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A first demonstration has been made of frequency modulation of a gyrotron output signal. The
experiment was performed on a submillimeter-wave gyrotron operating near 300 GHz. The modulation
amplitude of several tens of MHz has been achieved by a 120 V modulation of the accelerating voltage;
this results in variation of the relativistic electron mass and corresponding variation in the electron
cyclotron frequencyf.. The observed modulation of the output frequency is 2.3 times smaller than
the variation inf.. There is reasonable agreement between the experimental results and a simulation
employing the energy transfer formula in a cavity. [S0031-9007(98)06878-1]

PACS numbers: 84.40.lk

Gyrotrons are practically the only sources of mediummonicsnw., wherew, = eBg/(ymyg); e and mq are the
power radiation in the submillimeter-wave region [1,2]. electric charge and the rest mass of electron, respectively.
Frequency and amplitude modulations of gyrotronsThe relativistic factory = (1 — v2/c?)~/? is determined
are important for their new applications in various by the accelerating voltagé since(y — 1)myc? = eV.
areas [3,4,14], like remote sensing of atmosphereQbviously, variation inV changesy and the relativistic
submillimeter-wave telecommunications, studies of re-electron mass. Therefore, the cyclotron frequeacgyis,
laxation processes in plasmas and other materials, phaseits turn, modulated, and the output gyrotron frequency
sensitive detection of the scattered signal from a plasmay, is modulated as well, despite restrictions imposed by
and so on. While some research [5—7] has been carrietthe cavity on operating frequency flexibility.
out for the amplitude modulation of gyrotron, there are no The beam energy in Gyrotron FU IV is modulated
results regarding its frequency modulation. Generally, itoy variation in the body potential. The body includes
is difficult to modulate the frequency, because a gyrotrorthe cavity and is separated electrically from the beam
operates at fixed frequencies determined by the fixed gesollector by a ceramic insulator. The experimental setup
ometry of its high© cavity. For example, in our gyrotron is shown in Fig. 1.
the total Q0 including Ohmic losses i® = 5800. The The output power is transmitted by circular wave-
relatively slow change of gyrotron frequency has beerguides and emitted to a horn antenna. The frequency
performed in several papers [8—12,15—-19] by variation ins measured by a heterodyne detection system consist-
the external magnetic field. However, as it was pointedng of a sweep oscillator, a frequency counter, a har-
out in [13,14], the typical time scale of variation in the monic mixer, and a modulation domain analyzer. The
magnetic field is of the order of 0.1 s. Hence, a modulablock diagram is presented in Fig. 2. The detected signal
tion of the operating voltage was theoretically considereds mixed with a high harmonic of the local oscillator.
in [13,14] to achieve much faster frequency change of th@he time and frequency resolutions of the detection sys-
gyrotron output signal. Quasistatic gyrotron frequencytem arel0 us and 10 kHz, respectively. A typical re-
pulling by variation in anode and beam voltages wassult of the frequency modulation experiment is shown in

implemented, e.g., in [15-19]. Fig. 3. The left-hand side trace corresponds to the varia-
In this Letter we describe the first results for a rapid (uption of the output frequency and the right-hand side trace
to 40 kHz) frequency modulation of gyrotron output. to the modulation of the body potential. The peak-to-

A submillimeter-wave gyrotron designed in the frame-peak value of the body potential modulation is 120 V,
work of “Gyrotron FU” series at the Fukui University was the body potential is modulated with the frequengy =
employed for our frequency modulation experiment. It15 kHz, and the peak-to-peak amplitude of the output fre-
was Gyrotron FU IV [1] with the following typical opera- quency modulation id f = 30 MHz, i.e., almost equal to
tion parameters: the beam energy. = 16.5 keV, the the linewidth of the gyrotron cavity. The higher beam
beam current, = 0.16 A, the static magnetic field inten- energy corresponds to the lower measured output fre-
sity Bp = 11 T, the output frequency, = 302 GHz, and quency, so there is qualitative correspondence with varia-
the output poweP = 20 W. The gyrotron was operated tion in the electron cyclotron frequency. The left-hand side
completely in continuous wave (cw) mode. spectrum analyzer trace in Fig. 4 presents the frequency

