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Using Monte Carlo simulations, we systematically investigate the nonequilibrium dynamics of the
chiral degree of freedom in the two-dimensional fully frustraxd@model. By means of the short-time
dynamics approach, we estimate the second order phase transition tempEranckall the dynamic
and static critical exponent, z, 8, andv. [S0031-9007(98)06479-5]

PACS numbers: 75.10.Hk, 64.60.Cn, 64.60.Ht, 75.40.Mg

For critical phenomena, it is traditionally believed that measurement does not enter the long-time regime. It
universal behavior exists only in equilibrium or in the long- is important to systematically verify this application in
time regime of the dynamical evolution. The universalgeneral and complex models.
scaling behavior is described by a number of critical The two-dimensional fully frustratedXY (FFXY)
exponents. Because of critical slowing down, numericamodel has been the topic of many recent studies [14—21].
measurements of the critical exponents are very difficult. Critical properties of this model are rather unconven-

Recently, much progress has been achieved in dynamtonal. On the square lattice, the model has two kinds
critical phenomena. It was discovered that, already afteof phase transitions, i.e., the Kosterlitz-Thouless phase
a microscopic time scalg,;., universal scaling behavior transition (Y-like) and the second order phase transition
emerges in themacroscopic short-time regimef the  (lsing-like). Numerical simulations of the K model
dynamic process [1-6]. We first consider the followingsuffer severely from critical slowing down. Because of
dynamic relaxation process: a magnetic system initially irthe frustration, the standard cluster algorithm does not
a high-temperature state with a small initial magnetizatiorapply to the FKY model. Most of the recent work on
mo IS quenched to the critical temperatufe without FFEXY models supports that these two phase transitions
an external magnetic field and then released to dynamitake place at two different temperatures; however, their
evolution of model A. The dynamics of model A is a critical properties are still not very clear. For example,
relaxiational dynamics without conservation of energy andor the second order phase transition the estimated
order parameter [7]. At the onset of the evolution, thevalues of the exponent8 and v differ in the literature
magnetization is subjected to the scaling form [1,4,5,8,9][16,17,20,21] and the critical dynamics has not been
investigated. It is still a matter of controversy whether

— 0 1/vz
M(t, 7, mo) ~ mot"F(t'"*7). (1) the chiral degree of freedom of the EF model is in the
The exponentd is a new independent exponent,~  Same universality class as the Ising model [20-23].
(T — T,)/T,. is the reduced temperatur@,and » are the In this Letter we present results of systematic Monte

static critical exponents, andis the dynamic exponent. Carlo simulations for the short-time dynamic behavior of

At the critical temperature; = 0, the magnetization the second order phase transition in the two-dimensional

undergoes aritical initial increase M (¢) ~ ¢°. FEXY model. For the first time, we determine the
Another important example is the dynamic relaxation ofdynamic exponent® and z. Based on the short-time

a magnetic system starting from an ordered state<€ 1)  dynamic scaling, the static exponersand » as well

[6,9—-11]. The scaling form of théth moment of the as the critical temperaturE. are also extracted from the

magnetization for this dynamic process is given by numerical data. _
MO P R The Hamiltonian of the FEY model on a square lattice

t,7.L) =b MP b 0,67 1,67 L), (2)  can be written as

where, for later convenience, a system with finite dize
has been considered. H = _Kzfij cog0; — ;). ®3)

One prominent property of the scaling forms (1) and @
(2) is that the exponent@, v, and z take the same In our notationk is simply the inverse temperatum, is
values as in equilibrium or in the long-time regime the angle of the spin (a unit vector) located on $ite;;
of the dynamic evolution. It has been suggested thatletermine the frustration, and the sum is over the nearest
it is possible to determine not only the dynamic butneighbors. A simple realization of the KF model is
also all the static exponents as well as theritical by taking f;; = —1 on half of the vertical links and
temperaturealready in the short-time regime [5,9] (see f;; = 1 on other links, e.g., as shown in Fig. 1. The
also Refs. [6,11-13]). The method may be an alternativerder parameter for the second order phase transition is
way for overcoming critical slowing down since the the staggered chiral magnetization defined as [18]
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1 - . T, = 0.4547(8). From the slope of this curve, the expo-
M; = <ﬁ 2 (—1)"""sgn Z fijsin(6; — 01‘)>’ nentd = 0.200(3) is obtained.
" nep, 4 From an analysis of the data fér = 256 and also for
(4) _ elagie
. _ mo = 0.04 we have observed that the finite size effect
where(r,, ry) is the coordinate of the plaquetts. for L = 128 and the finitem, effect for my = 0.06 are

