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Does Inflationary Particle Production Sugges®,, < 1?
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We study a class of Friedmann-Robertson-Walker spacetimes with a nonminimally coupled light
massive scalar field. Values of the coupling parametex 0 enhance long range power in the
vacuum expectation value of the energy-momentum teiBgy) and fundamentally alter the nature
of inflationary particle production: the energy density of created particles behaves like an effective
cosmological constant, leading generically @y, < 1 in clustered matter and providing a possible
resolution of the £ problem” for low density cosmological models. [S0031-9007(98)06950-6]

PACS numbers: 98.80.Cq, 04.62.+v

In this Letter we discuss particle creation of light For de Sitter space (2) has the exact solution
nonminimally coupled scalar fields due to the changing @ M
geometry of a spacetime which underwent an early infla- ~ Xx(7) = cis/m H.'(kn) + ca/n H, (k) (3)
tionary phase. Nonminimally coupled fields have ariseqNhere w?=9/4 — 126 — m?/H?, and ¢, = J7/2
in diverse cosmological contexts, e.g., density perturbaé2 — 0 gives the state associated’with the Bunch-Dévies
tions from strongly coupled scalars [1], the possibility thatvacuum [6]
a very I_ight scalar pqrticle such as the_axion may co_uple For ultralight fieldsm/H ~ 1 today, corresponds to
nonminimally to gravity [2] and production of primordial i

L i~ : m/H ~ 10~% during inflation, hence the field modes can
magnetic fields from nonminimal electromagnetism [3].be treated as being effectively massless. Setiing 0
Ultralight scalars (withm ~ H) have been previously

: ; in (2) and specializing to a power law expansion
discussed in the context of pseudo-Nambu-Goldstone @) P g P P

bosons [4]. a = (t/to)" = (n/no)' "2, 4
As shown below, for negative values of the cou- ) ]
pling the dominant contribution to botf?) and(7,,) Where2v = (1 —3p)/(1 — p) (the inflationary range
comes from modes having wavelengths larger than th& > 1 corresponds tav = 3/2 and for a « ¢!, v =
Hubble radius which makes both quantities formally in-3/2), we find exact solutions of (2) having the form (3)
frared (IR) divergent. IR divergences cannot be renorWith u? — 1/4 = (»* — 1/4)(1 — 6¢). For & = 1/6,
malized away, instead a physically motivated IR cutoff# = 1/2 while for £ =0, u = ». The choicesc; =
has to be invoked [5]. The IR-regularizéf,,) describ- +/7/2, c2 = 0 correspond to the adiabatic vacuum state.
ing particle creation is finite, and behaves like an ef- T0 study quantum fluctuations we define the operator
fective cosmological constant as the Universe expands;
consequently, the energy density of created particles can ~ ®(x) = f P rlar®(x,m) + af Di(x, n)], (5)
dominate the matter density leading @y, < 1 in a flat

Universe. where ay, a,;r are annihilation and creation operators
We consider a spatially flat Friedmann—RobertsonIak aZ/] — 8, defining the vacuum statg|0) = 0 Vk.

Walker (FRW) model with expansion factor either deThé two-point function

Sitter-like a = "', or power lawa =« t?. Massive free

scalar fields satisfy the wave equation 1

! = 37 ik (x—x') w0 )
[D + fR + mZ]cI) =0, (1) <(I)(X)(I)(X )>vac (277_)3 fd ke ¢k(77)¢k(77)

(6)
where R is the Ricci scalar and¢ parametrizes the ) )
coupling to gravity£ = 0, 1/6 corresponding to minimal 1S IR dlvergent over a certain range pfvalues. To see
and conformal coupling, respectively. In a spatially flatthis, substitute Eq. (3) in Eq. (6), usinfl)c = x«/a and

FRW Universe the field variables separate abg = the small-argument limit of the Hankel functions
A o b o oo wovlongi o wlar V) = R (1)
ma/A where A is the physical wavelength of scalar P M e TA + )~ A .

field quanta. Defining the conformal fiejg. = a ¢, and
using R = 6d/a’ (differentiation being with respect to The integral controlling the presence of IR divergences is
the conformal timey = [ dt/a), Eq. (1) leads to

i + [+ mPa® — (1 — 6&€)d/alyy =0. (2 f dkk*k*#|c; — el (8)
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For the adiabatic vacuum state (3), IR divergences arisp < 0; p > 1/2(p # 1); 0 < p < 1/2. Since there is

whenu? = 9/4. Foré = 0, IR divergences are encoun- no particle production whep = 0, 1/2, ¢ = 1/6, these

tered forp = 2/3 (p # 1) [5]. The situation is sub- special cases are free of IR divergences.

