VOLUME 81, NUMBER 9 PHYSICAL REVIEW LETTERS 31 AGusT 1998

From Bubbles to Clusters in Fluidized Beds
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Clusterlike solutions are reported for volume-averaged equations of motion in fluidized gas-particle
suspensions (i.e., fluidized beds). A connection between bubbles and clusters is established through
bifurcation analysis and numerical continuation in the mean volume fraction of the suspension.
The robustness of this connection is established by varying the model parameters and the closures.
The bubbles and clusters are shown to belong to the same family of nonuniform solutions.
[S0031-9007(98)06999-3]
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Granular materials in general, and fluidized suspensionsf fundamental importance. Using a bifurcation analysis
of them in particular, are encountered in a variety ofwe have followed the solution structure of volume-
industries [1,2]. In many applications it is important thataveraged (macroscopic) equations of motion describing
the grains are continuously moving as this allows forfluidized beds, and found that by varying parameters
mixing, and heat or mass transfer between the solids anof the system we could move smoothly between the
a fluid phase. Yet granular materials will come to rest (aseemingly different structures observed in fluidized beds,
a result of gravity and the dissipative nature of collisions)namely slugs, bubbles, and clusters.
unless “energy” is continuously fed into the system [1,2]. Volume-averaged equations have been described ex-
Sources of energy include movement of the confiningensively in the literature (e.g., Ref. [5]). We analyze
walls or internals (e.g., stirring, mixing, vibration, or volume-averaged equations of motion [11] for the (in-
rotation) and flow of a fluid through the voids betweencompressible) fluid and particle phases of a fluid-particle
the particles (e.g., a fluidized bed). To fluidize a bed ofsuspension
particles in a vertical cylinder, a fluid (a gas) is passed Duy

upwards through a distributor on which the particles rest. ”*® p; — Voo = ¢Veop Tk A+ dpg. (1)

: . : Du N
When the flow rate is suff|C|en_tIy large that the e_lvallat_)le pr(l — ¢) f_ —(1 — ¢)V - oy — kf
pressure drop across the bed is able to support its weight, Dt

the particles become mobile and the bed is said to be + (1 — ¢)psg, 2

fluidized. As the flow rate of the gas is further increasedwhere D /Dt is the material derivativen; and u, are
the bed of particles may expand smoothly such that théhe solids and fluid velocities, respectively, is the
mean volume fraction of solids is uniform throughout thevolume fraction of solids,o; and oy are the solid
bed [2]. Such a uniformly fluidized bed is rarely realizedand fluid phase stress tensors (defined in a compressive
in practice. Instead, concentration waves move upwardsense), respectively, is the number of particles per unit
through the bed and take the form of compact regiongolume, f is the average force exerted on a particle by
of low particle concentration (bubbles), alternating bandshe fluid due to the relative motion between the phases,
of high and low particle concentration (slugs) as well asand g is the gravity force vector. These quite general
compact regions of high particle concentration (clustersgquations of motion, along with continuity equations,
[2-7]. These significantly affect the dynamics of the bedmust be closed through constitutive relations; here we
As discussed by Davet al.[8], length scales of the employ the closures of Ref. [12], originally motivated by
bulk or macroscopic motion are typically 3 orders of Refs. [5,11]. While one may argue about the validity of
magnitude larger than the length scales of individualny constitutive relations for gas-particle suspensions, we
particle or microscopic motion. Yet, such macroscopichave adopted what we believe are the simplest credible
behavior requires the collective and organized motiorconstitutive relations that can describe a fluidized bed.
of many particles. Such collective particle behaviorwe will show that our model equations contain the
is not restricted to fluidized beds; bubbling has alsonecessary physics to capture the flow regimes of interest
been observed in vertically vibrated granular materialsn a gas-fluidized bed.
[9], and clustering has been observed in simulations of The stress tensors, as proposed in Ref. [11], are as-
sheared and unforced granular materials [10]. Thus, asumed to obey the following form:
understanding of the origin of such structures and the T 2
minimum physics needed to capture their occurrence is i — pil = “f[vui + (Vuy)® — 3 (V- “")I}’
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where {i = s, f} for the solids and fluid, respectively;  Figure la shows the particle volume fraction norm,
wn refers to viscosity, ang to pressure. The particle |[A4ll (the L, norm of the Fourier coefficients for the
phase pressure, of the form [12}; = C¢/(¢, — ¢)?,  particle volume fraction) as a function ef, for various
increases from zerog( = 0) and diverges as the solids k, values. |[A4|l gives a measure of the amplitude of
fraction tends to the random close-packed valig, In  the solution relative to the base uniform state (the line
the case of gas-fluidized beds the interaction fdreeises [|A4ll = 0). We will first focus on the branch of solutions
primarily because of interphase drag. The interphase dragptained fork, = 0.33 [curve (i) in Fig. 1a]. At pointA
force per unit volume is given by the bed expansionthere is a Hopf bifurcation and the uniform state becomes

