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Critical Casimir Forces between Spherical Particles in Fluids
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Long-ranged correlations in a fluid close to its critical poifit cause distinct forces between
immersed colloidal particles and the container walls. We calculate such a force and its temperature
dependence for the generic case of a spherical particle located at a digtaftoen a planar wall
and find that the force attains a maximum at a temperafiyg(D) above 7., which facilitates
quantitative experimental tests. The corresponding effective pair interaction between the colloidal
particles themselves, potentially leading to aggregation, is also discussed. [S0031-9007(98)06900-2]

PACS numbers: 64.60.Fr, 64.75.+¢g, 68.35.Rh, 82.70.Dd

In 1948 Casimir [1] predicted that the confinement ofa planar boundary wall. The particle may be regarded
quantum mechanical vacuum fluctuations of the electroas a freely moving colloidal particle, but it can also model
magnetic field causes long-ranged forces between twa sphere attached to the tip of an atomic force micro-
conducting uncharged plates. Only recently, this so-calledcope. Close to the critical demixing point the forEe
Casimir effect was tested experimentally [2] with high ac-exerted on such a sphere separates into a regular back-
curacy for the force on a conducting sphere near a corground contribution and a singular contributidig,, of
ducting planar surface. universal character, which mtractiveif the same of the

Thirty years later Fisher and de Gennes [3] pointed outwo coexisting bulk phases is enriched near the wall and
that an analogous effect should occur in a thin film ofsphere surfaces. We obtain quantitative result&{gr by
a binary liquid mixture near the critical demixing point a multipronged approach consisting of a variety of theo-
T. of the bulk mixture. In this case the confinement ofretical techniques: full numerical analysis of the corre-
critical fluctuationsof an order parameter field induces sponding mean-field theory supported by renormalization
long-ranged forces between the surfaces of the film [4]group arguments, Derjaguin approximation, small sphere
In recent years the so-called “critical Casimir effect” hasexpansion, and suitable incorporation of exact results in
attracted increasing theoretical interest [5,6]. In spite otwo dimensions.
these efforts—and in contrast to the quantum mechani- Figures 1 and 2 summarize our results for the case in
cal Casimir effect—the critical Casimir effect lacks so farwhich the critical demixing point is approached from the
an unambiguous experimental verification. This unsatisene phase region by varying the temperafitewards the
factory state of affairs persists mainly due to a combinacritical temperaturel’. = T.(p) at fixed pressurep and
tion of two reasons. First, so far most theoretical studiesvith the concentration fixed at its critical valuex.(p).
have been restricted to the special cdse= T.. In this  The results forF;,, can be cast in the form
case the bulk correlation length. = & |¢|~”, wherer =
(r — T.)/T, = 0 andv is a standard bulk critical expo- Fene(T,D,R) = ksTe K+(® = Q,A — Q) (1)
nent, is infinitely large which cannot be realized experi- £ R &+ R

mentally. In practice the divergence éfis limited, e.g., ith a universalfunction K. usind k-T. as the ener
by a finite temperature resolution, spatial inhomogeneitie¥v . N 9kple ) 9y
Scale and expressing the dependenc& on T, in terms

of T, and external fields such as gravity. In addition, the f the corresponding bulk correlation lengih. We take

knowledge of the temperature dependence of the critica? as thetrue correlation length governing the exponential
Casimir force is indispensable for experimental tests in ors * gihg 9 b

. decay of the order parameter correlation function in the
der to be able to subtract the regular background contrib ulk. The most striking feature Ofung (T, D, R) is the

tions due to the omnipresent dispersion forces. Secon dopearance of a maximum as a function ofwith D

most theoretical studies deal with the parallel plate ge- ; .
ometry which happens to be unsuitable for actual mea‘:’de fixed. The maximum 0CCUTS &lnex(D, R) > T

surements because, surprisingly, it turns out that it is to§'e" P
demanding to keep the plates sufficiently parallel. The Tou(D.R) — T, 0, (A) 1/
preferential geometry consists of a sphere located near a T = [ D/ } , 2)

planar wall [2] rather than of two parallel plates.
We consider the generic case of a spherical particle witlivhere ®,,x is the position of the maximum in Fig. 1.

