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Metastable State Selection in One-Dimensional Systems
with a Time-Ramped Control Parameter
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The problem of state selection when multiple metastable states compete for occupation is considered
for systems obeying a one-dimensional stochastic time-dependent Ginzburg-Landau equation in which
a control parameter is ramped in time. The dynamics of the supercurrent in a narrow superconducting
ring under the influence of an external electric field is used for illustration. [S0031-9007(98)06492-8]
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Many systems when driven far from equilibrium en- rate at which the system is driven through the instability
counter instabilities that lead towards new states oplays a prominent role in determining the probability
phases. Frequently there exist multiple states that can libat a particular metastable state is selected. In addition,
selected following the onset of the instability. The deter-as the decay is from states of marginal stability, the
mination of the particular state that is selected is a comselection is also influenced by the noise in the system.
plex problem of fundamental interest in a wide variety of The dependences on both ramping rate and noise strength
fields [1,2]. In addition to the complexity associated with are considered.
the presence of multiple competing states, if the relative Consider an infinitely long solenoid, carrying a current
stability of these states evolves in time, then the state thahat increases linearly with time, passing through the
is selected can depend in an important way on the drivingenter of a narrow superconducting ring of cross-sectional
force. The focus of this paper is on state selection in suchreaA and circumferencé. = £(T)¢€, where&(T) is the
systems in one dimension. temperature-dependent correlation length. By Faraday’s

For the purposes of this paper a ramped system is definddw of induction, a constant electromotive force (emf)
as one for which a control parameter is varied in time sdV is induced in the superconductor, thereby accelerating
that the system gradually progresses from stable to unstahbllee superconducting electrons. The dynamics of the
regimes. For example, in a narrow superconducting ringdimensionless) superconducting order paramgtat ¢),
[3—6] under the influence of a constant electromotivewhere x is the longitudinal spatial coordinate and
force, the superconducting electrons are accelerated by tlie time, is described by the stochastic time-dependent
electric field, and the supercurrent increases with time unGinzburg-Landau equation [4,5],
til the critical current is reached and the system becomes 2 2 a1
(Eckhaus) unstable. Similar behavior could occur in di- O =0+ g — Yyl + i 0y £, (D)
rection solidification [7—10] if the solidification cell is ac- where w = 751.(2¢V/h) is a dimensionless measure of
celerated slowly, rather than pulled at a constant velocitythe strength of the induced emf. This equation is valid for
through a temperature gradient until the (Mullins-Sekerkayirty superconductors near the superconducting transition
instability is encountered and the liquid/solid interfacein the limit that the normal current can be neglected
becomes unstable. In each of these scenarios the systefiid]. Throughout this paper the regime whate< 1
become unstable with respect to fluctuations of certais considered. In Eq. (1)rgL is the Ginzburg-Landau
wavelengths that lie within a band. When the size of theelaxation time, andy satisfies the twisted-periodic
system is comparable to the length scales associated witloundary conditions(¢ + x,7) = expliw?)¥(x,1). The
the wave vectors in the unstable band, the system is deariable n is a Gaussian random variable, with expec-
scribed as mesoscopic and the number of accessible statasion values (n(x,7)) = 0, and (n(x,)n*(x',t')) =
is finite. As illustrated in an extensive review by Cross2Dé8(x — x')8(r — t'), where D is determined by the
and Hohenberg [1], instabilities that result in this type offluctuation-dissipation theorem [12].
mesoscopic behavior are extremely common, occurring in For @ < 1, the relevant current-carrying states of
many diverse fields, such as fluid dynamics, chemical rethe superconductor are uniformly twisted plane wave
actions, material science, and biology. solutions given by = /1 — ¢ expligx), where g =

