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From Bubbles to Clusters in Fluidized Beds
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Clusterlike solutions are reported for volume-averaged equations of motion in fluidized gas-part
suspensions (i.e., fluidized beds). A connection between bubbles and clusters is established th
bifurcation analysis and numerical continuation in the mean volume fraction of the suspens
The robustness of this connection is established by varying the model parameters and the clos
The bubbles and clusters are shown to belong to the same family of nonuniform solutio
[S0031-9007(98)06999-3]

PACS numbers: 47.55.Kf, 46.10.+z, 47.55.Dz
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Granular materials in general, and fluidized suspensio
of them in particular, are encountered in a variety
industries [1,2]. In many applications it is important tha
the grains are continuously moving as this allows fo
mixing, and heat or mass transfer between the solids a
a fluid phase. Yet granular materials will come to rest (
a result of gravity and the dissipative nature of collision
unless “energy” is continuously fed into the system [1,2
Sources of energy include movement of the confinin
walls or internals (e.g., stirring, mixing, vibration, o
rotation) and flow of a fluid through the voids betwee
the particles (e.g., a fluidized bed). To fluidize a bed
particles in a vertical cylinder, a fluid (a gas) is passe
upwards through a distributor on which the particles re
When the flow rate is sufficiently large that the availab
pressure drop across the bed is able to support its weig
the particles become mobile and the bed is said to
fluidized. As the flow rate of the gas is further increase
the bed of particles may expand smoothly such that t
mean volume fraction of solids is uniform throughout th
bed [2]. Such a uniformly fluidized bed is rarely realize
in practice. Instead, concentration waves move upwa
through the bed and take the form of compact regio
of low particle concentration (bubbles), alternating ban
of high and low particle concentration (slugs) as well a
compact regions of high particle concentration (cluster
[2–7]. These significantly affect the dynamics of the be

As discussed by Dawet al. [8], length scales of the
bulk or macroscopic motion are typically 3 orders o
magnitude larger than the length scales of individu
particle or microscopic motion. Yet, such macroscop
behavior requires the collective and organized motio
of many particles. Such collective particle behavio
is not restricted to fluidized beds; bubbling has als
been observed in vertically vibrated granular materia
[9], and clustering has been observed in simulations
sheared and unforced granular materials [10]. Thus,
understanding of the origin of such structures and t
minimum physics needed to capture their occurrence
0031-9007y98y81(9)y1849(4)$15.00
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of fundamental importance. Using a bifurcation analy
we have followed the solution structure of volum
averaged (macroscopic) equations of motion describ
fluidized beds, and found that by varying paramet
of the system we could move smoothly between t
seemingly different structures observed in fluidized be
namely slugs, bubbles, and clusters.

Volume-averaged equations have been described
tensively in the literature (e.g., Ref. [5]). We analyz
volume-averaged equations of motion [11] for the (i
compressible) fluid and particle phases of a fluid-parti
suspension

rsf
Dus

Dt
­ 2= ? ss 2 f= ? sf 1 kf̃ 1 frsg , (1)

rfs1 2 fd
Duf

Dt
­ 2s1 2 fd= ? sf 2 kf̃

1 s1 2 fdrfg , (2)
where DyDt is the material derivative,us and uf are
the solids and fluid velocities, respectively,f is the
volume fraction of solids,ss and sf are the solid
and fluid phase stress tensors (defined in a compres
sense), respectively,k is the number of particles per un
volume, f̃ is the average force exerted on a particle
the fluid due to the relative motion between the phas
and g is the gravity force vector. These quite gene
equations of motion, along with continuity equation
must be closed through constitutive relations; here
employ the closures of Ref. [12], originally motivated b
Refs. [5,11]. While one may argue about the validity
any constitutive relations for gas-particle suspensions,
have adopted what we believe are the simplest cred
constitutive relations that can describe a fluidized b
We will show that our model equations contain th
necessary physics to capture the flow regimes of inte
in a gas-fluidized bed.

The stress tensors, as proposed in Ref. [11], are
sumed to obey the following form:

si ­ piI 2 mi

∑
=ui 1 s=uidT 2

2
3

s= ? uidI
∏

,
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where hi ­ s, fj for the solids and fluid, respectively;
m refers to viscosity, andp to pressure. The particle
phase pressure, of the form [12]:ps ­ Cfysfp 2 fd2,
increases from zero (f ­ 0) and diverges as the solids
fraction tends to the random close-packed value,fp. In
the case of gas-fluidized beds the interaction forcef̃ arises
primarily because of interphase drag. The interphase d
force per unit volume is given by the bed expansio
measurements of Richardson and Zaki [13] where

kf̃ ­
fsrs 2 rfdg

yts1 2 fdsn22d fuf 2 usg .

