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Interaction Constants and Dynamic Conductance of a Gated Wire
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We show that the interaction constant governing the long-range electron-electron interaction in
quantum wire coupled to two reservoirs and capacitively coupled to a gate can be determined b
low-frequency measurement. We present a self-consistent, charge and current conserving, theory o
full conductance matrix. The collective excitation spectrum consists of plasma modes with a relaxat
rate which increases with the interaction strength and is inversely proportional to the length of the wi
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The comparison of interacting electron theories an
experiments often suffers from the fact that the interactio
constants are not known. In particular, this is true fo
interacting quantum wires, where Luttinger models wit
a wide range of coupling parameters are discussed [1,
Moreover, a single experiment is often not sufficient t
determine the coupling constant. Thus, as will be show
the capacitance (per unit length) of a wire above a ba
gate is related to the interaction parameterg via

cm ­ g2e2nF . (1)

Since the density of statesnF ­ 2yhyF (evaluated at con-
stant interaction potential [3]) is generally not known,
capacitance measurement alone cannot determine the
teraction constant. Here we propose to investigate the f
quency dependence of the current induced into the ga
Compared to the measurement of a frequency depend
conductance at a direct contact, the measurement of
gate current can be performed at relatively small freque
cies in the kHz range, since the frequency response is
on top of a possibly large dc conductance. Recently co
siderable advances have been made in the high precis
frequency measurements [4] in mesoscopic conductors.
this Letter we consider a simple model system—a perfe
ballistic wire coupled capacitively to a gate and connecte
to two electron reservoirs—and calculate the dynamic co
ductance matrix. While the dc conductance in this syste
is quantized and thus provides no information on the inte
action, the dynamic conductance is a sensitive function
the interaction strength.

A conceptually important point which needs to be ad
dressed in solving this problem is the coupling of an in
teracting wire to electron reservoirs. Previous works [5
have proposed a purely one-dimensional model in whi
the interaction changes from a valueg , 1 (characteristic
of interactions) to a valueg ­ 1 (characterizing a sys-
tem without interactions) at the transition from the ballis
tic wire to the electron reservoir. Another more recen
proposal [6] consists of a radiative boundary condition
which the electron density is proportional to the applie
0031-9007y98y81(9)y1925(4)$15.00
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voltage. In this work we use a different concept of res
voirs based on theelectrochemicalnature of electric trans-
port [3]. The electron density in the wire is the sum
two terms: a chemical density, which follows the chem
cal potential of the reservoir from which the carriers a
injected into the wire, and an induced density, which
sults from the (long range) Coulomb screening of the
jected charge. Indeed, from a screening point of vi
electrons in a reservoir are not free: an increase of
electrochemical potential is followed by an equal increa
in the electrostatic potential, and the local density is l
invariant. That corresponds to strong interaction (very
fective three-dimensional screening) in a reservoir rat
than to a noninteracting one-dimensional (1D) model w
g ­ 1. These divergent views arise from the fact that
teractions play a role on very different length scales [
Different interaction parameters must be used to desc
long-range and short-range effects [8]. Conceptua
Ref. [9], which describes the reservoirs by the charg
conjugate to the chemical reservoir potentials, is clos
to our approach.

Ballistic single mode wires [1,2] coupled to reservoi
are the simplest model system in which these questi
are significant. The ac response of 1D interacting syste
has been investigated previously in the framework of
Luttinger model with short-ranged interactions [10–13
A drawback of these papers is that they calculate
response to an external field of a specific form; anot
choice of the field profile would lead to different result
Furthermore, the results of Refs. [12,13] are not charge
current conserving (gauge invariant) [14]. The reason
this is that in 1D quantum wire interactions are genera
not short ranged. Below we present results for the
conductance of a systemwith short-ranged interactions—
quantum wire, connected to two reservoirs and capacitiv
coupled to a gate. On a length scale large compare
the distance between the wire and the gate the interact
can be treated as short ranged. Our discussion explic
includes the effect of the gate and provides conserva
of the total current; the particle current in the wire alo
© 1998 The American Physical Society 1925
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is not conserved. We calculate the potential profile rath
than postulate it. Our results for the conductance matr
can be obtained from Ref. [10] (where a different conce
of reservoirs is used, and the current conservation
postulatedad hocrather than checked independently) an
disagree with Refs. [11–13]. Moreover, we propose t
measure the capacitive (wire to gate) conductances in or
to determine the interaction constant.