This paper focuses on such phenomena as described K + wr/¢, andK = 27 /€. The dimensionless current
a one-dimensional stochastic time-dependent Ginzburgdensity J of these states is given by = (" 0, —
Landau equation. The combination of a ramped drivinggro, s )/2i = g(1 — ¢*). Thus the effect of the induced
force and the mesoscopic system size, which allows foemf (which increaseg linearly with time) is to wind
multiple, isolated metastable states, leads to novel anthe order parameter or, equivalently, to accelerate the
interesting selection rules. It will be shown that thesuperconducting electrons. However, this acceleration
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cannot continue indefinitely becaugds a nonmonotonic changes by an integral multiple &fr. Physically, the
function of ¢, and hence time, achieving a maximum supercurrent decreases by a discrete amount when a phase
value ofJ, = 2/+/27 atq = g. = 1/+/3. This saturation slip occurs. Phase-slip processes can also occur via
of the current at the critical curredt coincides with the thermal activation over an energy barrier, and this process
loss of stability of stateg atg = ¢.. In other words, for has received significant attention over the years [3,4,6,15].
q > q., d’F(q)/dq* < 0, whereF(q) = Fg.[¢/] isthe ForD = 1073, as long asw = 10724, the probability of
Ginzburg-Landau free energy of staigs a thermally activated phase slip occurring is exceedingly

To understand the Eckhaus instability for finite sizesmall [5]. Thus, unless the temperature is very close to
systems it is necessary to perform a linear stabilitthe superconducting transition temperatdie where D
analysis about the staig, as the previous analysis only is large, the system will almost always be driven to the
applies whent{ = «. Standard linear stability analysis Eckhaus instability before a thermally activated phase slip
gives one potentially positive eigenvalue that takes thean occur. Therefore, the transitions that are of concern
form [13] in this work involve the decay from an unstable state, in
contrast to previous work [3—6] where the focus was on
M(g) = =1+ ¢ =k +(1 — ¢? +4¢%2. (2)  the decay from a metastable state.

Whenw > 0, the system is driven to the point of in-

The eigenvector associated with this eigenvalue is a lineagiapjjity as the eigenvalues of each Fourier mode eventu-
combination of Fourier modes with wave vectgr= gy phecome positive. As illustrated in Fig. 1, the= 1

k, and amplitudeA,, where k, = nK. The interest- 54 hecomes unstable first, then the= 2 mode be-
ing feature of this eigenvalue is that it can become,omes ynstable, and so on. This implies that the system
positive wheng > «; > ¢., where k,, = (1//3)[1 +

ey WV i .. firstbecomes unstable with respect to single phase-slip pro-
212 1/2
m*>K?/2]'/2. Thus, for finite size systems the instability cesses, then double phase-slip processes, ete.islfarge

is pushed to wave vectors greater thanby an amount enough, the: = 1 mode might not have time to grow to
that depends oifi [13]. In particular, fork, > ¢ > ki, gominance by the time the = 2 mode becomes unstable.
A, is positive for all values ok, < mK [14]. The de- g guggests that for small, single phase-slip processes
pendence ofd on k, is shown in the inset of Fig. 1 for gpqid dominate the dynamics, butass increased there
several values of. _ , _is a crossover to a regime in which double phase-slip
The growth of a single Fourier mode (with amplitude 5565 dominate. As is increased further, double
A,) of wave vectorg — k,, and simultaneous decay of hase.slip processes should give way to triple phase-slip
Ao, corresponégs to a decrease of the winding numbelocesses, and so on. The generic features displayed in
W = (2m)~! [yd¢ (x)/dx, where ¢ is the phase off,  Fig. 1 are common to many systems and come under
by an amountn. This phenomenon is known as a the general classification scheme of Cross and Hohenberg
“phase slip” as the total phase of the order parametefi] as type If. Thus, the dynamic competition between
unstable modes discussed above is a phenomena that has
relevance to many systems. For example, an analysis of
3K the linear stability of a planar liquid/solid front in direc-
n tional solidification leads to a similar structure even though
A Eq. (1) is not applicable to directional solidification.
To evaluate the probability of the occurrence of a given
phase slip as a function ab, Eq. (1) was numerically
<K integrated in time for a noise strength bf= 1073 and
a length corresponding ta, = €q./27 =5 [16]. In
'k 2k 3Kk \ak \ K Fig. 2a_, the probability of a type-phase slip_is plotted as
n a function ofw. As expected, for smalb, single phase
slips dominate. As increases further there is a crossover
to a regime in which double phase slips dominate. Further
K increase ofv results in a subsequent crossover to a regime
in which triple phase slips dominate, and so on.
An example of the dynamics that lead to such results

Icl
J/ is shown in Fig. 3. In this figure, the winding number
wt/1 and current are plotted as a function of time for=
/62 /CB