measurements of Richardson and Zaki [13] where unstable to disturbances with vertical wave numbers of
_ dlps — pp)g 0.33. The branch terminates at the uniform state in
kf = _—M [uf — ug]. another Hopf bifurcation at point.
vl = ¢) Plots of¢ versus scaled height* (= Yk, /27), in the

The exponent: is a function of the particle Reynolds traveling wave frame for the 1D-TW’s corresponding to
number, R, = 2av,ps/us; v, is the terminal velocity pointsP to U in Fig. 1a are shown in Fig. 1b. Traversing
of a particle of radiusz. The equations were cast in a the 1D-TW branch from poin#, the waves start with
dimensionless form using,, v;, L = (,usvr/psg)l/z, and small amplitude and are nearly sinusoidal. As the mean
T = L/v, as characteristic density, velocity, length, andvolume fraction of solids increases, the waves increase in
time, respectively [12]. amplitude and become asymmetric with a fairly flat lgw

We analyze the solution structure for two-dimensionalregion (curveP in Fig. 1b); the wave amplitude continues
beds of infinite extent, seeking spatially periodic solu-to increase and at highei, (curveQ) a localized region of
tions. 200um diameter glass beads fluidized by air athigh volume fraction develops, surrounded by a flat region
ambient conditions were chosen as the base case due @ablow volume fraction. The extent of this localized high
abundant experimental work on this system [12]. The¢ region subsequently grows in size (relative to the lbw
base parameter values, in the right range suggested lggion) as shown in curve® ands.

experiments, were chosen as [12]= 100 um, p, = Past pointS in Fig. 1la the waves start to change
2200 kg/m?, us = 0.665 kg/ms, C = 0.0388 Pa, v, = in structure, and at point’ the “inverse” structure (a
1.423 m/s,n = 4.35, ¢, = 0.65. localized region of low¢ surrounded by a fairly flat

An equilibrium solution to the closed equations of region of high¢) develops. Further along the diagram,
motion and continuity is a uniform fluidized bed of infinite after a turning point inp, (just before pointJ) the branch
extent,¢ = ¢o; u;, = 0; uy = juy, wherej is the unit  eventually terminates at the base state (pdim Fig. 1a).
vector in they direction, which is pointing vertically Solutions close to the base state are again sinusoidal in
upward, andp, andu, are constants. The linear stability shape. The solution structures of 1D-TW branches for
of this solution against small, spatially periodic one-other k, values are similar to that shown in Fig. 1b.
and two-dimensional disturbances has been examinddowever, ask, is increased (decreased) the amplitude of
by many researchers (e.g., Refs. [5,6,12]). Whefn the solutions decreases (increases) for a givgn
(the mean volume fraction in the bed) lies between The waves, extended periodically, represent alternating
a critical lower value and a critical upper value, thebands of high and low volume fraction which propagate
state of uniform fluidization is linearly unstable and theupwards through the bed. A heuristic argument for
fastest growing disturbance is a traveling wave with ngpropagation of the waves can be obtained by focusing on
horizontal structure (a one-dimensional traveling wavethe solids rich bands. The lower surface of each solids
1D-TW). The wave takes the form of alternating bandsrich band is “unstable” and particles rain down from
of high and low voidage, which move upwards through
the bed. In dense beds (highy) such waves resemble
“slugs” in fluidized beds [5,14]. We will show that such
waves also exist for dilute beds (loy) and can be traced
continuously from the dense to the dilute end.