stantially different for¢ # 0 (Fig. 1), IR divergences Significantly (T,,,) can also be IR divergent: The
being present over a wide range of expansion raﬁes{bare) energy density in a spatially flat Universe is

p = To) = 5 jo kK>l + K 1il) + %gHjo dkk2|:H|¢,f| + M}

2

m oo
+ — dkk?| by 9
iy B |l 9

Restricting attention momentarily t6 = 0, m = 0, we | where C = C#o~*". The behavior of(®2) depends
conclude thatTy) is IR divergent for|z| = 5/2, i.e.,  crucially upon the value of — |u|. Foré = 0, (®?) =
3/4=p=2(p#1). [We correct a minor error in ffmn dkk*=") which gives for exponential inflation
Ref. [5] who quote2/3 = p =2 (p # 1)] Thislis a (;, = 3/2) the standard resuti®?) = H3Ar/(472) [9].
much smaller range than for the two-point function which| the case of power law inflatiom > 3/2, and (®2)

is divergent forp =2/3 (p # 1). In contrast, the key freezes to a large value at late times [8,10]. With negative

aspect of nonminimal coupling is thélfyo) contains terms  \aiues of £, w > », (®2) grows with time approaching
proportional to £(®?), and consequently (for ultralight he asymptotic form

fields) (Too) is IR divergentover the same range of c = \2(ll-v)

parametersas(d?). (@2 = —<@> o (12)
The curing of IR divergences requires that mode =0 2lul =3\ n

functions be modified in the IR limit. The only freedom at late times. For¢ < —1/6 and »*> > 1/4 we have

to accomplish this in Eq. (8) is to change the behaviodu| = /6|, which substituted in (11) gives

of |c; — ¢2] ask — 0: There are no IR divergences if 4p

lime_oler — ] « O(k?'#1=2) — 0 (maintaining ¢, = (®%) > af, ¢ = Welél - >1. (12

. 2v — 1
0, ¢ = 1 at largek). One way to determine; andc¢; — Thys¢ < 0 can greatly accelerate the growth of fluctua-
is to assume the existence of a preinflationary radiatio

) 5 Mfions in inflationary models. Even for minimal coupling,
domlnatgd pba?gl[?,Z]l, as a result [8h — 2" = £ — 0, IR finite physical quantities, e.g{® (x)®(x))
[1 + 4m=C(k7o) ~"#']"", whereno marks the onset of 547 remain sensitive to the presence of long range
!nflatpn. Finiteness in the.ultrawolet is achieved bypower in the field modes. This is reflected in the growth
imposing a cutoff at the horizon scale. It then follows ot scajar fluctuations, generation of density fluctuations,
that and the quantum creation of gravitational waves.
N _ = 2—lul) n! 2 —2lul . We now examine pa_rticle production in a Universe_ that
(®7) =Cnq [,, dkk“k ’ (10)  inflates and then transits to a matter dominated regime of
m expansion. To do this, we return to Eq. (2): this equation
closely resembles the one-dimensional Schrodinger equa-

2.5 ' ' tion, the role of the “potential barrierV (x) being played
2ol by V(n) = —m?a® + (1 — 6&)d/a [11]. The form of
' the barrier is shown in Fig. 2 assumigg< 1/6, m = 0.
150 ] The process of superadiabatic amplification of zero-point
fluctuations (particle production) can be qualitatively
1.0 1 described as follows: the amplitude of modes having
osl LLLL S L L] wavelengths smaller than the Hubble radius decreases
P @ conformally with the expansion of the Universe, whereas
0 that of larger-than Hubble radius modes freezeg (i 0)
or grows with time(¢ < 0). Consequently, modes with
057 1 ¢ = 0 have their amplitude superadiabatically amplified
1ol on reentering the Hubble radius after inflation (Fig. 2).
’ The nonvacuum state of the scalar field at late times
15 , . . (9 > |nol) is described by a linear superposition of
2 -1 g 1 2 positive and negative frequency solutions
d’out(k’ 77) = a(ﬁlj + B¢k7 ’ (13)

FIG. 1. IR divergent regions (shaded) ¢®2): The spe- +— e
cial casesp =0, 1/2, 1, and1/6 = ¢ = 3/2 have no IR Where ¢, = (J7n0/2) (n/n0)"Hz (km). [a = t?,
divergences. p <1 27 = (1 — 3p)/(1 — p), —32=7 =
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—1/2<2/3=p=1/2 corresponding to mat- m?>/H?> < 6|&| (7> — 1/4)/(7 — 1/2)? allowing us to
ter with an equation of state0=w =1/3, treatfield modes as being effectively massless.]

w—1/4=@> - 1/4)(1 — 6£)] The transition The Bogollubov coefficientsr and 8 are determined
from inflation to a radlatlon/matter dominated epochby matching bk, m), qu(k n) given in (3) and

is marked byno, Hi = 1/7nj being the Hubble pa- ¢, (k, 1), ¢oulk,m) at m = no. For modes with
rameter at reheating. [We assume’ < |£|R or | kmo < 1 we obtain

i kmo\ WA (1 + @ (kno\* *
@+ B=A_Tra+ M)( °> +37(7°) :