Consider the system depicted in Fig. 1, consisting of
1D quantum wire of lengthL, connected to two reservoirs
at x ­ 0 andx ­ L. The potential in the left (1) reservoir
is modulated in time,V1std ­ V1,ve2ivt , whereas the po-
tential in the right (2) reservoir is kept constant. We trea
the interactions in random phase approximation (RPA
which is known to capture the long-range response. T
2kF oscillations are not essential in our model, since th
interaction is pointlike only at length scales of the wire
gate distanced, andkFd ¿ 1. Our results are valid up
to frequencies much lower than the Fermi energy.

Self-consistent potential.—In the absence of interac-
tions, a potential modulation in the left reservoir inject
a bare charge densityr0,vsxd into the wire,

r0,vsxd ­
nFV1,v

2
eiqFx , (2)

wherenF ­ 2yhyF is the density of states at the Ferm
level (yF is the Fermi velocity), andqF ­ vyyF .

In the presence of an external potentialfvsxdye, the
true charge density is

rvsxd ­ rv,0sxd 2
Z L

0
dx0Pvsx, x0dfvsx0d , (3)

where the polarization kernel is given by (see, e.g., [15]

Pvsx, x0d ­ nFdsx 2 x0d 1
iqFnF

2
eiqF jx2x0j. (4)

Equation (3) gives the charge density as a sum of two co
tributions: a chemical one, proportional to the potentia
V1,v of the reservoir, and an induced component, propo
tional to the electrostatic potential.

We now take electron-electron interactions into accou
by determining the actual potentialfvsxd in the wire self-
consistently, i.e., by relating the total chargerv on the
left-hand side of Eq. (3) to the potentialfv. In order to
do this, we need to specify the electron-electron intera

3

V1 V2

V

FIG. 1. The 1D wire, connected to two reservoirs and couple
capacitively to a gate.
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tion. In the case of bare Coulomb interactions, the
quired relation is the Poisson equationDfv ­ 24pe2rv.
For short-ranged interactions this relation is different a
is found as follows: Generally, the interaction potenti
V sr, r0d is the Green’s function for the operator equ
tion K̂V sr, r0d ­ 4pe2dsr 2 r0d. The same operator̂K
also connects charger and potentialf via K̂fsrd ­
4pe2rsrd. For bare Coulomb interactions,K̂ is the Laplace
operatorD, and the Poisson equation follows. Here w
consider short-range interactions characterized by the
teraction strengthV0, V sx 2 x0d ­ V0dsx 2 x0d. In this
case the operator̂K is just a multiplication with a constan
factor 4pe2yV0. Thus, the potential and charge are co
nected via

fvsxd ­ V0rvsxd , (5)
instead of the Poisson equation. At this point it is qu
natural to introduce the capacitance of the wire per u
length, c ­ e2yV0. Physically, this corresponds to
single mode quantum wire, formed by depletion induc
by a back gate with a capacitancec per unit length, par-
allel to the wire (see Fig. 1). This capacitance inco
porates the geometric arrangement, and originates fr
long-ranged Coulomb interactions between the wire a
the gate. The well-known interaction parameterg of the
Luttinger liquid is then related toc [16] via

g2 ­
1

1 1 e2nFyc
. (6)

In particular, the case of the locally charge neutral w
[15], corresponds toc ­ 0 or infinitely strong pointlike
interactions (g ­ 0). Indeed, the single-channel results
Ref. [15] are obtained in theg ! 0 limit of the formulas
derived below.

