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Interaction Constants and Dynamic Conductance of a Gated Wire
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We show that the interaction constant governing the long-range electron-electron interaction in a
quantum wire coupled to two reservoirs and capacitively coupled to a gate can be determined by a
low-frequency measurement. We present a self-consistent, charge and current conserving, theory of the
full conductance matrix. The collective excitation spectrum consists of plasma modes with a relaxation
rate which increases with the interaction strength and is inversely proportional to the length of the wire.
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The comparison of interacting electron theories andsoltage. In this work we use a different concept of reser-
experiments often suffers from the fact that the interactiorvoirs based on thelectrochemicahature of electric trans-
constants are not known. In particular, this is true forport [3]. The electron density in the wire is the sum of
interacting quantum wires, where Luttinger models withtwo terms: a chemical density, which follows the chemi-
a wide range of coupling parameters are discussed [1,2¢al potential of the reservoir from which the carriers are
Moreover, a single experiment is often not sufficient toinjected into the wire, and an induced density, which re-
determine the coupling constant. Thus, as will be shownsults from the (long range) Coulomb screening of the in-
the capacitance (per unit length) of a wire above a backected charge. Indeed, from a screening point of view
gate is related to the interaction parametefia electrons in a reservoir are not free: an increase of the

o = o202y (1) electrochemical potential i_s followed by an equal_inc_rease

w8 F- in the electrostatic potential, and the local density is left
Since the density of states = 2/hvr (evaluated at con- invariant. That corresponds to strong interaction (very ef-
stant interaction potential [3]) is generally not known, afective three-dimensional screening) in a reservoir rather
capacitance measurement alone cannot determine the itvan to a noninteracting one-dimensional (1D) model with
teraction constant. Here we propose to investigate the fre; = 1. These divergent views arise from the fact that in-
guency dependence of the current induced into the gatéeractions play a role on very different length scales [7].
Compared to the measurement of a frequency dependebifferent interaction parameters must be used to describe
conductance at a direct contact, the measurement of theng-range and short-range effects [8]. Conceptually,
gate current can be performed at relatively small frequenRef. [9], which describes the reservoirs by the charges,
cies in the kHz range, since the frequency response is ngbnjugate to the chemical reservoir potentials, is closest
on top of a possibly large dc conductance. Recently conto our approach.
siderable advances have been made in the high precisionBallistic single mode wires [1,2] coupled to reservoirs
frequency measurements [4] in mesoscopic conductors. lare the simplest model system in which these questions
this Letter we consider a simple model system—a perfecare significant. The ac response of 1D interacting systems
ballistic wire coupled capacitively to a gate and connectedhas been investigated previously in the framework of the
to two electron reservoirs—and calculate the dynamic contuttinger model with short-ranged interactions [10-13].
ductance matrix. While the dc conductance in this systerd drawback of these papers is that they calculate the
is quantized and thus provides no information on the interresponse to an external field of a specific form; another
action, the dynamic conductance is a sensitive function ofhoice of the field profile would lead to different results.
the interaction strength. Furthermore, the results of Refs. [12,13] are not charge and