At first, we investigate the short-time critical behavior already sufficiently small to be neglected. The fact that
of M, in the dynamic process starting from an initial statethe finite size effect can easily be controlled in the short-
with a very high temperature and a small magnetizationime dynamics is an advantage of the short-time dynamic
mo. To prepare an initial configuration, first we randomly approach.
generate all spins on the lattice, then randomly choose a In principle, with 7. in hand other static and dy-
number of plaquettes and orient their spins according t@amic critical exponents can now be obtained. For
the configuration of the ground state as shown in Fig. lexample,1/vz = 0.59(3) is estimated fromd, In M;(t,
until the initial magnetizationn, is achieved. After the 7)|._,. However, our data show that to determine these
initial configuration is generated, the system is releasedxponents or the critical temperatur®., a dynamic
to the dynamic evolution with the Metropolis algorithm process starting from an ordered state is preferable, since
at temperatures around.. We have performed our the fluctuation is weaker.
simulation on lattices of sizd. = 128 and 256. The For this purpose, simulations were also performed with
average is taken over independent initial configurationsemperatureg” = 0.452, 0.454, and0.456, starting from
with 40 000 samples fol. = 128 and 10000 samples for an ordered initial state. The lattice size chosen was
L = 256. Errors are estimated by dividing the samples,, = 256 and the system was updated for 2000 Monte
into three groups. Carlo steps. The average was taken over 2000 samples.

In order to locate the critical temperatufg, simula-  The ordered initial state was taken to be the ground state
tions have been carried out with three temperattes  shown in Fig. 1.

0.452, 0.454, and0.456. The initial magnetization is set ~ The estimation of7. can now be performed again.

to my = 0.06. In Fig. 2, the time evolution of the mag- From the scaling form (2) and for sufficiently large

netizationM;(¢) at different temperatures is plotted with I we can easily deduce the scaling behavior for the

solid lines in log-log scale for the lattice siZe= 128.  magnetizationk = 1)

Data within the microscopic time scalg,. ~ 100, which _

are dependent on microscopic details, are not included. My(t,7) = 1 PlG(t ). ©)

Indeed we observe that the magnetization increases at t& pointed out earlier, the temperaturefor which the mag-

macroscopic early time. The magnetization at the temnetization has the best power law behavior is the critical

perature betweeff = 0.452 and 0.456 can be obtained temperaturel.. In Fig. 3, the time evolution oM, (¢) at

by quadratic interpolation. From the scaling form (1) and7 = 0.452, 0.454, and0.456 is plotted in log-log scale.

as suggested in Ref. [9], searching for a culdr) with  A7,(¢) at other temperatures in the intery@l452,0.456]

the best power law behavior can yield an estimate of thgan be estimated by a quadratic interpolation. The

critical temperature. In Fig. 2, the dotted line represents

such a curve and the corresponding critical temperature
0.1

S P

0.04

100 t 1000

: : 3 FIG. 2. The chiral magnetizatioM,(¢) starting from a disor-
\ \ T \ dered state. The temperatures for solid lines BAre- 0.452,
0.454 and 0.456 from above. The dotted line represes(r)
FIG. 1. One of the ground states of theXAF model. atT, = 0.4547.
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FIG. 3. The chiral magnetizations/;(r) starting from an 1072

ordered state. From above, the solid lines repredép()
at T = 0.452, 0.454, and 0.456. The dotted line is At =
0.4545. The inset displays the deviation @f,(¢) from the
power law behavior.