Now we generalize our approach to the case when
back gate is modulated by a potentialV3std ­ V3,ve2ivt as
well. Then the total density of the wire contains in additio
to the density injected from reservoir1 an induced density
due to the modulation of the gate. The self-consiste
potential distributionfvsxd along the wire must now be
found from the equation

c
e2nF

ffvsxd 2 V3,vg ­
V1,v

2
eiqFx 2 fvsxd

2
iqF

2

Z L

0
dx0 eiqF jx2x0jfvsx0d ,

(7)

which is obtained by substitutingfvsxd 2 V3,v in the left-
hand side of Eq. (5) and using Eq. (3). The solution
Eq. (7) is

fvsxd ­ V3,v 1 A1
veiqx 1 A2

ve2iqx , (8)
whereq ­ gqF , and

A6
v ­ 6

s1 6 gd s1 2 g2de7iqL

s1 1 gd2e2iqL 2 s1 2 gd2eiqL

3

∑
V1,v 2 V3,v

µ
1 2

1 7 g
1 6 g

e6iqL

∂∏
. (9)
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Conductance matrix.—Now we are in a position to
find the full conductance matrix for the capacitive
coupled wire. The particle current in the wire is express
through the density differencez of right- and left-moving
electrons [15] asIpsx, vd ­ eyFz sx, vd,

z ­ rv,0sxd 2
iqFnF

2

3
Z L

0
dx0 sgnsx 2 x0deiqF jx2x0jfvsx0d ,

where fvsxd is the self-consistent potential (8). Th
displacement current, directed from the gate to the w
has the densityjdsxd ­ ivervsxd.

The conductance matrixGabsvd relates the current
Ia,v at contacta to the voltageVb,v applied at con-
tact b (a, b ­ 1, 2, 3): Ia,v ­ GabsvdVb,v . With the
definitions

Gv ­ 2g
e2

h
s1 1 gde2iqL 1 s1 2 gdeiqL

s1 1 gd2e2iqL 2 s1 2 gd2eiqL ,

Ḡv ­ 2
e2

h
4g

s1 1 gd2e2iqL 2 s1 2 gd2eiqL ,

(10)

the conductance matrix takes a form

G svd ­

0B@ Gv Ḡv 2Gv 2 Ḡv

Ḡv Gv 2Gv 2 Ḡv

2Gv 2 Ḡv 2Gv 2 Ḡv 2Gv 1 2Ḡv

1CA .

(11)

The matrixG has the following properties [3]: First, i
is symmetric, which reflects the fact that the geome
considered here is symmetric under the exchange of
left and right reservoirs, and no magnetic field is prese
Then,

P
a Gab ­ 0, which restates current conservatio

Finally, the property
P

b Gab ­ 0 manifests the fact tha
a simultaneous shift of all potentialsVb by the same
amount does not produce any current (gauge invarian
Furthermore, dissipation of power requires that the ma
ReG is positive definite. Equation (11) can, after som
algebra, also be obtained from formulas of Ref. [10].

In the static limit v ­ 0 one reproduces the know
result [5,10]:G ­ 2Ḡ ­ e2yh, with no current flowing
through the gate. Another limiting case isg ­ 0 [15],
where one findsG ­ 2Ḡ ­ se2yhd s1 2 iqFLy2d21.
Generally, all the components of the conductance ma
are oscillating functions of frequency (forg fi 0) with
the period2pyFsgLd21. In particular, the real part of the
conductance reaches zero with a period2pyFsgLd21. It
has been suggested that measurement of this period sh
be used to determine the interaction constant [12,1
However, this period is a consequence of the linearizat
of the spectrum near the Fermi energy and not rea
a signature of an interacting system. Furthermore, t
frequency is already in the absence of interactions of
order of an electron transit frequency and therefore rat
high. A better strategy consists in analyzing one of t
purely capacitive conductances. In particular, we consi
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G33svd ­ 2sGv 1 Ḡvd, which we call the gate conduc-
tance. The real and imaginary parts of the frequen
dependence of the gate conductanceG33svd are displayed
in Fig. 2. The real part shows peaks aroundv ­ spyFy
gLd s2n 1 1d, n [ Z . The height of each peak is equa
to 4 times the conductance quantume2yh (and thus inde-
pendent ofg), while the width decreases with decreasin
g. In contrast, the imaginary part ofG33svd changes
sign at these points, and exhibits extrema of height2e2yh
(sharp ones for smallg) at the points