The gyrotron operating frequenay, is usually either spectrum of the output signal without frequency modu-
near the cyclotron frequency. or near one of its har- lation and the right-hand side trace with the frequency
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FIG. 1. Experimental setup for Gyrotron FU IV.

modulation. The frequency widtf of the gyrotron out- Af./AV,. Since flexibility of the gyrotron operating fre-
put itself in the left-hand side trace is about 100 kHz. Aquencyw, is restricted by its highd cavity (Q = 5800),
well-known pattern of a frequency spectrum under modusuch a difference betweekf/AV, andAf./AV, could
lation is obvious in the right-hand side trace. The fre-be expected.

quency widthé f of the spectrum is in good agreement To compute the frequency modulation, we should
with the amplitudeA /' of the frequency modulation deter- define the complex energy transfer from the electrons to
mined from thef g trace in Fig. 4. The correspondingg  the microwave field in the gyrotron cavity as

modulation with the amplitude of 120 V is also plotted in

. . . intL
Fig. 4. The frequency modulation amplitudef versus _ jzm'“+ > . n
the body potential modulation amplitudey/;, is plotted in PaV) ¢ Zmin Elzr. ®)exjle,r + 0]
Fig. 5 for several values of,,. There is an almost linear 43 dt
dependence betweéyyf andAV, for all values off,,. A - — —dz, Q)

data scatter in Fig. 5 increases when the frequency modu- dt dz

lation amplitude approaches the gyrotron cavity linewidth.

The efficiency of frequency modulation shown in Fig 5WhereE is the microwave electrical field in the cavityis
is Af/AV, = 0.247 = 0.06 MHz/V. The estimated cy: the time, and' describes the electron helical trajectory as

clotron frequency variation versudV, is easily calcu- d
lated asAf./AV, = 0.570 MHz/V; i.e., the observed ASxy _ VL C‘_ﬁt“’c(f — Zmin/v)) + ¢]‘ )
modulation efficiencyA f/AV,, is 2.3 times smaller than dt vy Sife:(t — zmin/v)) + @]
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FIG. 2. Frequency measurements system with the resolutidnss for time and 10 kHz for frequency.
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FIG. 3. Measured frequency modulation and the variations of body potértiednd output powerP. TEy;; cavity mode,
frequency f, = 301.99 GHz, beam energyV,. = 16.5 keV, beam current, = 0.155 A, f,, = 10 kHz; frequency modulation
amplitudeAf = 30 MHz, and amplitude of body potential modulatiarV, = 120 V.

Here v and v, are the electron velocities along the where Q, is the cavity quality factor. The result of
cavity axis Oz and in the cross-section plane, whereasEq. (3) heavily depends od and ¢. We can limit
the anglesy and ¢ define the phases of the microwave ourselves with = 0 and # = 7/2, since a rotating
field and the electron rotation, respectively. Followingelectromagnetic field with an arbitrary phase can be
[20], the amplitude of frequency modulation caused byrepresented as a linear combination of those two fields.

AV, =V, — V,is Obviously, the contribution of electrons with various
is different and one can define an effective electron ro-
Af =f1 — fo= Jres [Im{P“(VI)} — Im{P“(VZ)}} tation phaseg.s; giving the correct value of frequency
20wt | RE(P.(V1)}  Re[P.(V2)} modulation for an average electron trajectory. The elec-

(3) tron rotation phasesp are described by an electron

MHz/div
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FIG. 4. Experimental results for frequency spectra without and with frequency modulation, for variation of body p¥ieraiad
for observedfig; f,» = 15kHz; AV, = 120 V; Af = 30 MHz.
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