A conceptually important point which needs to be ad-current conserving (gauge invariant) [14]. The reason for
dressed in solving this problem is the coupling of an in-this is that in 1D quantum wire interactions are generally
teracting wire to electron reservoirs. Previous works [5]not short ranged. Below we present results for the ac
have proposed a purely one-dimensional model in whicltonductance of a systewith short-ranged interactions—
the interaction changes from a valge< 1 (characteristic quantum wire, connected to two reservoirs and capacitively
of interactions) to a valug = 1 (characterizing a sys- coupled to a gate. On a length scale large compared to
tem without interactions) at the transition from the ballis-the distance between the wire and the gate the interactions
tic wire to the electron reservoir. Another more recentcan be treated as short ranged. Our discussion explicitly
proposal [6] consists of a radiative boundary condition inincludes the effect of the gate and provides conservation
which the electron density is proportional to the appliedof the total current; the particle current in the wire alone
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is not conserved. We calculate the potential profile rathetion. In the case of bare Coulomb interactions, the re-
than postulate it. Our results for the conductance matrixjuired relation is the Poisson equatitye, = —4e?p,,.
can be obtained from Ref. [10] (where a different conceptor short-ranged interactions this relation is different and
of reservoirs is used, and the current conservation igs found as follows: Generally, the interaction potential
postulatedad hocrather than checked independently) andV (r,r’) is the Green's function for the operator equa-
disagree with Refs. [11-13]. Moreover, we propose tdion KV (r,r’) = 4mwe?8(r — r'). The same operatdk
measure the capacitive (wire to gate) conductances in ordatso connects charge and potential¢ via K¢ (r) =
to determine the interaction constant. 47re?p(r). For bare Coulomb interactionk, is the Laplace
Consider the system depicted in Fig. 1, consisting of aperatorA, and the Poisson equation follows. Here we
1D quantum wire of lengtli, connected to two reservoirs consider short-range interactions characterized by the in-
atx = 0 andx = L. The potential in the left (1) reservoir teraction strengtty, V(x — x') = Vod(x — x). In this
is modulated in timey;(r) = V; ,e'“!, whereas the po- case the operatdf is just a multiplication with a constant
tential in the right (2) reservoir is kept constant. We treatfactor4me?/Vy. Thus, the potential and charge are con-
the interactions in random phase approximation (RPA)nected via
which is_ kn_own to capture the _Ion_g-range response. The bo(x) = Vope(x), (5)
2kp oscillations are not essential in our model, since th
interaction is pointlike only at length scales of the wire-
gate distancel, andkrd > 1. Our results are valid up
to frequencies much lower than the Fermi energy.
Self-consistent potentiak-In the absence of interac-
tions, a potential modulation in the left reservoir injects
a bare charge densipyp ., (x) into the wire,

Snhstead of the Poisson equation. At this point it is quite
natural to introduce the capacitance of the wire per unit
length, ¢ = ¢?/V,. Physically, this corresponds to a
single mode quantum wire, formed by depletion induced
by a back gate with a capacitaneeper unit length, par-
allel to the wire (see Fig. 1). This capacitance incor-
porates the geometric arrangement, and originates from

VEVio igix long-ranged Coulomb interactions between the wire and
Po.w(x) = ;¢ " @) the gate. The well-known interaction paramegeof the
Luttinger liquid is then related to [16] via
wherevr = 2/hvr is the density of states at the Fermi 1
level (v is the Fermi velocity), angr = w /vp. g=—. (6)
. 1 + e2vg/c
In the presence of an external potenti#),(x)/e, the _ _
true charge density is In particular, the case of the locally charge neutral wire

. [15], corresponds te@ = 0 or infinitely strong pointlike
_ _ / / ! interactions ¢ = 0). Indeed, the single-channel results of
Pu(x) = puolx) fo xllux)dul). () Ref. [15] are obtained in thg — 0 limit of the formulas
derived below.

Now we generalize our approach to the case when the
back gate is modulated by a potentiglz) = V3 e '“’ as
well. Then the total density of the wire contains in addition
to the density injected from reservdiran induced density
Equation (3) gives the charge density as a sum of two cordue to the modulation of the gate. The self-consistent
tributions: a chemical one, proportional to the potentialpotential distributiong,,(x) along the wire must now be
V1., of the reservoir, and an induced component, proporfound from the equation
tional to the electrostatic potential. v

We now take electron-electron interactions into accoun{— [Pw(x) — V3,] = Lo jigrx — ¢dpx)
by determining the actual potentigl, (x) in the wire self- evp 2

where the polarization kernel is given by (see, e.g., [15])

M, (x,x") = vpé(x — x') + qu%einlx—x,l. 4)

consistently, i.e., by relating the total chargg on the _iqF d ! giarl=vl g (1)
left-hand side of Eq. (3) to the potential,. In order to 2 Jo bulx),
do this, we need to specify the electron-electron interac- 7)

which is obtained by substituting,, (x) — V3, in the left-
hand side of Eq. (5) and using Eq. (3). The solution to

Eq. (7) is
Vi Ve Bolx) = Vip + Aje™ + A,e ™, (8)
I N E E E whereq = ggr, and
TTTITTTT . (g1 et
Vs C T (L4 gPenik — (1 - g)eidt
FIG. 1. The 1D wire, connected to two reservoirs and coupled X |:V1w — V3a)<1 _1xe eiiqL>] (9)
capacitively to a gate. ’ ’ 1 *+g
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Conductance matrix-Now we are in a position to Gz (w) = 2(G, + G,), which we call the gate conduc-
find the full conductance matrix for the capacitively tance. The real and imaginary parts of the frequency
coupled wire. The particle current in the wire is expressedlependence of the gate conductafige(w) are displayed
through the density differencg of right- and left-moving in Fig. 2. The real part shows peaks around= (7vr/
electrons [15] ag,(x, w) = evpl(x, w), gL)(2n + 1), n € Z. The height of each peak is equal
iqrvr to 4 times the conductance quantefys (and thus inde-