Vn ­
yF

gL

∑
ps2n 1 1d 6 arccos

1 2 g2

1 1 g2

∏
.

All elements of the conductance matrixGab are char-
acterized by the common denominators1 1 gd2e2iqL 2

s1 2 gd2eiqL, which has zeros at frequencies

vn ­
yF

gL

∑
np 2 i ln

1 1 g
1 2 g

∏
. (12)
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FIG. 2. One period of the frequency dependence of the r
(a) and imaginary (b) parts of the gate conductanceG33svd (in
units e2yh). The parameterg is equal to 1 (curve 1), 0.3 (2),
and 0.1 (3); the argument isV ­ vLgyyF .
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Equation (12) defines the (collective) excitation spectru
of the quantum wire. Forg ­ 0 (local charge neutrality)
only the n ­ 0 mode survives, and all other frequencie
are pushed up to infinity. This mode is purely imaginar
and does not correspond to any type of quasiparticles [1
On the other hand, forg ­ 1 (noninteracting system) all
modes are infinitely damped: Thus, charge relaxation c
be caused only by electron-electron interactions. We m
tion that the same modes are obtained in Ref. [12]; t
modes with evenn are also obtained in Ref. [13]. Any
treatment, whether self-consistent or not, which at so
stage invokes the effective interaction, will exhibit thi
frequency spectrum.

We have now characterized the dynamic conductan
and its properties over a wide frequency range. But it is t
low-frequency regime that is experimentally most eas
accessed. A low-frequency measurement works only if
consider the gate current since at small frequencies the
component of the conductanceG11 represents only a smal
deviation from the quantized dc conductance and is h
to identify [17]. The gate conductance has the followin
low-frequency expansion:

G33 ­ 2iCmv 1 RqC2
mv2

2 i
1 2 3g2

3g2 R2
qC3

mv3 1 . . . .

HereCm ­ cmL is the total electrochemical capacitanc
of the wirevis-à-visthe gate,cm is given by Eq. (1). The
second order term is determined by the charge relaxat
resistance [18]Rq ­ hy4e2 which is the parallel resistance
of two Sharvin-Imry contact resistances ofhalf a resistance
quantum per contact. It is independent of the interacti
constant. The third order term is proportional to the thi
power of the electrochemical capacitanceCm, but most
importantly it is proportional to a factor of1y3g2 2 1,
which is a sensitive function of the interaction strengt
Thus, a measurement which determines the out-of-ph
(nondissipative) part of the gate conductance up to the th
order in frequency is sufficient to determine the interacti
parameterg.

In conclusion, we have investigated the ac response
a quantum wire with short-range interactions. We form
lated a self-consistent, charge and current conserving,
proach using RPA. The boundary condition which coupl
the density of the wire to the electron reservoirs is
electrochemical nature. Because of the coupling w
the reservoir all the collective modes of the system a
quire a damping constant. In the present Letter only t
one-channel case is considered. The case of two ch
nels with the same velocityyF (corresponding to one spin-
degenerate channel) can be obtained from the above res
simply by replacing the density of states of the one-chan
problem n by that appropriate for the spin-degenera
channel2n: Spin-charge separation cannot be probed
the ac response.
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We find that the measurement of the low-frequenc
nondissipative component of the gate conductance inclu
ing only its first two leading coefficients is sufficient to
determine the interaction strength. Such measureme
are very desirable and will provide a strong stimula
tion for further research on the role of electron-electro
interactions.
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