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Driven Electrons on the Fermi Surface
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A model for electronic motion on the Fermi surface in the presence of a uniform magnetic field
and an alternating electric field is developed. For a sufficiently strong electric field it is found to be
effectively kicked. It is demonstrated that for some values of the parameters the model constitutes
a realization of a kicked Harper model. A family of models to which it belongs is introduced. A
realization of a model where kicking both in position and in momentum takes place is proposed. The
required experimental conditions for these realizations are discussed. [S0031-9007(98)06922-1]

PACS numbers: 73.23.—b, 03.65.Sq, 05.45.+b

The quantum mechanical behavior of systems that arand K. The model was subject to extensive theoretical
chaotic in the classical limit has been the subject of mangtudies [14—20]. For some regimes of parameters its
recent studies [1,2] that form the field of quantum chaosspectrum of quasienergies is similar in nature to the energy
In this field systems modeled by time dependent Hamilspectrum of the Harper model [14,18,21]. It exhibits
tonians, and, in particular, Hamiltonians that are periodiclassical and quantum diffusion as well as localization
cally dependent on time, attracted considerable interesand anomalous diffusion and even ballistic motion [15—
Among these systems maps play a special role, becau2€]. The motivation for the explorations of the kicked
of their simplicity. In spite of their simplicity maps ex- Harper model in the field of quantum chaos was so far
hibit many of the physical properties of continuous sys-mainly theoretical, because of the variety of interesting
tems. Maps are generated by Hamiltonians where somghenomena that were found. Since the system can be
part, usually the potential, is proportional toSafunction = modeled approximately by the kicked harmonic oscillator
of time. The standard system that was used for the explat can be realized experimentally [22].
ration of classical and quantum dynamics of maps is the In the present Letter it is demonstrated that a variety of
kicked rotor leading to the standard map. For sufficientlymodels including the kicked Harper model can be realized
strong kicks it exhibits classical diffusion that is sup- also for electrons on a lattice in the presence of a magnetic
pressed by a mechanism similar to Anderson localizatioffield driven by a smooth driving electric field. The effec-
in disordered solids [1,3-5]. It was observed experimentive kicking is generated as a result of a resonance between
tally for laser cooled sodium atoms [6,7]. In this Letter the electronic motion and the driving field. This system
it will be shown that in some regimes of parameters, elecalso exhibits interesting behavior in other regimes such as
trons on the Fermi surface of a solid in the presence obifurcations and phase space acceleration [23]. The mate-
a magnetic field and driven by an electric field are effec+ials that are most relevant for experimental realization of
tively kicked. The details will be presented in [8]. the kicked Harper model are the 2D electron gas embedded

The simplest model for the exploration of electronicin lateral superlattices fabricated on GaAs heterostructures
motion in a periodic potential in the presence of a mag{24] and organic metals (where the skin depth is larger
netic field is the Harper model [9] that is defined by thethan the size of the crystals used) [25,26]. Classical cal-
Hamiltonian culations in the chaotic regime were used to explain the

H" = cosp + Acosq. (1) microwave photo-conductivity for GaAs heterostructures

It models also electronic motion in a one-dimensional[27]' The experimental and theoretical explorations of the

potential with two incommensurate periods. The modefr9anic metals focused so far on their Fermi surfaces that

was studied extensively, and extremely interesting spectr arceeguaa:'zlg\tﬁ?j-iglc;n; nzl(\)/g?ile't T;i:%?'?fsng;g};slg [Séu5r]
properties were found [10—14]. This model is integrable. y y g mag

A time dependent model that is related to it is the kicke s well as cyclotron resonance [26,28] techniques. Tight-

Harper model, which is defined by the Hamiltonian mdmg mod_els _Ieadmg to equations like (1) are used for
these investigations [29] in the linear response regime. In

HEH = [, cosp + Ky Cosng(t —n). (2) the present Letter it will be shown that for strong driv-
n ing fields, where linear response theory does not hold, the
The model and its variants appear naturally for the kickednodel (2) is relevant.
harmonic oscillator [15,16]. It is of specific interest since In what follows the dynamics of Bloch electrons,
it does not follow the Kolmogorov-Arnold-Moser (KAM) namely, electrons moving in a periodic potential, in
picture. Its dynamics corresponds to kicks combinedhe presence of a uniform, constant (in time) magnetic
with rotations of the fourfold symmetry. This system field and a uniform electric field alternating in time is
exhibits chaotic motion in a region that increases vlith  explored. The specific case of electrons on a cubic lattice
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is considered. The magnetic fiel is chosen in the resulting equations of motion are
direction of the crystal axis that will be denoted as the

direction in what follows, while the electric field is chosen P, = eHysa sin— <Py - £ Ay>, I"y =0,

in the direction of they axis. In the first stage an effective ke h ¢

Hamiltonian for the electronic motion will be derived in . _ via . a , o _a . a (P _ )

the framework of the one band approximation. Then it h g Y h h\Y c V)
will be shown that in some limit it is well approximated (6)
by a kicked model. For specific values of parameters it R

reduces to the kicked Harper model (2). The vector potentiall is chosen to be time dependent in