2 I+ w
e dm (kmo\MTE T (ko)A
a- B CF(H)F(1+M)<2> +DF(ﬁ)(2> ’
lal* = |BI* =1, (14)

whereA=(w + 7| + v — w)/2m, B= (m + |7| + ! verse). This result bears directly on the energy density of
+ w)/2m, C=w+ u+ 7| —w)/2w, D= (w — created particle$Ty)ou:,» Which can be determined from
7] + u — v)/2m. (Indicesy, u refer to the inflationary (9) after substitutingg — ¢... Equation (9) informs
epoch;7, & to the matter-radiation dominated epoch.) us that the main contribution td7Ty)o,; cOmes from
Since|BI? = (kno) 2#*™ andu = u(v, £),the num- long wavelength modes and, f@ < 0, (Too)ou: IS IR
ber density of created particles is sensitive to (1) the infladivergent if the field is effectively massless. A radiation
tionary expansion rate parametrizedby(2) the equation dominated phase prior to inflation leads to an effective
of state after inflation, parametrized Byand (3) the cou- IR cutoff kmin = 7o | in (Too), since IR divergent states
pling to gravity ¢. More particles are created fgr<< 0  cannot arise from IR finite initial conditions [12]. In

than for¢é = 0 (see Fig. 2 and Ref. [2]). addition, a high frequency cutoff appears due to suppres-
From (13) and (14) we find that on larger than horizonsion of particle creation at largé [13]. For particles
scaledkn < 1), created during inflation, this cutoff is set by the Hubble
AT " 17, parameter at the end of reheating and the commencement
bour = iAmo/4 () (k110/2)"*(n/70) (15 of radiation dominationky,, ~ Hy, ~ ~ n! [13,14].

For
m/H =< 1, (Ty) is dominated by modes Iarger than the

) o A Hubble radlus thus the integration limits are effectively
the horizon(®?),,, grows with time at a rate determined j-'rf] leading. for a matter dominated Universe. to
by @ — [7] > 0 (|7 = 3/2 in a matter dominated Uni- ~ ' 9 ,

: 9 = by + Bog, (@7 = ! 7 ’
A o "Q‘o = UOoyt out 1]0 NMD no 7o

diabati §<0 (16)
dampmg J 2070 A whereN = (A2/873)22#T2(u)/2u — 3).

N )

s I o Although a full treatment of the semiclassical Einstein

from which follows the important observation that The integration limits in (9) are thereforﬁ
(D)ot = 1/272 [ dk|pou|*k* hasexactly the samén-
frared properties agb?);, and that on scalelsrger than

V(a)

Eu‘pe,_adiabaﬁc equationsG,, = —87G (T, + (T,,)) lies beyond the
\~Y amplification scope of this work, it is easy to perform a quali-
T tative analysis. For small valuek| < 1, the term
i 1/(4ma?) [ dkk*|¢«|* in Eq. (9) is dominated by horizon-
hy ; a(t)= _size modes_, and is small compared to the r_emaining terms
Hubble, * radius in (Too), which are dominated by the larger infrared cutoff

7’

ph , scaledjg (o > n). These terms, excluding?(®?), are

7

- of the formH?*(®?) and can be absorbed into the left hand
g side of the (00) Einstein equation leading to

________ 4 3H? = 87Glp, + 3 mH(D?)], (17)
whereG = G/(1 + 87 G|&|(®?)). For ultralight fields
|£] < 0.1 ensures that®?) grows at a slow rate, satisfy-

ing constraints on the time variation 6f [15]. Conse-

quently,
Tin )2'“_3

_ H. \2 _
e - L smGn) = N (g
FIG. 2. The timelike “potential barrier'V(n) for inflation Mp) Tvp
followed by a matter dominated epoch. (18)
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where ¢ = %o/7. (Note that ¢ = k«/kmin =  minimal scalars naturally arise in the low energy limit of
exp[ﬁjﬂ Hdt, wheret;, is the beginning of inflation, and  string theory [20], our results may apply to a wider class
the time when a mode entering the horizon today, left thef models than the ones considered here.

Hubble radius during inflation. In generélcan be very It is a pleasure to thank Yuri Shtanov and Alexei
large, log/ > 1.) SubstitutingH,,/m, = 1075, T, =  Starobinsky for stimulating discussions.

10 GeV, Tvp = (1 + zup) X 2.3 X 10712 GeV,
1 + zup = 23219Q,,4%, we find that8 77G{(®d?) can also
be very large (sinc& < G this holds for87G(®d?) as
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well). For Iarge87rG|§|<<I>2> > 1,6 = 1/@m|¢1(P?) TElectronic address: habibglanl.gov
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