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Thermal Radiation and Amplified Spontaneous Emission from a Random Medium
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We compute the statistics of thermal emission from systems in which the radiation is scattered
chaaotically, by relating the photocount distribution to the scattering matrix—whose statistical properties
are known from random-matrix theory. We find that the super-Poissonian noise is that of a blackbody
with a reduced number of degrees of freedom. The general theory is applied to a disordered slab
and to a chaotic cavity, and is extended to include amplifying as well as absorbing systems. We
predict an excess noise of amplified spontaneous emission in a random laser below the laser threshold.
[S0031-9007(98)07001-X]
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The emission of photons by matter in thermal equilib-tem. Deviations from the blackbody limit contain infor-
rium is not a series of independent events. The textbooknation on chaotic scattering that cannot be obtained from
example is blackbody radiation [1,2]: Consider a systentlassical scattering experiments. Most studies of the op-
in thermal equilibrium (temperaturE) that fully absorbs tical properties of random media have been restricted to
any incident radiation itV (w ) propagating modes within a classical optics [7]. The similarity between the classical
frequency intervab w aroundw. A photodetector counts wave equation and the Schrédinger equation has permitted
the emission of: photons in this frequency interval dur- the transfer to classical optics of powerful theoretical tech-
ing a long timer > 1/8w. The probability distribution niques from condensed matter physics [8]. Our solution
P(n) is given by the negative-binomial distribution with of the thermal-radiation problem demonstrates how one of
v = Ntdw /27 degrees of freedom, these techniques, the method of random-matrix theory [9],

can be applied to quantum optics. That is the second rea-
P(n) = (n +v - 1>exp(—nﬁw/kBT). (1) son for the _significa_nce of t_hi§ problem. The third reason is
n the recent interest in amplifying random media, motivated
_ ) . » by possible applications as a “random laser” [10,11]. A
The binomial coefficient counts the number of partitions ofji a5, amplifier can be thought of as being in thermal equi-
n bosons among states. The mean photocount= vf |ibrium at a negative temperature [12], so that our theory
is proportional to the Bose-Einstein function of thermal radiation can also deal with amplified sponta-

flw,T) = [explliw/kgT) — 177" ) neous emission.

We start with the formulation and solution of the
In the limit 7/v — 0, Eq. (1) approaches the Poisson

problem in a general form, and then turn to specific
distribution P(n) = " /n! of independent photocounts. applications. We consider a random medium coupled to
The Poisson distribution has variance War i) equal

a photodetector via a waveguide (in vacuum) witkw)
to its mean. The negative-binomial distribution describe

é)ropagating modes (counting polarizations) at frequency
photocounts that occur in “bunches,” leading to an increas€’ (see Fig. 1). We assume that any Brownian motion
of the variance by a factor + 7/v. These basic facts

of the scattering centra in the random medium can be
have been known since the beginning of this century [3]. disregarded on the time scale of the measurements. The
Thermal radiation is also referred to as “chaotic radia-

scattering rate is denoted Hy'7;, and the absorption or
tion” [1,2]. In recent years the word “chaotic” has entered

optics in a different context, to describe systems that scatter

radiation in an irregular, random way [4]. Such systems,

typically, have weak absorption, so they are far from being

blackbodies. Two recent papers have studied deviations

from blackbody radiation in the case of one-dimensional %
scattering [5,6], but chaotic systems are intrinsically not

one dimensional. What, then, is the statistics of the chaotic

radiation resulting from chaotic scattering? That is the

problem addressed in this paper.

This problem is significant for more than one reasong|G. 1. Schematic diagram of a random medium (dotted) con-
First, thermal emission is a fundamental property of a sysnected to a photodetector (shaded) viaAamode waveguide.
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amplification rate byl/7,. To quantize the electromag- [14]. The probability thak photons are counted in a time
netic field we use the method of input-output relationst is given by [15,16]

developed by Gruner and Welsch [5] and by Loudon and 1 '

co-workers [6,12,13]. The incoming and outgoing modesP(n) = ;(:I”e“:), I = / dt' a®t(:a®"'(¢),

in the waveguide are represented by tWecomponent 0 (8)
vectors of annihilation operatois” (w), a®(w). They out N Ciwr out
satisfy the commutation relations a®(1) = 2m) fo dwe'*'a* ().