The exponentn is a function of the particle Reynolds
number, Rt ­ 2aytrfymf ; yt is the terminal velocity
of a particle of radiusa. The equations were cast in a
dimensionless form usingrs, yt , L ­ smsytyrsgd1y2, and
T ­ Lyyt as characteristic density, velocity, length, an
time, respectively [12].

We analyze the solution structure for two-dimension
beds of infinite extent, seeking spatially periodic solu
tions. 200mm diameter glass beads fluidized by air a
ambient conditions were chosen as the base case du
abundant experimental work on this system [12]. Th
base parameter values, in the right range suggested
experiments, were chosen as [12]a ­ 100 mm, rs ­
2200 kgym3, ms ­ 0.665 kgyms, C ­ 0.0388 Pa, yt ­
1.423 mys, n ­ 4.35, fp ­ 0.65.

An equilibrium solution to the closed equations o
motion and continuity is a uniform fluidized bed of infinite
extent,f ­ f0; us ­ 0; uf ­ ju0, wherej is the unit
vector in the y direction, which is pointing vertically
upward, andf0 andu0 are constants. The linear stability
of this solution against small, spatially periodic one
and two-dimensional disturbances has been examin
by many researchers (e.g., Refs. [5,6,12]). Whenf0
(the mean volume fraction in the bed) lies betwee
a critical lower value and a critical upper value, th
state of uniform fluidization is linearly unstable and th
fastest growing disturbance is a traveling wave with n
horizontal structure (a one-dimensional traveling wav
1D-TW). The wave takes the form of alternating band
of high and low voidage, which move upwards throug
the bed. In dense beds (highf0) such waves resemble
“slugs” in fluidized beds [5,14]. We will show that such
waves also exist for dilute beds (lowf0) and can be traced
continuously from the dense to the dilute end.

Every 1D-TW is characterized by two parameter
namelyf0 andky (the vertical wave number), and has it
own wave speed,c with respect to the laboratory frame
(the frame of reference where the average flux of partic
in the periodic box is zero). In a frame of referenc
moving at c the wave will appear steady. We study
computationally, families of traveling waves generated b
allowing f0 to vary at constantky ; they arise at Hopf
bifurcation points. The Fourier series based discretizati
and bifurcation-continuation procedure are discussed
Ref. [12].
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Figure 1a shows the particle volume fraction norm
kAfk (the L2 norm of the Fourier coefficients for the
particle volume fraction) as a function off0 for various
ky values. kAfk gives a measure of the amplitude of
the solution relative to the base uniform state (the lin
kAfk ­ 0). We will first focus on the branch of solutions
obtained forky ­ 0.33 [curve (i) in Fig. 1a]. At pointA
there is a Hopf bifurcation and the uniform state become
unstable to disturbances with vertical wave numbers
0.33. The branch terminates at the uniform state i
another Hopf bifurcation at pointJ.

Plots off versus scaled height,Yp s­ Ykyy2pd, in the
traveling wave frame for the 1D-TW’s corresponding to
pointsP to U in Fig. 1a are shown in Fig. 1b. Traversing
the 1D-TW branch from pointA, the waves start with
small amplitude and are nearly sinusoidal. As the mea
volume fraction of solids increases, the waves increase
amplitude and become asymmetric with a fairly flat lowf

region (curveP in Fig. 1b); the wave amplitude continues
to increase and at higherf0 (curveQ) a localized region of
high volume fraction develops, surrounded by a flat regio
of low volume fraction. The extent of this localized high
f region subsequently grows in size (relative to the lowf

region) as shown in curvesR andS.
Past point S in Fig. 1a the waves start to change

in structure, and at pointT the “inverse” structure (a
localized region of lowf surrounded by a fairly flat
region of highf) develops. Further along the diagram
after a turning point inf0 (just before pointU) the branch
eventually terminates at the base state (pointJ in Fig. 1a).
Solutions close to the base state are again sinusoidal
shape. The solution structures of 1D-TW branches fo
other ky values are similar to that shown in Fig. 1b.
However, asky is increased (decreased) the amplitude o
the solutions decreases (increases) for a givenf0.