The starting point of our analysis is the tight-binding order to take into account the effect gf the electric field,
- - C C H ~
Hamiltonian H ) = g(ik), where fik is the latice namely,A = A° — S E = (0,—xH + S'sinpr,0).
momentum. For a uniform magnetic field the Peierls We note thatP, is a constant of motion and the time
substitution holds that if a magnetic field is applied to adependence of is completely determined by and P..

periodic solid, described by ->) without the field, the Therefore it is convenient to useandP, as the conjugate

Hamiltonian in presence of the field is [30] variables. The equations of motion (6) for these are just
L e the Hamilton equation®, = —(’jf andx = 3—% for the
HA = s<P — —A), (3)  Hamiltonian
C

wheree is the charge of the electro, is the speed of 47, — —,, costxd _ v, COS— (Pv _ iAy>, @)
light, P is the canonical momentum, am is the vec- h AN

tor potential of the magnetic field. 'I_'he. magnetic field isyyhereA is defined above. For the tight-binding approxi-
H = (0,0,H), and the vector potential is chosen to takemation to hold it is required thay,,y, > eEqa and

the formA = A° = (0, —xH,0). The canonical momen- +, v, > /i#. Itis convenient to introduce dimensionless

tum in (3) is determined in the standard way Bs=  variables,p = 2%, 4 = 4 (L x + P,) = L (x — xy),

iky; Py = Ik, + ¢ A}. The components of the velocity with x, = — . P,. The dimensionless electric field is
(vx,vy) = (x,y) and the generalized forcePy, Py) are  x = % the time is rescaled b1 — 7, & = », where
obtained in the _standard way by differentiation j;ff‘. QO = (ma2e[{)/52c_ The dimensionless Planck’s
The corresponding two components of the quasimomerconstant is also determined by the Poisson brackets

tum which are canonical conjugate variables are (see, f LT L aq 9ap __ Ha® _ ®
example, [31]) " ( Tor p andg: h = hlg,ple = I 50 3 = G = 27 g,
pie, where® is the magnetlc field flux through one lattice cell
P P o _1g a X a, and®, = = is a quantum of the magnetic flux.
% c y T T Un V'™ 5 Yk Rescaling the HamiltoniatH; /./y17> — FH, and defin-

(4) ing vy1/v2 = L,\/y2/y1 = K, we obtain the following

i o o Hamiltonian in the form of a driven Harper model:
The effect of the time dependent electric field is intro-

duced by the acceleration theorem [31] that holds if the 3, = Lcosp + Kcodg — xsinvt). (8)
perturbation is weak and of sufficiently low frequency so ¢ driving potential K cosq — xsinvt) is well
that interband transitions can be ignored and is slowlynown in the literature, and it has been discussed in
varying in space so that matrix elements between Wange context of the description of dynamical localization
nier functions are negligible. The effective approximatej, atomic momentum transfer [34,35]. This effect has
Hamiltonian is Herr = e(/ik) + U(7, 1) [31,32], where  peen observed experimentally following an extension of
‘U is the time dependent perturbation. Thus if the al-3 theoretical proposal [7]. The Hamilton equations for
ternating electric fielde = (0, —E, cos#t,0) is not too  #{, of (8) areg = —Lsinp and p = K siny(r) with
strong its only effect is to add an additional compo-y(r) = ¢ — ksinvt. For k > 1 or eEya > hv the
nent to the accelerationk, leading to/ik, = ? v, —  forcing resulting in change of momentum is dominated
eEycosit, where Ey is the strength of the alternating by the resonant points [7,34—36], whefe= 0 or

field, while 7 is its frequency.