mesoscopic radiu® immersed in a binary liquid mixture The nonuniversal bulk amplitudgy = &g (p) is known

at a distanc® of closest approach surface-to-surface fromexperimentally for numerous fluids with values ranging
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FIG. 1. Scaling functionK.(®,A) in Eg. (1) normalized
with the corresponding function & =T, vs ® = D/¢. =
t"D/&; for fixed length ratiosA = D/R. Shown are the
limiting casesA = 0 [Derjaguin approximation (4)] and = o« .
[small sphere expansion (6) and (7)]. The line for= 1 has - 100 - .
been calculated numerically. The dots indicate the maxima. v Derjagum\.%
Results are given both for the physical dimensibs= 3 and &
for d = 4. The inset showX', (0, A) as used for normalization
[for d = 4 we actually show the finite limit ford / 4 of
(4 — d)K+]. There the dashed lines have the same meaning as .7
in Fig. 2(b) below. The lines fod = 2 display exact results 10
[see J.L. Cardy, Nucl. Phy&275 200 (1986)].
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. FIG. 2. (a) Values®,,(A) in Eq. (2) of ® = D/¢&, for
between 2 and 4 A. The universal dependenc@®gf, which K. (6, A) in Eq. (1) attains its maximum foA = D/R

on A = D/R and the corresponding universal maximalfixed and (b) the behavior & (@max(A), A) vs A [for d = 4
values ofK . in Eg. (1) are shown in Fig. 2. we show the limitd /" 4 of (4 — d)K.]. The solid lines show
The critical fluctuations of the fluid inducing the effec- the Derjaguin approximation (4) and the small sphere expansion

Ve i ; ; ; :~6) and (7) in leading order (LO) and including the next-to-
tive interaction are described by the standard Hamlltonlalfueming order (NLO). The dashed parts of these lines indicate

T u where they start to fail. The dotted lines fér= 4 have been

> ®? + % P4 — hq)]f calculated numerically.
3)

for a scalar ordder paramet@(r) in cylindrical coordinates 5 complemented by the following analytic considerations
r = (p,z) € R? supplemented by boundary conditions ¢y the asymptotic behavior ot (®, A) for A — 0 and

® = + at the wall and sphere surfaces corresponding, _, o

to thg critical adsorption fixed point [7]. The volumeé Derjaguin approximation—When R is much larger
consists of the half-space= 0 except for the volume oc- inanp it is reasonable to apply the Derjaguin approxima-

cupied by the sphere. The fieldis conjugate to the de- jo [9], which replaces the sphere by a pile of immersed
viation of the concentration from the critical composition. harajie| plates with local distancégp) = D + p2/(2R)

When the binary liquid mixture iat the critical composi-  from the wall. The force on thephereis expressed in
tion, i.e.,h = 0, the singular contributiorié f)sine to the terms of the attractive forcé, (L/é4)(d — 1)L~ per
free energy of interaction between the wall and the SPheanit area in units ok, T, between twoparallel platesat
in units ofkp 7T, depends o, R, andD interms of the uni-  gistancer, wherek.(y) is the corresponding universal
versal scaling function$s f)sng = f+(D/&+,D/R) for  geqling function. Fod = 3 and4 this leads to
T = T.. ThisimpliesK, = R%ﬂ [see Eqg. (1)].

We have carried out extensive numerical calculationsin - g, (®,A — 0) = w(d)A~@*D/2
order to minimizeH {®} for fixed D, R, and7 > 0 [8].

H{D) = fv dV{%(V(D)Z +

Ford / 4 this mean-field solution witli. = 7~'/? leads X f da a’*(1 + a?/2)¢
to theexactresult for the order parameter profilg(r) and 0
for the scaling functiork ;- (©®, A). The numerical analysis X ki(y =1 + a?/2)0) 4
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with w(3) = 47 andw(4) = 127. Equation (4) has been

shown to hold forT = T, [6] and is expected to hold also "d=4 .
for T > T.. Indeed our numerical results féf. (0, A) 2.0 ;__’_,/
corroborate Eq. (4) (see Figs. 1 and 2). The Derjaguin 7%

approximation is, of course, also applicable tbr= 3.
Since at present;(y > 0) is available ford = 2 [10]
andd = 4 [5(c)] we interpolate these results suitably in
order to obtain predictions faf = 3 [11] (see Fig. 3).
Small sphere expansica-When on the other hand the
radiusR —albeit large on the microscopic scale—is much
smallerthan D and ¢, the statistical Boltzmann weight
e~%%s characterizing the presence of the sphere centerddG. 3. Scaling functionk. (y) [compare Eg. (4) and the

atrs can be systematically expanded in terms of increasin L{efegizg teﬁ;} ford i 4f Ws —Sgowlothe gngiit d 4/ ‘é of
powers ofR [6], i.e., )k+]. The results ford =2 [10] and d = 4 [5(c)]

are used for a pointwise interpolation o= 3. The values
e—aa—[s <1 + c}I’R o P(rg) + C<TI>~qu,z @2(1‘5) T k+(0) = —Ay; determine critical Casimir amplitudes.

