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Metastable State Selection in One-Dimensional Systems
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The problem of state selection when multiple metastable states compete for occupation is consid
for systems obeying a one-dimensional stochastic time-dependent Ginzburg-Landau equation in w
a control parameter is ramped in time. The dynamics of the supercurrent in a narrow superconduc
ring under the influence of an external electric field is used for illustration. [S0031-9007(98)06492-
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Many systems when driven far from equilibrium en
counter instabilities that lead towards new states
phases. Frequently there exist multiple states that can
selected following the onset of the instability. The dete
mination of the particular state that is selected is a com
plex problem of fundamental interest in a wide variety o
fields [1,2]. In addition to the complexity associated with
the presence of multiple competing states, if the relativ
stability of these states evolves in time, then the state th
is selected can depend in an important way on the drivin
force. The focus of this paper is on state selection in su
systems in one dimension.

For the purposes of this paper a ramped system is defin
as one for which a control parameter is varied in time s
that the system gradually progresses from stable to unsta
regimes. For example, in a narrow superconducting rin
[3–6] under the influence of a constant electromotiv
force, the superconducting electrons are accelerated by
electric field, and the supercurrent increases with time u
til the critical current is reached and the system becom
(Eckhaus) unstable. Similar behavior could occur in d
rection solidification [7–10] if the solidification cell is ac-
celerated slowly, rather than pulled at a constant velocit
through a temperature gradient until the (Mullins-Sekerk
instability is encountered and the liquid/solid interfac
becomes unstable. In each of these scenarios the syst
become unstable with respect to fluctuations of certa
wavelengths that lie within a band. When the size of th
system is comparable to the length scales associated w
the wave vectors in the unstable band, the system is d
scribed as mesoscopic and the number of accessible st
is finite. As illustrated in an extensive review by Cros
and Hohenberg [1], instabilities that result in this type o
mesoscopic behavior are extremely common, occurring
many diverse fields, such as fluid dynamics, chemical r
actions, material science, and biology.

This paper focuses on such phenomena as described
a one-dimensional stochastic time-dependent Ginzbu
Landau equation. The combination of a ramped drivin
force and the mesoscopic system size, which allows f
multiple, isolated metastable states, leads to novel a
interesting selection rules. It will be shown that the
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rate at which the system is driven through the instabilit
plays a prominent role in determining the probability
that a particular metastable state is selected. In additio
as the decay is from states of marginal stability, th
selection is also influenced by the noise in the system
The dependences on both ramping rate and noise stren
are considered.

Consider an infinitely long solenoid, carrying a curren
that increases linearly with time, passing through th
center of a narrow superconducting ring of cross-section
areaA and circumferenceL ; jsT d,, wherejsT d is the
temperature-dependent correlation length. By Faraday
law of induction, a constant electromotive force (emf
V is induced in the superconductor, thereby acceleratin
the superconducting electrons. The dynamics of th
(dimensionless) superconducting order parametercsx, td,
where x is the longitudinal spatial coordinate andt
is time, is described by the stochastic time-depende
Ginzburg-Landau equation [4,5],

≠tc ­ ≠2
xc 1 c 2 cjcj2 1 i,21xvc 1 h , (1)

where v ; tGLs2eVyh̄d is a dimensionless measure of
the strength of the induced emf. This equation is valid fo
dirty superconductors near the superconducting transitio
in the limit that the normal current can be neglected
[11]. Throughout this paper the regime wherev ø 1
is considered. In Eq. (1),tGL is the Ginzburg-Landau
relaxation time, andc satisfies the twisted-periodic
boundary conditioncs, 1 x, td ­ expsivtdcsx, td. The
variable h is a Gaussian random variable, with expec
tation values khsx, tdl ­ 0, and khsx, tdhpsx0, t0dl ­
2Ddsx 2 x0ddst 2 t0d, where D is determined by the
fluctuation-dissipation theorem [12].

For v ø 1, the relevant current-carrying states of
the superconductor are uniformly twisted plane wav
solutions given byc ­

p
1 2 q2 expsiqxd, where q ­

mK 1 vty,, andK ; 2py,. The dimensionless current
density J of these states is given byJ ­ scp

≠xc 2

c≠xc
pdy2i ­ qs1 2 q2d. Thus the effect of the induced

emf (which increasesq linearly with time) is to wind
the order parameter or, equivalently, to accelerate th
superconducting electrons. However, this acceleratio
© 1998 The American Physical Society
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cannot continue indefinitely becauseJ is a nonmonotonic
function of q, and hence time, achieving a maximum
value ofJc ­ 2y

p
27 at q ­ qc ­ 1y

p
3. This saturation

of the current at the critical currentJc coincides with the
loss of stability of statesc at q ­ qc. In other words, for
q . qc, d2Fsqdydq2 , 0, whereFsqd ; FGLfcg is the
Ginzburg-Landau free energy of statesc.