The waves, extended periodically, represent alternatin
bands of high and low volume fraction which propagat
upwards through the bed. A heuristic argument fo
propagation of the waves can be obtained by focusing o
the solids rich bands. The lower surface of each solid
rich band is “unstable” and particles rain down from

FIG. 1. (a) Amplitude of 1D-TW solutions,kAfk, versus
f0 for different vertical wave numbers,ky . (i) ky ­ 0.33,
(ii) ky ­ 0.66, (iii) ky ­ 4.64, (iv) ky ­ 5.30, (iv) ky ­ 5.64.
±-Hopf bifurcation point. (b) Plot off versus dimensionless
height showing 1D-TW solutions (over two spatial periods, fo
clarity) corresponding to pointsP to U in Fig. 1a.
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it; they accelerate under gravity and their concentrat
decreases on moving down (leading to the formation
the band of low particle concentration). The particles th
decelerate rapidly as they meet the upper boundary of
solids rich band below. This transfer of the particles fro
each solids rich band to its neighbor below leads to
upwards motion of the whole concentration pattern.

We analyzed the linear stability of the 1D-TW’
shown in Fig. 1b against transverse (lateral,x direction)
disturbances. Figure 2 shows results for theky ­ 4.64,
1D-TW branch, labeledCKVOH, and a fixed lateral wave
number ofkx ­ 3.61. The 1D-TW branch starting atC
is initially stable asf0 increases. At pointK it loses
stability to a new branch of two-dimensional solution
still traveling vertically up through the bed at consta
wave speeds (two-dimensional vertical traveling wav
or 2D-TW’s). This is a pitchfork bifurcation in the
moving frame: one real eigenvalue goes through z
at K. The 2D-TW branch (KLMNO) goes through a
maximum and then returns to the 1D-TW branch at po
O (another pitchfork bifurcation). Askx is increased the
1D-TW branch loses stability at higher amplitude a
the bifurcation points change location (they move up t
branch). For large enoughkx they come together in a
codimension two bifurcation and the 1D-TW is linear
stable to lateral disturbances. Thus the loss of stab
of the 1D-TW’s in the lateral direction is a long wav
instability and one-dimensional waves are stable (and
observable) for largekx , corresponding to narrow tubes
Indeed, the familiar “slugging” behavior is observed
narrow tubes.

Every fully developed 2D-TW is characterized by thre
parameters, namelyf0, ky , andkx . We have examined a
large variety of combinations of parameters for which 2
TW’s exist. The basic solution structure shown in Fig.
was observed for all the combinations we examined. O
dimensional traveling waves emerge through a Hopf bif
cation of the uniform state, and two-dimensional traveli
waves are born from these in a secondary instability.

We traced the 2D-TW’s smoothly from the dense
the dilute end, and a gallery of representative solution
presented in Figs. 3a–3j. The corresponding param
values for these solutions are reported in the capti
these values are somewhat arbitrary. Six equally spa
voidage contours (white corresponding to the minimu

FIG. 2. Plot ofkAfk versusf0 showing the 1D-TW and 2D-
TW branches. ky ­ 4.64, kx ­ 3.61.
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and black to the maximumf value of each image) are
plotted for an entire periodic box (dimensionless widt
2pykx and height2pyky). 1D-TW’s at low and highf0
are included for reference in Figs. 3a and 3j, respective
2D-TW’s close to their onset exhibit bulging (Fig. 3b) or
buckling of the 1D-TW structure.

At the dilute end forkx . ky clusterlike solutions are
observed: localized regions of high volume fraction su
rounded by a nearly flat region of low volume fraction o
solids (Fig. 3c). Askx approachesky , the flat region of
low volume fraction starts to gain structure and a column
like solution begins to develop (Fig. 3d). This type o
solution becomes more apparent as the ratio ofkyykx is
further increased (Fig. 3e). Similar structures have be
seen experimentally and are commonly referred to
“streamers” [2]. Asf0 is increased the localized region
of high solids fractions grows in size (analogous to 1D
TW observations above). In Fig. 3f we present a solu
tion where the region of high volume fraction is no longe

