), we can use the representation

d=<”
v

-v

u

) with [u® + [ = 1. (16)

A candidate for a “classical spin” should be a vector

s € R? with fixed length, which we find convenient to
choose afg| = 1. We thus seek a map+— s from SU(2)

to S C R?. To achieve this we propose to use the well
known Hopf mapry: SU (2) — S? defined by

2 Re(uv)
2 Im(uv)
lul> = |v?
The last equality reveals that is also connected to a

suitable spin expectation value.
follows thats fulfills the classical equation

. ec 2
s =585 X

ec
Sli=0 =

7TH(d) =S

— (@, U)o-( y ) . Q@)

<x)

(18)

—
€ e(e + mc?)

—_ o O

From (17) and (14) it

describing a precessing spin. After [4], this is commonly
called Thomas precession; see also [14]. Because of
the initial condition,s € S* will stay on the northern
hemisphere for sufficiently small times. We then choose
polar coordinates,

siné cos¢
sind sing
cosf

s = (29)

5

which allows one to calculaté up to a phasey, where
u/lul = e'm,
J— ( cog6/2)e'" —sin(0/2)e"'(’7“/’)> (20)
— \sin(g/2)ein=¢) cog6/2)e " :
The equation forny, which is obtained upon inserting
(20) into (14) and multiplying byd®, can immediately
be integrated,

1 (! ec ec? )
—— | s (EB-—5 _axE)d’
K 2/os <E e(e+mc2)ﬂ
1 d .
+ 5] (1 — cosh) ¢ dt’'. (22)
0

The first term is a dynamical phase associated with the
energy of a (classical) magnetic moment in given electro-
magnetic fields, whereas the second term is a geometric
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phase. We remark that oneeenters the southern hemi- where ¢ is a smooth test function such that its Fourier
sphere ofS?, one should change the phase conventionransforrﬂé vanishes outside a finite interval. Taking the
in that v/|v| = ¢'* is used to describe the nonclassicaltrace ofG¢ over spatial variables and matrix components
degree of freedom. In (21) this amounts to replacingyields
1/2(1 — cos#)d¢ by —1/2(1 + cosf)d¢p. These two
expressions are the well known gauges of the vector po-
tential for a magnetic monopole of strengtf? situated at

the origin of the sphere. The geometric phase caused by E _E
this connection is reminiscent of (but not identical to) the — ZX(En) Q( n ) (24)
guantum mechanical Berry phase of a precessing spin [13]. n h

Now all terms appearing in the semiclassical time evo- .
lution kernel are fixed. A nonrelativistic approximation is The wace formula can now be derived from (23) and

obtained, if in (15) one keeps only the leading asymptotic(24) when one introq_uces the semiclassical approximation

term asc — «. As aresult, one is left with a block diago- (15), but now mochlfled 6?5 described above in "or.der to

nal formula. On the other hand, we also performed thétPPly to the kerneK'. As in the case of the Schrédinger

above program of a systematic semiclassical expansion frauation, the integrals necessary to calculate (24) can be

the case of the Pauli equation. Its result coincides witfevaluated with the method of stationary phase. The first

the upper left block of the former approximation. anpl foremost contribution then derlv_es fro_m the statlon_ary
Our next goal is to derive a semiclassical trace formuld0ints withz = 0. In leading semiclassical order this

from (15). SinceHp always has a continuous spectrum, t€rm (also called Weyl term) involves the volumigs; |

which contains at leagt—o, —mc?) U (mc?,%), we find  ©f the energy shells in phase space,

it convenient to introduce an energy localization such that

finally only the discrete spectrum &f, enters. We thus Q5| = f f S[H*(p,x) — Eld’p d°x. (25)

assume that the spectrum Bf, is purely discrete on an R JR

intervall = (E,, E;). Then we choose a smooth function

x (E) which is nonzero only ord, such thaty(E,) = 1

for all eigenvaluest,. This can always be achieved if

there is no accumulation of eigenvalues Bt or E,,.

Instead of the full time evolution operator we then study

its {gigrlctlonlx(HD)U(t).ddT;) Ieeﬂm% orger )'r.]h' {g's Their calculation is exactly parallel to the case of the
restriction only causes additional factop¢E,,, ) in (15). Schrodinger equation. The only additional factor that

Fl%r S(:Thhrédln%e_r to%etr_ators th:stprockedurelz r'f descnbe:j IEnters comes from the trace over the spin degrees of
[10]. € restricted ime evolution kernel has a speclfayeaqom. IfT is the period of a periodic orbil/; = Vj,

representatlon so that
K@, y,1) = > x(E) W, ()T} (y)e W/PEL (22)

with orthonormal eigenspinord,,. We define a regular-
ized Green'’s function by

(TrG9) (E) = Tryxs f GO(x,x,E) d*x
RS

Up to terms® (k™), all further contributions are caused
by the nontrivial periodic orbits of the classical dynamics
generated by?* and H~. In the case that all periodic
orbits are isolated and unstable (i.e., hyperbolic or inverse
hyperbolic) these contributions will be given explicitly.

Tr4x4(VTd+VoT) = Trzxz(VJVTd+) = Tryxad+
= 2co96/2)cosy . (26)

~ 1 re , ~ We now chooseE € I such thaty(E) = 1, and thus
o . (i/ h)Et .

G2 (x.y.E) == o [_w e(r)e K(x,y.0)dt, (23)  optain the trace formula

|

E, - E 0(0) 1Qz| + 10z @(Tﬁ) i/ 1)S, = (E)—i(m /2 .=
. = + + > Ty, % W+
Satee( S E) = CX RO IEE s o+ X5 A 1+ oy

2T%. cog6,,- /2) cosn., -
with A, = — 17— T 27)
] |de(My,§ - ﬂ)l

On the right-hand side the sum extends over the class|icglenerated by (8) in the same way as in the nonrelativistic
periodic orbitsy, of energy E. Furthermore,S(E) =  case [9], and thus they are not influenced by the spin. The
§ p - dx is the action] the period,u the Maslov index, factor2 cog#/2) cosy emerging from the spin degrees of
and M is the (linearized) Poincaré maf* denotes freedom has to be interpreted as follows. The argle
the associategrimitive period. We remark that these measures the discrepancy between the directions of the
quantities derive from the relativistic equations of motionspin vector after this has been transported along a given
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