5 X 107*. This value ofw is in the crossover region
between the single and double phase-slip dominated
FIG.1. A as a funcion of ¢ — wi/€ for k— (rjeglg?es. hClearll)_/ evyden;ynﬁt}hlshﬂgure age the smg{e and
K,2K, and3K. Inset: A as a function ofk for two val- ouble phase Slips In whicl changes by one or two,

ues ofg > k, such that the upper curve corresponds to the'€spectively. Also seen in Fig. 3b are the discrete jumps
larger value ofg. of the supercurrent.
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tion (3) describes the initial evolution of the system af-
ter the Eckhaus boundary has been reached. In this
noninteracting picture each amplitude (measured in units
of A,) can be thought of as an orthogonal coordinate
in an ne-dimensional space. Thus, the natural measure
of distance from the originA, = 0) in this space is
Shsi{lAL(r)|?) /A2, After onset of the Eckhaus instabil-
ity, this sum increases rapidly and reaches unity at time
Assuming that at = * a phase slip has occurred with
probability one, it is natural to interpréfA, (1*)|*)/A2 as

the relative probability of the occurrence of a typghase
slip. The probabilities calculated using this procedure are
shown in Fig. 2b.

It is clear from Fig. 2 that the preceding analysis pro-
vides a qualitatively accurate description of the state-
selection probabilities, and their dependence on the driving
force w. Most notably, the values ab at the peak posi-
tions agree very well with the numerical results. Neverthe-
less it is important to point out that the preceding analysis
is only a plausible argument and is not systematic. A quan-
titative description must include the subtle nonlinear inter-
FIG. 2. State-selection probabilites as a function of theactions that are an important element in determining state

driving force w. Open squares, solid squares, open circlesqoiaciion  Even at the present level of ignorance, how-
solid circles, and open triangles correspond to the probabilities

P\, Py, P5, P,, and Ps, respectively. Results of the numerical VeI, the analysis presented here provides a qualitatively
integration of Eq. (1) and those of the linear analysis describetiSeful description of the state-selection probabilities, and
in the text are shown in (a) and (b), respectively. their dependence on the driving force.

The growth rates are an extremely important factor in
getermining the state-selection probabilities. The preced-
igle analysis accounts for these growth rates and therefore
provides a qualitatively accurate description. The analy-
sis also provides predictions for the dependenceP pf
on the noise strength, which may be more convenient
to vary in some experiments. Plotted in Fig. 4a are the
, probabilities of a typer phase slip as a function @, for
A, (]2 = 2D eZo‘,,(t)f dr' ¢ =200, 3 @ fixed value ofq, obtained from a numencal S|mglat|on

4 0 of Eg. (1). In Fig. 4b, the corresponding,’s obtained

where o, (1) = f(t) dt' M[q(1")], and angular brackets de- from the growth-rate analysis are plotted for comparison.

note a noise average. After the onset of the instabilitO"Ce @gain, it is seen that the simple analysis provides
the system evolves towards the fixed poifits = A, X &N accurate qualitative picture. For the smallest values of

exdi(q — nK)x], whered, = V1 — (¢ — nK)’. Equa- D considered triple phase-slip processes dominate. This
Hilg = nk)x] (g = nK) g is because the time required for a given mode to grow

to saturation diverges logarithmically &— 0. Conse-
T T guently, if D is very small, the mode amplitudels and
A,, for example, may still be very small by the time the
growth rate ofA; is significantly larger than the growth
rates forA; or A,.
,,,,,,,, One of the most interesting aspects of the phenomena
exposed here is that the selection rules depend on both
the intrinsic properties of the system and the external
parameters. To understand this connection more deeply,
it is instructive to consider the characteristic growth
times for individual modes. Typically, the characteristic
time associated with the initial growth of an unstable
mode is taken to be the inverse of the growth rate.
t (2n/w) However, for ramped systems the growth ratestarts

FIG. 3. Dynamics of winding number (a) and supercurrentout negative and passes through zero. THus/| is
(b), forw =5 X 107* andD = 1073, not a relevant quantity as it diverges at the instability.
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As described earlier, the essential features shown i
Fig. 2a can be understood using the properties of th
growth ratesp,. This idea can be made more concrete
in the following way. Ignoring the nonlinear interactions
between the different modes, the expectatiorlAfl* is
given by [5]
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