FIG. 3. Representative contour plots off. Plots (k) to (o)
are 2D-TW’s corresponding to points close to the location
labeled K to O in Fig. 2. The maximum and minimumf
values are given for each contour plot. (a)f0 ­ 0.011, ky ­
0.3, kx ­ 0, 0.006 , f , 0.04, (b) f0 ­ 0.02, ky ­ 0.6,
kx ­ 4.0, 0.016 , f , 0.028, (c) f0 ­ 0.03, ky ­ 0.2, kx ­
4.3, 0.02 , f , 0.14, (d) f0 ­ 0.045, ky ­ 0.6, kx ­ 3.3,
0.009 , f , 0.11, (e)f0 ­ 0.06, ky ­ 0.8, kx ­ 0.8, 0.05 ,
f , 0.07, (f), (g) f0 ­ 0.345, ky ­ 4.6, kx ­ 2.9, 0.07 ,
f , 0.52, (h) f0 ­ 0.56, ky ­ 1.2, kx ­ 1.2, 0.31 , f ,
0.63, (i) f0 ­ 0.57, ky ­ 1.4, kx ­ 1.4, 0.47 , f , 0.61,
(j) f0 ­ 0.58, ky ­ 0.33, kx ­ 0, 0.55 , f , 0.59. For (k)
to (o): ky ­ 4.64, kx ­ 3.61. (k) f0 ­ 0.19, 0.17 , f ,
0.22, (l) f0 ­ 0.24, 0.11 , f , 0.32, (m) f0 ­ 0.29, 0.06 ,
f , 0.46, (n) f0 ­ 0.326, 0.22 , f , 0.49, (o) f0 ­ 0.329,
0.24 , f , 0.49.
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localized: it bridges (both vertically and laterally) the
domain edges, and (due to the periodic BC’s) the ent
column. Figure 3g is a shift (laterally bypykx and ver-
tically by pyky) of the solution in Fig. 3f. A localized,
low volume-fraction region is highlighted (Fig. 3g), and
becomes more localized at smaller mean volume fractio
(Fig. 3h). Such bubblelike solutions are discussed in d
tail elsewhere [12]; they remarkably resemble experime
tally observed bubbles in fluidized beds possessing, amo
other salient features, their hemispherical shape. This
noteworthy, considering the simplicity of the model. 2D
TW’s close to the 1D-TW branch at the dense end exhi
a buckling (Fig. 3i) or a bulging (Fig. 3o) type structure
The exact amplitude, steepness, and shape of the solu
will depend on the values of the three parametersf0, ky

and kx . Figures 3k–3o demonstrate the gradual qualit
tive change in the 2D solution contours for fixedkx and
ky with increasing particle volume fraction along the one
parameter diagram of Fig. 2.

The robustness of the solution structure was exa
ined through different model parameters, gas-partic
systems, different closures for the interphase drag,
solids phase pressure, and a solids viscosity which var
with solids fraction [12]. The same basic hierarchy of s
lutions (described above) was observed. The subcritic
supercritical nature of the branches and the exact sh
of the solutions is dictated by the parameter values a
form of the closures; however, the basic topology of th
bifurcation diagram with respect to volume fraction, an
the gradual transformation of the fully developed solutio
structures between the dense and dilute ends of this d
gram, remain the same. A technical problem arises wh
the low density instability is pushed tof ­ 0 for a certain
class of particle pressure closures (those withps , fa as
f ! 0, with a . 1). While we cannot trace branche
from such a degenerate (and unphysical) critical point, w
believe that one can still trace fully developed nonline
solutions through continuation inf0 from the dense end.

The propagation of the 2D-TW’s is analogous to th
of the 1D-TW’s, but it now involves both vertical and
lateral movement of material. However, in the laborato
frame of reference this lateral movement is relative
small. This is not surprising since the motion of th
wave is purely vertical. The lower surfaces of solids ric
regions are unstable and solids accelerate under gra
and rain down into the low solids fraction regions. Th
particles will then decelerate rapidly if they meet anoth
solids rich region. The particles will thus rain down from
the lower surface of a solids rich region and collect o
the upper surface of a solids rich region. This sam
mechanism leads to propagation of a bubblelike structu
or a clusterlike structure.

Our results show that whether an instability of th
uniform state leads to a cluster or a bubble is based
which “phase” (high solids or low solids) is continuous
1852
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In a dense bed the region of high solids fraction is
continuous and thus bubbles are observed. In the dilu
beds the converse is true. In beds of intermediate mea
solids fraction the structures that form are “intermediate
in nature, in between bubbles and clusters. Thus eve
though a bubble and a cluster look very different in a
fluidized bed, our results suggest that they both form an
propagate by the same mechanism; in a sense they are o
and the same.

These results are qualitative in nature due to uncertai
ties in the necessary model closures. At the same tim
this work shows that the phenomenon of interest is no
dependent on the details of the closures. In the dilute ga
solid systems considered here, cluster formation involve
an interplay of gravity, particle phase stress, drag, and in
ertia. In contrast, in dissipative granular gases, cluste
arise due to an inelastic collision mechanism [10] which
is not treated in our analysis. In general, both mechanism
can operate and lead to clusters in gas-solid suspension
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