[an(@),a} (0")] = 8umd(0 — @), (The colons denote normal ordering.) It is convenient to

(3)  work with the generating functiof' (&) = 3, x,£”/p!

/ —
[an(@), an(@)] =0, of the factorial cumulants, [17],

for a = a™ ora = a°"'. The input-output relations take o
the form [5,6,12,13] F(&) =InD> (1 + &'Pn)=InC:ef:)y.  (9)
n=0

a® = Sa™ + Ub + Vel 4) . .
To evaluateF(¢) we substitute Eq. (4) into Eq. (8) and

with S(w) the N X N scattering matrix. The boson perform the Gaussian averages.
operator$ andc satisfy Eq. (3) provided A simple expression results in the long-time regime,

vut — vyt =1 — sst (5) F(&) = _tfx do Inll1 — (1 — ssHefll,  (0)
0 2

(1 denoting theV X N unit matrix). The matrixi — SS*

is positive definite in an absorbing medium, so we can pu
V = 0. Conversely, in an amplifying mediuin— SSt is
negative definite, so we can put= 0. This determines
U,V up to a unitary transformation. All of our fina
expressions depend only on the combinatiint — vvT,
so that any freedom in the choice@f V is irrelevant once F(é)=—1In
the scattering matrix is fixed.

_Equa;ion () can be understood as a quctuationVa”d whenQ.r < 1, with Q. the frequency range over
dissipation relation: The left-hand side accounts fo

) . LT 'which ST differs appreciably from the unit matrix. (The
quantum fluctuations in the electromagnetic field due toreciprocal of Q.. is the coherence time of the thermal
C

spontaneous emission or absorption of photons, and ﬂ'@missions.) The two equations (10) and (11) are the key

right-h_and side accounts f_or dissipation due to absqrptioPesults of this paper. They reduce the quantum optical

(or gtlmulated emission in the case of an amplifying roblem of the photon statistics to a computation of the

med'”m)' E_quatlon ) alsq represents a link betwee cattering matrix of the classical wave equation. That is

cIa_ssmaI optics (the scattering mafcrm and quantum a major simplification, because the statistical properties of

optics (the quantum fluc_tuatlon matrices V). the scattering matrix of a random medium are known from
In an absorbing medium, the operatoraccounts for random-matrix theory [18,19].

thermal emission with expectation value The long-time limit (10) is particularly simple, as it

+ N o depends only on the set of eigenvalues, o3,..., 0y

bn(@)bn(@) = Smdlw — @)f(w.T).  (€) sst. We call theo,’s “scattering strengths.” An

The inverted oscillator accounts for spontaneous emis- additional simplification of the long-time regime is that
sion in an amplifying medium. We consider the regime ofone can do a frequency-resolved measurement, counting
linear amplification, below the laser threshold. Formally,only photons within a narrow frequency intervalw
this regime can be described by a thermal distribution afwith w. > dw > 1/). The factorial cumulants are
negative temperature T, then given by

(c,,(w)c,L(w')) = —6umd(w — (Ul)f(w’_T)’ (7) Ky = (p — 1! yprfl %(1 — o,)?, (12)

the zero-temperature limit corresponding to a complete n=1

population inversion [12]. Higher order expectation val-where » = Nt§w/2m was defined in the introduction.
ues are obtained by pairwise averaging, as one would dPor comparison with blackbody radiation, we parametrize
for Gaussian variables, after having brought the operatorge variance in terms of the effective numbeys; of

yhere |---|l indicates the determinant. Equation (10)
Is valid whenw.r > 1, with o, the frequency interval

within which SST does not vary appreciably. We have
| also found a simple expression in the short-time regime,

_ L [Tde o ot
1 tfo et SS)§fH, (11)

into normal order. degrees of freedom [2],
The incoming radiation is in the vacuum state, while
the outgoing radiation is collected by a photodetector Varln = a(1 + i/ vesr)], (13)
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with ve;y = v for a blackbody. Equation (12) implies

verr _ 2,1 = )P _
» —Nzn(l_o_n)z_l. (14)

We conclude that the super-Poissonian noise of a random
medium corresponds to a blackbody witheslucednum-

ber of degrees of freedom. Note that the reduction occurs
only for N > 1.

