VOLUME 81, NUMBER 9 PHYSICAL REVIEW LETTERS 31 AGusT 1998

Universal Relation between the Kolmogorov-Sinai Entropy
and the Thermodynamical Entropy in Simple Liquids

Mikhail Dzugutov! Erik Aurell,’> and Angelo Vulpiani
'Centre for Parallel Computers, Royal Institute of Technology, S-100 44 Stockholm, Sweden
2Department of Mathematics, Stockholm University, S-106 91 Stockholm, Sweden
31stituto Nazionale di Fisica della Materia, Unita di Roma 1 and Dipartimento di Fisica, Universita “La Sapienza,”
P.le Aldo Moro 2, 1-00 185 Roma, Italy
(Received 4 December 1997; revised manuscript received 3 Jung 1998

We report computation of the Kolmogorov-Sinai entropy in a variety of simple liquids studied by
molecular dynamics. It is found that this quantity, when expressed in terms of the atomic collision
frequency, is uniquely related to the thermodynamic excess entropy by a universal linear scaling law.
We also present a simple probabilistic model for relaxation in condensed atomic systems in which the
observed scaling relation arises naturally. [S0031-9007(98)07046-X]
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The intuition about the deep relation between the statis- An important issue is the relation between statistical
tical mechanics of a system with many degrees of freedorproperties, e.g., transport coefficients, and dynamical
and the instability of its dynamical evolution is already indicators as Lyapunov exponents and the KS entropy.
present in the work of Boltzmann. Nevertheless, only inin simplified models, as Lorentz gas, which are highly
the seminal contributions of Krylov [1] has the relevancenontrivial from the mathematical point of view, some
of the exponential instability for the processes of relaxatiorrelevant results have been obtained (see, e.g., [7,8]).
been stated in a clear way. In particular, that work showed On the other hand, it has recently been found [9]
that the relaxation rate in a system of hard spheres is rahat the diffusion coefficient in simple atomic condensed
lated to the rate at which a beam of trajectories divergesystems, expressed in terms of the frequency of atomic
in the phase space. This rate can be quantified by the suoollisions, is related to the thermodynamic entropy by
of all of the positive Lyapunov exponents which, accord-a universal scaling law. This law is valid for the cage
ing to the Pesin formula, expected to be true for generidiffusion, a characteristic mechanism of atomic dynamics
chaotic systems, is equal to the Kolmogorov-Sinai (KS)at high densities [10,11], whereby the atomic transport
entropy [2]. The latter can thus be regarded as a measuig controlled by the structural relaxation. Therefore, it
for the loss of information about the state of the systemis conceivable to expect that, for this kind of dynamics,
per unit of time. This quantity is extensive; it has beena similar universal relation between the KS entropy and
shown that there is a thermodynamic limit for the KS en-the thermodynamic entropy may be observed. In this
tropy per particle in the hard-sphere gas [3]. In additionLetter, we present strong evidence, based on the molecular
there is clear numerical evidence [4] that in a large classlynamics simulations, that, at least in the case of simple
of high-dimensional systems, e.g., products of random mdiquids, such a relation, indeed, exists.
trices, symplectic maps, chain of nonlinear oscillators, and Let us note that the KS entropy, at variance with the
models of simple liquids, there exist well-defined thermo-thermodynamic entropy, is a quantity related to the time
dynamic limits for the Lyapunov exponents; i.e., evolution. The KS entropy measures the time rate of

A = AF(i/N), 1 loss of information as a chaotic phase-space trajectory
) evolves [12].
where N > 1 is the number of degrees of freedom and  gjnce the KS entropy has the dimensionality of inverse
A" is the first Lyapunov exponent in the imN — «.  {ime its unifying description requires a universal time
For the hard-sphere gas, Eq. (1) has also been establishgghje. Following the arguments presented earlier [9], we
rigorously [5]. From Eq. (1) and the Pesin formula, oneéadopt the Chapman-Enskog approach [13], whereby the
knows that the KS entropy is: hxsN, where atomic dynamics is scaled in terms of the average collision

. ! frequency. This quantity can be calculated as [14,15
s = 2% [ peoat sa, (py Mredueney This quantly 1410

where#d is the step function. Leon = 4o
Pioneering numerical investigations of the spectra of

Lyapunov exponents in liquids were performed by PosciHere o is the effective atomic diameter, defined as the

and Hoover [6]. For a discussion on the thermodynamigosition of the first maximum of the pair correlation

limit of the KS entropy per particle in the hard-sphere gasfunction g(r); p is average number densityg(o) is the

see [3]. density of neighbors at the collision distance.