We will consider the orthorhombic lattice. In the tight-
binding approximation the Fermi surface is determined byrhis condition is consistent with the tight-binding ap-
[33] proximation ify;,y, > eEoa > ki, which can be sat-

AN _ _ isfied for some regimes of the electric field for organic
o(fik) @ = yicoska = yrcoskya = 3 COSkzas’ metals and superlattices. Expanding) around the reso-
) nant pointz, and integrating the Hamilton equation fpr
where « is the diagonal part of the energy of lattice taking into account the fact that this integral accumulates
electrons, y1, v2, y3 are the overlap integrals in tight- most of its contribution from a narrow region (of width
binding approximation, and is the lattice constant. The |«xv? sint,lfl/z) around the resonance, one finds that the
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momentum transferred at each resonance is isM = M>M; with
. 27 . 4 T
s kan(yr = 7). o — o Kisig +
Pr <2 Sinvt] ¥, 2 (10) M, {1{;: =0 y 151 illn(sciznplfco),
wherey, = (t,) and the sign depends on the direction ’ (11)
of crossing of the resonance. o [ P2= Pt K sin(q1 — o),
The position of the resonance dependgorFor strong 21 g = g1 — Lisinp,,
driving so thatkv > L (or eEga > 27y, %’U = vh)
for the resonance condition it is required that egs~= whereL; = %L while K1 = /27 /kv?2 K andky = k —

0 or |sinvt,| = 1. Consequently the resonant points 7. First we note that the map is periodic inwith the
are vt, =~ =% and therefore are approximately equally period2s, and therefore it is periodic in the magnitude of
spaced in time, and occur at the times = —5 + 2x/  the electric field.

andvt = 5 + 27l (I are integers). The resulting map  This map is generated by the Hamiltonian

]

H, = Lcosp + VKI[COS((] + ko) i 8(1/1‘ + % - 27Tl’l> + codq — ko) Z 8<vt - % - 27Tl’l>:|. (12)

n=—o n=—o

It can be derived also with the help of the asymptoiicwhere the canonical variables greandg, the parameters

properties of Bessel functions. L, K, and v are defined as before, while, = ”;:';“ and

An essential simplification can be made if the eIectricKy — eg{a
. . T . v
field is such thatkc = 27N + 3 andN > 1 is a natural In the asymptotic limit of largex, and «,, namely,

number. The resulting map corresponding to (11) is kv > K and k,v > L, one obtains an approximate

2ar _ Hamiltonian corresponding to (12)
P1=p T4/ Ksing, o -
KV
H; = Hy' Z 8(1/1‘ + 5 27Ti’l>

n=—w

a .
g1 =q — 7Lsmp1. (13)

< + Hy Z 5<Vt - 27Tn> (16)
It is generated by (2) withky = 5 \/27/k and Ly = n=— 2

- L. Classical chaos in large regions is found, for X ith H = ki Leodp + k, + LA m %

ample, forKy > 1. Together witheEqa > 27 2 _ . . _
ylfzpthis conZition yieldgean > hﬂ(&)z. T Kcodg * xy + 7). The Poisson bracke{§{3+,5-[3_} .
A special role is played by the self-dual point, = do not vanish in general, and therefore the motion is
Ko For (13) thi dition igEoa — 2 (225, Con- expected to be chaotic. For the system to be considered
n- For (13) this condition ig Eoa , T v SO kicked it is requiredeE,a,eEya > hv. For the kicks
sistency witheEoa > hiv requires - (33)* > 1. Itis  to be equally spaced in time the conditiang,a > v,k
consistent also with the inequalityEga > /i#(2)2.  and eE.a > y,h should hold. The self-dual case is

Therefore the interesting regimes of the kickecivzHarper/—zﬂ/KxL = 27/, K or (2)2 = £ The situation is
model can in principle be realized experimentally. ' 2 E

Choosing x = =(2N + 1) + ~ one finds a model simpler when the Poisson bracket;", H; } vanishes.
similar to (2) but withg shifted bysr. Forx = w(N + NS requires _
1) + 7 one obtains the two-sided kicked Harper modelx, — k, = Ny, K + Ky = Nom + —-, (17)

defined by the Hamiltonian . L .
y whereN| andN, are integers. The situation is particularly

HTEE — [, cosp + Ky(—1) codg + 7/2) simple wherk, = k, = 27N + 7. Inthis caset; =
H; = H and H; reduces to
X D (—1)"8(t — n). (14)

Hy =3 D 8(t — nT) (18)
So far the electric field was chosen to be parallel to the n

y axis. Now turn to the case where the electric field iSwith H = L.cosp + Kxcosq. whereL: — £ /27 7r.
perpendicular to the magnetic field but is not confined to 3=5P 350 A

K . T o, . .
an axis, namelyE = (—E, cosit, —E, cosir,0). Fol-  andks = 7 \27/ky, while T = 5 is the period. This
lowing the argumentation used for the electric field paralimodel is integrable sinceH is such, the classical
lel to they axis one finds that the motion is described byHamilton equations can be integrated and the solution
the effective Hamiltonian can be expressed explicitly in terms of elliptic functions.
The final answer takes the form ce§&) = f(B[%]im),
where f is a periodic function of perio®,, while [X i,

(15) is the integer part ofX and B is a constant. IfB is
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