Every 1D-TW is characterized by two parameters,
namely ¢, andk, (the vertical wave number), and has its
own wave speed; with respect to the laboratory frame O B ¢ rE T
(the frame of reference where the average flux of particles I Y T NP I Bt
in the periodic box is zero). In a frame of reference 0 02 404 06
moving at ¢ the wave will appear steady. We study,
computationally, families of traveling waves generated byFIG. 1. (a) Amplitude of 1D-TW solutions||A,ll, versus
allowing ¢, to vary at constank,; they arise at Hopf ‘f’S ]fcorzd'(‘;fggergii)"i”"f'élngV‘(aiv)”l]imiegg?b (i(\l/)) ’]zv - (5)’231’
bifurcation points. The Fourier series based d|.scre‘uzat|qr%_,_'o’pf bifurcation point. (b) Piot ofs versus dimensionless
and bifurcation-continuation procedure are discussed iReight showing 1D-TW solutions (over two spatial periods, for
Ref. [12]. clarity) corresponding to point8 to U in Fig. 1a.
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it; they accelerate under gravity and their concentratiorand black to the maximurng value of each image) are
decreases on moving down (leading to the formation oplotted for an entire periodic box (dimensionless width
the band of low particle concentration). The particles ther2 /k, and heigh /k,). 1D-TW'’s at low and highp,
decelerate rapidly as they meet the upper boundary of thare included for reference in Figs. 3a and 3j, respectively.
solids rich band below. This transfer of the particles from2D-TW’s close to their onset exhibit bulging (Fig. 3b) or
each solids rich band to its neighbor below leads to théuckling of the 1D-TW structure.

upwards motion of the whole concentration pattern.

At the dilute end fork, > k, clusterlike solutions are

We analyzed the linear stability of the 1D-TW'’s observed: localized regions of high volume fraction sur-

shown in Fig. 1b against transverse (lateraklirection)
disturbances. Figure 2 shows results for the= 4.64,

rounded by a nearly flat region of low volume fraction of
solids (Fig. 3c). Ask, approacheg,, the flat region of

1D-TW branch, labeledKVOH, and a fixed lateral wave low volume fraction starts to gain structure and a column-
number ofk, = 3.61. The 1D-TW branch starting af  like solution begins to develop (Fig. 3d). This type of
is initially stable as¢, increases. At poin it loses solution becomes more apparent as the ratid,gk, is
stability to a new branch of two-dimensional solutions,further increased (Fig. 3e). Similar structures have been
still traveling vertically up through the bed at constantseen experimentally and are commonly referred to as
wave speeds (two-dimensional vertical traveling wavesstreamers” [2]. Asg is increased the localized region
or 2D-TW’s). This is a pitchfork bifurcation in the of high solids fractions grows in size (analogous to 1D-
moving frame: one real eigenvalue goes through zer@W observations above). In Fig. 3f we present a solu-
at K. The 2D-TW branch KLMNQO) goes through a tion where the region of high volume fraction is no longer
maximum and then returns to the 1D-TW branch at point
O (another pitchfork bifurcation). As, is increased the
1D-TW branch loses stability at higher amplitude and
the bifurcation points change location (they move up the
branch). For large enough, they come together in a
codimension two bifurcation and the 1D-TW is linearly
stable to lateral disturbances. Thus the loss of stability
of the 1D-TW's in the lateral direction is a long wave
instability and one-dimensional waves are stable (and so
observable) for largé,, corresponding to narrow tubes.
Indeed, the familiar “slugging” behavior is observed in
narrow tubes. c

Every fully developed 2D-TW is characterized by three
parameters, namekpo, k,, andk,. We have examined a
large variety of combinations of parameters for which 2D-
TW'’s exist. The basic solution structure shown in Fig. 2
was observed for all the combinations we examined. One-
dimensional traveling waves emerge through a Hopf bifur-
cation of the uniform state, and two-dimensional traveling
waves are born from these in a secondary instability.