We now turn to applications of our general formulas
to specific random media. We concentrate on the long-
time, frequency-resolved regime witN > 1, leaving
the short-time and single-mode regimes, and the case of
broadband detection, for future publication [20]. An en-
semble of random media has a certain scattering-strength
density p(o). For N > 1, sample-to-sample fluctua- 0
tions are small, so the ensemble average is representa-
tive of a single system. We may therefore repla¢eby rate 7y

fdo- p(a') in Egs. (12) and (14). . FIG. 2. Effective number of degrees of freedom as a function
~As a first example, we compute the thermal radia-sf normalized absorption or amplification rate. The dashed
tion from a disordered absorbing slab. The slab is sufeurve is for the disordered slab, the solid curves are for the
ficiently thick so that there is no transmission through it,chaotic cavity. The amplifying slab would be above the laser
epresanting a seminfi random megum. W defng¥eshold o )y, 20 e ony ot e cose of aeopton,
R . _ 1_ ,

the normallzed absorptlpn rate [23 = .3TS/Ta'2 The shown. The blackbody limit for absorbing systems and the
scattering-strength densify(o) in the regimeyN= > 1 |aser threshold for amplifying systems are indicated by arrows.
is known [22,23]. It is nonzero in the interval< o <

(1 + $¥)~', where it equals

blackbody limit |

I

o
3)

degrees of freedom veff/v

ized absorption rate ay = Tawell/Ta, yvhere Tdwell =
— (N 1= o) 20! — 1 = Loz gw/NAw = 1/_mC is the mean dwell time of_a photon
plo) = N/my( o) o 37 (15) in the cavity without absorption. The scattering-strength
density forN > 1 follows from the general formulas of
Ref. [24]. The result has a simple form in the linpit< 1

This leads to the effective number of degrees of freedom ;
bf weak absorption,

= / —1/47-
Veff/V 4[(1 + 4/7)1 4 + (1 + 4/7) ! 4] 2’ (16) ,D(U') _ (N/27T)(1 _ 0_)—2(0_ _ 0,_)1/2(0_+ _ 0,)1/2’

plotted in Fig. 2, with a mean photocount of (19)
ﬁ:%Vf7(1/1 +4/y — 1). (17) foro- <o <oiwithor =1 -3y + 2y+/2. Inthe

opposite limity > 1 of strong absorptiong (o) is given
For strong absorptiony > 1, we recover the blackbody by the same Eqg. (15) as for the disordered slab. We find
resultve;s = v, as expected. For weak absorptign<  the effective number of degrees of freedom,
1, we findvey = 2v./y. In the weak-absorption regime,
we can compute the entire distributidt{n) analytically. verr/v = (1 + y)*(y* + 2y +2)7, (20)
The result
plotted also in Fig. 2, with a mean photocount of
P(n) o (@"/n!) (1 + f) "2 K,-1p(wered1 + f). (18)
i=vfy(l+ )" (21)
with 7 = vf./y and K a Bessel function, is Glauber's
distribution [15] with a reduced number of degrees ofAgain, v = v for y > 1. For y < 1 we now find
freedom. Veff = %v. It is remarkable that the ratig.;;/v for the
Our second example is an optical cavity connected tahaotic cavity remains finite no matter how weak the
a photodetector via av-mode waveguide. The cavity absorption, while this ratio goes to zero when— 0 in
modes near frequenay are broadened over a frequency the case of the disordered slab.
rangeN Aw, much greater than their spacidgy if N > These two examples concern thermal emission from
1. The cavity should have an irregular shape, or it shouldibsorbing systems. As we discussed, our general formulas
contain random scatterers—to ensure chaotic scatteringan also be applied to amplified spontaneous emission,
of the radiation. For this system we define the normalby evaluating the Bose-Einstein function (2) at a negative
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