10
deviation from the power law can be estimated in differ- .
ent ways. In this paper, we measure the deviation as the ©
error by fitting M, (¢) directly to a power law in the time 107

interval [200,2000]. Furthermore, we perform the fitting
in log scale, i.e., less weight is given to the data in the
longer time regime. In the inset of Fig. 3, the devia-
tion of M; from the power law is plotted as a function . ®
of the temperature. The clear minimum confidently in- 100 t 1000 2000
dicates the critical tempel’atul?c The resulting value FIG. 4. (a) The derivativea7|an(t,7-)|T:0 plotted versus
T. = 0.4545(2) is consistent withT, = 0.4547(8) ob- time in log-log scale. (b) The Binder cumulakbit

tained from Fig. 2 and very close to those values ranging

from 7, = 0.451 to 0.454 reported in most of the recent _ .

references [16,17,20,21]. Our statistical error, however?.ﬁponenw/? —h0.92(2). Table Is?mmaTzes thelreSLIJIts.
is smaller. The corresponding magnetization is also plot- e errors in the measure_ments rom = 1 are clearly
ted in Fig. 3 with a dotted line. The slope of this curve smFaIIer tthhan éhos,e fromg I_ ?'06' timate ind
yields the critical exponeng/vz = 0.0602(2). The qual- d rlomh % inder cumuian onghcan ers] |mdae In elpen-
ity of this measurement is very good. Wi/v given, ently the dynamic exponent With z in hand, we cal-
one can obtain a rigorousor vice versa [6,9—11,25]. As culate the critical exponen®g/» and» from §/»z and
compared to simulations with a disordered initial state, thel/vz' Table Il I!sts all cr|t|ca! exponents along with the
measurements here carry considerably fewer 1‘Iuctuation§.eSUItS reported in the recentliterature. Néw- 0.202(3)

o . o 1S measured df, = 0.4545, which shows a small differ-
EqT(zS(;)ig:ggt?oe critical exponeny/ vz, differentiation of ence from that af” = 0.4547. Our short-time dynamic

y , measurements support those from Ref. [17] and provide
drINM(t,7)l;=0 = /"9 ING(7)|=0.  (6)  extra new results for the dynamic exponenendé. The

Therefore,d, In M;(z, 7)|,—o should also present a power €xponentr of the FEXY model is d.if'fe_rer_1t from that of
law behavior in the beginning of the time evolution. In the Ising model by nearlg0%. This indicates that the
Fig. 4(a),0, In M, (¢, 7) at T, = 0.4545 is plotted in log- ~ chiral degree of freedom of the k¥ model is in a new

log scale. The power law behavior is clearly seen. Thdiniversality class. Other exponents of thexfFmodel
slope yields the critical exponetfrz = 0.57(1). do not differ much from those of the Ising model. From

The final step is to seek the dynamical critical exponenPUr numerical data, we observe that the values of the
z. For this, we introduce a time-dependent Binder cumuctitical exponents are sensitive to the assumed or measured

lantU(z,L) = M,(2)/M,2 — 1. Because of the short spatial
correlation length in the short-time regime, a simple finit
size scaling analysis shows at the critical temperature

el ABLE I. The critical temperature and the critical exponents
from dynamic measurements.

U, L) ~ 147, 7 M T. 4 B/vz 1/vz d/z
, , i 1 0.4545(2) 0.0602(2) 0.57(1) 0.92(2)
In Fig. 4(b), the curve fol/(z, L) in log-log scale shows 006 0.4547(8) 0.200(3) 0.59(3)

a nice power law behavior. The slope gives the critica
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TABLE Il. Critical exponents obtained in this work and values reported in some recent references. Reference [20] does not
provide an estimate of the error an= 1. For the Ising model, exponenis and28/v are exact values and is taken from
Refs. [8,27]. The exponentin the literature ranges frora.155 to 2.172 [6,8,25,27]. Here an “average” value is given.

Ref. [21] Ref. [20] Ref. [17] Ref. [16]
This work (1996) (1995) (1994) (1993) Ising
T. 0.4545(2) 0.451(1) 0.452(1) 0.454(2) 0.454(3)
v 0.81(2) 0.898(3) 1 0.813(5) 0.80(5) 1
2B/v 0.261(5) 0.22(2) 0.38(2) 0.25
z 2.17(4) 2.165(10)
0 0.202(3) 0.191(3)
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