®) respectively, amplitudes of the half-space (hs) profile
wherexey = B/v andxg: = d — v~ ! (with the bulk criti- <‘I’(Z)>}Tls,T:TL = AY (22)™* at the critical point of the
cal exponentsg and v) are the scaling dimensions of fluid for the boundary conditiohcorresponding to critical
¥ = ®,d2 The ellipses stand for contributions which adsorption, and of the bulk two-point correlation function
vanish more rapidly forR — 0. The coefficients&f’ (W)W (0))y.7—7. = By r > [6]. We apply Eq. (5) to
are fixed by ¢} = AY /By, where A} and By are, | K+(®,A) and obtain in lowest order ia = 4 — d [12]

2.0 4.0 6.0 8.0 10.0

18 ®%cosh® , , 9 62
—_ )= — — + —
K+(0,4 ) e sink o A e sink ©

X [—2@ sinh® — +6+[12In(A™") — 12In2 + 34]0 coth® + Q(@)}A‘3 +0O(A™Y,

(6)
where Q(0) = OW(0®)coth® — OW/(0)/2 and W(0®) = —23 + 12Cr + 12InO® + 1672C+(0)sinkt O with
Euler's constaniCg. For the lengthy expression of the functigh. we refer the reader to Eq. (24) in Ref. [7(a)].
With the help of Eq. (6) we are able to extend the numerical resultgfor(®,A) for d = 4 to the limiting case

A — o (see Figs. 1 and 2). Similar to the Derjaguin approximation, the expansion (5) can also be apglied3to
In this case we obtain

sinh®

a @xtl a? @2retl
Ki(®.A — o) = - =0 PL(@)A™ ! + = S PHOPLOATT L 0@ (7)

Since2x¢ = 1.036 is smaller thanxg: = 1.41, Eq. (7) | Derjaguin approximation and the small sphere expansion,
does indeed include the two leading contributions. Theespectively. This provides a check of these approxima-
universal scaling functionP,(z/&+) = @(Z)}ﬁs,»o/ tions and, in addition, gives an impression of their range of
(®),. —;<o and the universal amplitude,; governing the validity. The small sphere expansion including the next-
behavior P..({ — 0) — c+{ " [7(b)] characterize the to-leading order as given by Egs. (6) and (7) is reliable
order parameter profile & > T. for critical adsorption in a much largerA-range than in leading order. The in-
on a planar substrate [7]. The ratio= (AfD)Z/Bcp is terpolating curves fod = 3, which have been obtained
also universal [6]. Fod = 3 we use the values =~ 7.73 by a suitable interpolation between the limiting behaviors
[13], ¢+ = 0.717 [7(c)], and inferP. from the values in as suggested by the corresponding lines do+ 4, are
Table Il in Ref. [7(c)]. expected to constitute reasonable quantitative estimates.
The exact numerical calculation fef = 4 combined The results shown in Figs. 1 and 2 facilitate experimen-
with the Derjaguin approximation and the small sphere extal tests of the critical Casimir force, which is character-
pansion are sufficient to estimate the global behavior ofzed by its maximum at®,,,,, A) and thus forms aurved
K+(®,A)ind = 3 (see Figs. 1 and 2). The numerically “ridge” in the “landscape”X(®,A). The correspond-
calculated curves faf = 4 interpolate smoothly between ing maximum force can be measured and compared with
the behavior forA — 0 and A — o as implied by the Fig. 2(b) with no need of a high temperature resolution of
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the experimental setup and without knowledge of the cor-  fields leading to nonvanishing order parameter profiles

relation length¢ in the binary liquid mixture. Upon in- even at7 = T.. (The same holds for one- or two-

serting valueR ~ 1070 mandD = 1078 m typical for component fluids near their liquid-vapor critical points.)
atomic force microscopes affd = 300 K one infers from This implies that in this case the occurrence of critical
Fig. 2(b) Feng = 10719 N for the critical Casimir force, long-ranged forces is notaure fluctuation effect.
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