To understand the Eckhaus instability for finite siz
systems it is necessary to perform a linear stabili
analysis about the statec, as the previous analysis only
applies when, ­ `. Standard linear stability analysis
gives one potentially positive eigenvalue that takes t
form [13]

lnsqd ­ 21 1 q2 2 k2
n 1

p
s1 2 q2d2 1 4q2k2

n . (2)

The eigenvector associated with this eigenvalue is a line
combination of Fourier modes with wave vectorq 6

kn and amplitudeAn, where kn ­ nK. The interest-
ing feature of this eigenvalue is that it can becom
positive whenq . k1 . qc, where km ; s1y

p
3 d f1 1

m2K2y2g1y2. Thus, for finite size systems the instability
is pushed to wave vectors greater thanqc by an amount
that depends on, [13]. In particular, forkm . q . k1,
ln is positive for all values ofkn , mK [14]. The de-
pendence ofl on kn is shown in the inset of Fig. 1 for
several values ofq.

The growth of a single Fourier mode (with amplitud
An) of wave vectorq 2 kn, and simultaneous decay o
A0, corresponds to a decrease of the winding numb
W ­ s2pd21

R,
0 df sxdydx, wheref is the phase ofc,

by an amountn. This phenomenon is known as a
“phase slip” as the total phase of the order parame

FIG. 1. l as a function of q ­ vty, for k ­
K , 2K , and3K. Inset: l as a function ofk for two val-
ues of q . k1 such that the upper curve corresponds to th
larger value ofq.
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changes by an integral multiple of2p . Physically, the
supercurrent decreases by a discrete amount when a ph
slip occurs. Phase-slip processes can also occur
thermal activation over an energy barrier, and this proce
has received significant attention over the years [3,4,6,1
For D ­ 1023, as long asv * 10224, the probability of
a thermally activated phase slip occurring is exceeding
small [5]. Thus, unless the temperature is very close
the superconducting transition temperatureTc, whereD
is large, the system will almost always be driven to th
Eckhaus instability before a thermally activated phase s
can occur. Therefore, the transitions that are of conce
in this work involve the decay from an unstable state, i
contrast to previous work [3–6] where the focus was o
the decay from a metastable state.

When v . 0, the system is driven to the point of in-
stability as the eigenvalues of each Fourier mode even
ally become positive. As illustrated in Fig. 1, then ­ 1
mode becomes unstable first, then then ­ 2 mode be-
comes unstable, and so on. This implies that the syste
first becomes unstable with respect to single phase-slip p
cesses, then double phase-slip processes, etc. Ifv is large
enough, then ­ 1 mode might not have time to grow to
dominance by the time then ­ 2 mode becomes unstable.
This suggests that for smallv, single phase-slip processes
should dominate the dynamics, but asv is increased there
is a crossover to a regime in which double phase-sl
processes dominate. Asv is increased further, double
phase-slip processes should give way to triple phase-s
processes, and so on. The generic features displayed
Fig. 1 are common to many systems and come und
the general classification scheme of Cross and Hohenb
[1] as type IIs. Thus, the dynamic competition between
unstable modes discussed above is a phenomena that
relevance to many systems. For example, an analysis
the linear stability of a planar liquid/solid front in direc-
tional solidification leads to a similar structure even thoug
Eq. (1) is not applicable to directional solidification.

To evaluate the probability of the occurrence of a give
phase slip as a function ofv, Eq. (1) was numerically
integrated in time for a noise strength ofD ­ 1023 and
a length corresponding ton, ; ,qcy2p ­ 5 [16]. In
Fig. 2a, the probability of a type-n phase slip is plotted as
a function ofv. As expected, for smallv, single phase
slips dominate. Asv increases further there is a crossove
to a regime in which double phase slips dominate. Furth
increase ofv results in a subsequent crossover to a regim
in which triple phase slips dominate, and so on.

An example of the dynamics that lead to such resul
is shown in Fig. 3. In this figure, the winding numbe
and current are plotted as a function of time forv ­
5 3 1024. This value ofv is in the crossover region
between the single and double phase-slip dominat
regimes. Clearly evident in this figure are the single an
double phase slips in whichW changes by one or two,
respectively. Also seen in Fig. 3b are the discrete jum
of the supercurrent.
19
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FIG. 2. State-selection probabilities as a function of th
driving force v. Open squares, solid squares, open circle
solid circles, and open triangles correspond to the probabilit
P1, P2, P3, P4, and P5, respectively. Results of the numerica
integration of Eq. (1) and those of the linear analysis describ
in the text are shown in (a) and (b), respectively.