We traced the 2D-TW’s smoothly from the dense to (€)
the dilute end, and a gallery of representative solutions is
presented in Figs. 3a—3j. The corresponding parametel
values for these solutions are reported in the caption;
these values are somewhat arbitrary. Six equally spac
voidage contours (white corresponding to the minimu

(a)

() N

elﬂG. 3. Representative contour plots ¢f Plots (k) to (0)
Mare 2D-TW's corresponding to points close to the locations
labeled K to O in Fig. 2. The maximum and minimung
values are given for each contour plot. @) = 0.011, k, =
0.3, k. =0, 0.006 < ¢ < 0.04, (b) ¢o = 0.02, k, = 0.6,
ke = 4.0,0.016 < ¢ < 0.028, (C) po = 0.03, k, = 0.2, k, =
4.3, 002 < ¢ < 0.14, (d) ¢o = 0.045, k, = 0.6, k, = 3.3,
0.009 < ¢ < 0.11, (e) po = 0.06, k, = 0.8, k, = 0.8,0.05 <
¢ < 0.07, (), (9) ¢po= 0345, k, = 4.6, k, = 2.9, 0.07 <
¢ <052, (h) o =056, ky = 1.2, k, = 1.2, 031 < ¢ <
0.63, (i) ¢o =057, ky, = 1.4, k, = 1.4, 047 < ¢ < 061,
() ¢o = 0.58, k, = 0.33, k, = 0, 0.55 < ¢ < 0.59. For (k)
to (0): k, = 4.64, k, = 3.61. (K) ¢o = 0.19, 0.17 < ¢ <
0.22, () ¢p = 0.24,0.11 < ¢ < 0.32, (M) ¢y = 0.29, 0.06 <
¢ < 0.46, (n) ¢y = 0.326,0.22 < ¢ < 0.49, (0) o = 0.329,
024 < ¢ < 0.49.

FIG. 2. Plot of||A,|l versus¢, showing the 1D-TW and 2D-
TW branches. k, = 4.64, k, = 3.61.
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localized: it bridges (both vertically and laterally) the In a dense bed the region of high solids fraction is
domain edges, and (due to the periodic BC's) the entireontinuous and thus bubbles are observed. In the dilute
column. Figure 3g is a shift (laterally by /k, and ver- beds the converse is true. In beds of intermediate mean
tically by = /k,) of the solution in Fig. 3f. A localized, solids fraction the structures that form are “intermediate”
low volume-fraction region is highlighted (Fig. 3g), and in nature, in between bubbles and clusters. Thus even
becomes more localized at smaller mean volume fractionthough a bubble and a cluster look very different in a
(Fig. 3h). Such bubblelike solutions are discussed in defluidized bed, our results suggest that they both form and
tail elsewhere [12]; they remarkably resemble experimenpropagate by the same mechanism; in a sense they are one
tally observed bubbles in fluidized beds possessing, amorand the same.
other salient features, their hemispherical shape. This is These results are qualitative in nature due to uncertain-
noteworthy, considering the simplicity of the model. 2D- ties in the necessary model closures. At the same time
TW's close to the 1D-TW branch at the dense end exhibithis work shows that the phenomenon of interest is not
a buckling (Fig. 3i) or a bulging (Fig. 30) type structure. dependent on the details of the closures. In the dilute gas-
The exact amplitude, steepness, and shape of the solutieolid systems considered here, cluster formation involves
will depend on the values of the three parameiggsk,  an interplay of gravity, particle phase stress, drag, and in-
andk,. Figures 3k—30 demonstrate the gradual qualitaertia. In contrast, in dissipative granular gases, clusters
tive change in the 2D solution contours for fixed and arise due to an inelastic collision mechanism [10] which
ky with increasing particle volume fraction along the one-is not treated in our analysis. In general, both mechanisms
parameter diagram of Fig. 2. can operate and lead to clusters in gas-solid suspensions.

The robustness of the solution structure was exam- The computational work was carried out through a
ined through different model parameters, gas-particlgrant of time on a CRAY C90 from the Pittsburgh
systems, different closures for the interphase drag, th8upercomputing Center. We are grateful to Professor
solids phase pressure, and a solids viscosity which varigRoy Jackson for his help and advice over the course of
with solids fraction [12]. The same basic hierarchy of so-this work and to the National Science Foundation and the
lutions (described above) was observed. The subcriticaExxon Education Foundation for partial support.
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