> pendent ofg), while the width decreases with decreasing
; g. In contrast, the imaginary part dfss(w) cfggges

/ N\ igrlx—x'] / sign at these points, and exhibits extrema of helghy i
x fo dx sgnx — x)et $lx), (sharp ones for small) at the points

g = pw,O(x) -

where ¢, (x) is the self-consistent potential (8). The vp 1 — g2
displacement current, directed from the gate to the wire, n = _L[ (2n + 1) = aFCCOS1 n 2]
has the density,(x) = iwep,, (x). g g

The conductance matrixg,z(w) relates the current All elements of the conductance matig, g are char-
I..», at contacta to the voltageVg, applied at con- acterized by the common denominatdr+ g)’e 9t —
tact 8 (a,B = 1,2,3): Inw = Gap(®)Vg,. With the (1 — g)?e’?L, which has zeros at frequencies
definitions

. : v o1+
o s e_2 (1 + gle ™k + (1 — g)eldL w, = g—Z[mr —iln ﬁ} (12)
¢ 8 (1 + g)eial — (I — g)eidl’ (10)
G = _e 48
“ h (1 + g)?eial — (1 — g)?eial’ Re (133
the conductance matrix takes a form 4
G Go  ~Gu~Go
G(w) = G{u _ Gu) _ _G(u - G_w .
-G, — Gy —G, — G, 2G, +2G, 3
(11)

The matrix G has the following properties [3]: First, it

is symmetric, which reflects the fact that the geometry
considered here is symmetric under the exchange of the
left and right reservoirs, and no magnetic field is present.
Then,>., G.s = 0, which restates current conservation.
Finally, the property> ; G.g = 0 manifests the fact that

a simultaneous shift of all potentialgg by the same
amount does not produce any current (gauge invariance).
Furthermore, dissipation of power requires that the matrix
Reg is positive definite. Equation (11) can, after some Im G33 b)
algebra, also be obtained from formulas of Ref. [10].

In the static limitw = 0 one reproduces the known 2
result [5,10]:G = —G = e?/h, with no current flowing
through the gate. Another limiting case gs= 0 [15],
where one findsG = —G = (¢?/h) (1 — iqrL/2)"".
Generally, all the components of the conductance matrix
are oscillating functions of frequency (fgr # 0) with
the perio27vr(gL)~!. In particular, the real part of the
conductance reaches zero with a perfatv(gL)™!. It
has been suggested that measurement of this period should -1
be used to determine the interaction constant [12,13].

However, this period is a consequence of the linearization 4
of the spectrum near the Fermi energy and not really -2
a signature of an interacting system. Furthermore, this

frequency is already in th.e absence of interactions of th%lG. 2. One period of the frequency dependence of the real
order of an electron transit frequency and therefore rathe(ra) and imaginary (b) parts of the gate conductaGeg) (in

high. A better strategy consists in analyzing one of theunits ¢2/1). The parameteg is equal to 1 (curve 1), 0.3 (2),
purely capacitive conductances. In particular, we considesgind 0.1 (3); the argument 8 = wLg/vr.

N/
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Equation (12) defines the (collective) excitation spectrum We find that the measurement of the low-frequency,
of the quantum wire. Fog = 0 (local charge neutrality) nondissipative component of the gate conductance includ-
only then = 0 mode survives, and all other frequenciesing only its first two leading coefficients is sufficient to
are pushed up to infinity. This mode is purely imaginary,determine the interaction strength. Such measurements
and does not correspond to any type of quasiparticles [15hre very desirable and will provide a strong stimula-
On the other hand, fog = 1 (noninteracting system) all tion for further research on the role of electron-electron
modes are infinitely damped: Thus, charge relaxation camteractions.
be caused only by electron-electron interactions. We men- We acknowledge the financial support of the Swiss Na-
tion that the same modes are obtained in Ref. [12]; theional Science Foundation and of the European Commu-
modes with evem are also obtained in Ref. [13]. Any nity (Contract No. ERB-CHBI-CT941764).
treatment, whether self-consistent or not, which at some
stage invokes the effective interaction, will exhibit this
frequency spectrum.
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