As described earlier, the essential features shown
Fig. 2a can be understood using the properties of t
growth ratesln. This idea can be made more concre
in the following way. Ignoring the nonlinear interaction
between the different modes, the expectation ofjAnj2 is
given by [5]

kjAnstdj2l ­
2D
,

e2snstd
Z t

0
dt0 e22snst0d, (3)

wheresnstd ;
Rt

0 dt0 lnfqst0dg, and angular brackets de-
note a noise average. After the onset of the instabil
the system evolves towards the fixed pointscn ­ Ān 3

expfisq 2 nKdxg, whereĀn ­
p

1 2 sq 2 nKd2. Equa-

FIG. 3. Dynamics of winding number (a) and supercurre
(b), for v ­ 5 3 1024 andD ­ 1023.
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tion (3) describes the initial evolution of the system af-
ter the Eckhaus boundary has been reached. In th
noninteracting picture each amplitude (measured in uni
of Ān) can be thought of as an orthogonal coordinat
in an n,-dimensional space. Thus, the natural measur
of distance from the origin (An ­ 0) in this space isPn,

n­1kjAnstdj2lyĀ2
n. After onset of the Eckhaus instabil-

ity, this sum increases rapidly and reaches unity at timetp.
Assuming that att ­ tp a phase slip has occurred with
probability one, it is natural to interpretkjAnstpdj2lyĀ2

n as
the relative probability of the occurrence of a type-n phase
slip. The probabilities calculated using this procedure ar
shown in Fig. 2b.

It is clear from Fig. 2 that the preceding analysis pro
vides a qualitatively accurate description of the state
selection probabilities, and their dependence on the drivin
force v. Most notably, the values ofv at the peak posi-
tions agree very well with the numerical results. Neverthe
less it is important to point out that the preceding analysi
is only a plausible argument and is not systematic. A quan
titative description must include the subtle nonlinear inter
actions that are an important element in determining sta
selection. Even at the present level of ignorance, how
ever, the analysis presented here provides a qualitative
useful description of the state-selection probabilities, an
their dependence on the driving force.

The growth ratesl are an extremely important factor in
determining the state-selection probabilities. The preced
ing analysis accounts for these growth rates and therefo
provides a qualitatively accurate description. The analy
sis also provides predictions for the dependence ofPn

on the noise strengthD, which may be more convenient
to vary in some experiments. Plotted in Fig. 4a are th
probabilities of a type-n phase slip as a function ofD, for
a fixed value ofv, obtained from a numerical simulation
of Eq. (1). In Fig. 4b, the correspondingPn ’s obtained
from the growth-rate analysis are plotted for comparison
Once again, it is seen that the simple analysis provide
an accurate qualitative picture. For the smallest values
D considered triple phase-slip processes dominate. Th
is because the time required for a given mode to grow
to saturation diverges logarithmically asD ! 0. Conse-
quently, if D is very small, the mode amplitudesA1 and
A2, for example, may still be very small by the time the
growth rate ofA3 is significantly larger than the growth
rates forA1 or A2.

One of the most interesting aspects of the phenomen
exposed here is that the selection rules depend on bo
the intrinsic properties of the system and the externa
parameters. To understand this connection more deep
it is instructive to consider the characteristic growth
times for individual modes. Typically, the characteristic
time associated with the initial growth of an unstable
mode is taken to be the inverse of the growth rate
However, for ramped systems the growth ratel starts
out negative and passes through zero. Thus,jl21j is
not a relevant quantity as it diverges at the instability
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FIG. 4. State-selection probabilities as a function of the noi
strengthD. The symbols in this figure are identical to thos
in Fig. 2. Results of the numerical integration of Eq. (1) an
those of the linear analysis described in the text are shown
(a) and (b), respectively.

To determine the characteristic time, consider Eq. (3) f
kjAnstdj2l. The quantitysstd achieves a local minimum
at t ­ tn ; ,knyv so that a second order expansio
abouttn yields snstd ø snstnd 1

1
2

l0
nv

, st 2 tnd2, where
l0

n ; ≠lny≠qjq­kn
. Inserting this expansion into Eq. (3)

and assuming thatv ø 1 gives

kjAnstdj2l ­ 2Dtn,21 expfz2
nstdg herffznstdg 1 1j , (4)

where znstd ­ st 2 tndytn and tn ­
p

,yl0
nv. The

quantity tn is the characteristic time for the growth of
mode n, and is interesting because it depends on t
geometric mean ofl0

n and v. Thus, the time scaletn

embodies in a natural way the importance of the com
bination of the intrinsic dynamics (l0

n) and the external
driving force (v).

In summary, the problem of state selection in one
dimensional ramped systems described by a tim
dependent Ginzburg-Landau equation has been sho
to contain unique and rich phenomenology. Despi
the success of the linear analysis, it is clear that ne
methods must be developed to explore this complex a
important area of research in nonequilibrium statistic
mechanics. Recent work [17] on state selection in no
ramped marginally stable systems suggests a poss
systematic framework that could be extended to addre
the phenomena considered here.
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