3)
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The excess entropySe.x, is the difference between
the thermodynamic entropy and that of the ideal gas at
the same thermodynamic state. The difference between
the entropy of two states of a system can be calculated
using thermodynamic integration along a reversible ther-
modynamic path connecting the two states [16]. If this
path represents expansion at the constant temper&ture
the change in the entropy is

1 (" 1
S, — 81 = — PdV + —
T Jv, T
where P is pressure and is the energy. At constant
density, the entropy change can be calculated as
E, E Lo E
Sy — 8§ T T, + . dT =y 5) r
To obtain S.x by integration, equilibrium values of the
gquantities involved must be calculated at state points 3+
along a reversible path connecting the current state of 3 b
a liquid with the perfect gas state. By using both the r f\
isothermal integration and the constant volume integration, i
itis possible to produce for each liquid such a path avoiding — N
the irreversibility that may arise when crossing two-phase Na¥ {I \
regions in the phase diagram. o0 ;“ \
In order to investigate the relation between the KS 1 f / )
entropy and the excess entropy, we examine a set of (J \ 1 \
simple monatomic liquid systems simulated by molecular L ; N
dynamics (MD). These liquids, characterized by the U
pair potentials shown in Fig. 1(a), represent distinctly 0 —
different prototypes of liquid structure. The local order 0 1 2 3
in the Lennard-Jones (LJ) liquid is topologically related r

to the fcc packing. Another liquid [17], referred to as h . als utili i this simulation:
IC, is dominated by icosahedral order. The structure o IG. 1. (@) The pair potentials utiized in this simulation;
' y : b) the pair correlation functions of the liquids generated by

the so-called “hexon” liquid (HX) [18], related to the these pair potentials. Solid line, IC liquid [17]; dashed line,

primitive hexagonal lattice, has an anomalously smalthe Lennard-Jones (LJ) liquid; dash-dotted line, the hexon

number of neighbors at the contact distance as comparéiguid [18].

to densely packed structures. It is important to note that ) ) i )

structural diversity of these liquids, which is apparent 1h€ simulation has been carried out using a system

from comparison of theig(r) shown in Fig. 1(b), has a Of 500 particles. By choosingl" within the range of

profound impact on their kinetic properties [9]. 10-20 collision times and thé/ = 100, we achieved the
The KS entropy has been computed using the standargjatistical accuracy di.5% for /s _

algorithm introduced by Benettiet al. [19]. For a system Thg equations qf motion were mtegrated.usmg the Verlet

of N particles,3N phase-space trajectories are generate@!90rithm [16] which, due to its symplectic nature, con-

by MD, initially separated from the reference trajectory S€"VeS the phase-space volume [20]. A cumulative error

by an orthogonalized set of tangent phase-space vectot the KS entropy caused by a limitation of numerical accu-

of assumed small lengtl,. At each iterationi, after racy could be es'Fimated fromthe spec_trum of the Lyapunov
elapsed run-tim@, one obtain$N vectors measuring the €XPOnents\; for i = 3N. This error did not exceet%.

deviation of the perturbed trajectories from the reference 1h€ results of this calculation are presented in Fig. 2.
one, and the volumé; of the phase space spanned byTh_ey show co_nvmcmgly that there exists a unique and
these vectors is computed. The next iteration starts witfniversal relation between the KS entropy, scaled by
orthogonalizing the tangent vectors and scaling them td coll» @nd the excess thermodynamic entropy. Within a
the initial sizeZ,. The average value of the KS entropy wide range of thermodynamic conditions which essentially

(E, — Ey), (4)

after M iterations is cover the who_le equilibrium quujd domain, th_e observed
M universal relation can be approximated by a linear law:
s = —— D>in Vi (6) hks
Sour £\ v ) S = A+ BSe,  A=062  B=0.106.
coll
whereV, = z3". (7)
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0.4 o L1 p-0.04 of this liquid is that the absolute value of its excess en-
R 5 L1, p=0.92 tropy, at thg thermodynamic conditions .close to the triple
. o 1C. p=0.84 point [18], is anomalo'usl.y small (see Flg. 2): Neverthe-
N o 1c. p=0.88 less, the results for_ this liquid presentgd in Fig. 2 arein a
a . HX S =0.89 good agreement with the observeq universal pattern.
0.3 | AN ’ ’ To rationalize the universal relation between the KS en-
= o tropy and the excess entropy observed in this simulation,
© ~ . we propose a simple model of relaxation in liquids in the
> ~ spirit of the Boltzmann approach to kinetic theory. Con-
o Na sider a system oW particles such that, at each step, each
< ol \,\ particle takes any of > 1 accessible positions, in the
N space (i.e., the phase space of the single particle). In order
EN to change the thermodynamic state we assume a structural
TN constraint on the model: each particle position, in the
AN space, is closed with the probabilip; 0 = p = 1. The
‘ ‘ ‘ ‘ probability P; of each configuration of the system which
o 5 - . s remains open increases by the fadtor- p)~". The en-
—Sex tropy of the system as a function pfcan be written as
FIG. 2. The Kolmogorov-Sinai entropy, per particléxs, S(p) = —ZPi InP; = S(0) + NIn(1 — p)

scaled by the atomic collision frequendy,;, as a function i

of Sex, the thermodynamic excess entropy. The dashed line

indicates the universal scaling relation [EQ. (7)]. AS = In(1 — p) is thus the excess entropy, per particle,
of the constrained system measured with respect to

The linear relation between the excess entropy an{® reference system witp = 0. Furthermore, in the

the KS entropy described by Eq. (7) breaks at aroungonstrained system, the probability to have a transition to
Sex = —2.5. Beyond that limit, the pattern of results, an available new configurationy; ;, is increased by the
. factor (1 — p)~. Now we approximate the dynamics

while remaining universal, exhibit an appreciable posi- . )
tive deviation from the scaling behavior described by@S @ Markov chain; therefore the KS entropy per step is

Eq. (7). It is worthwhile to compare this observation N0thing but the Shannon entropy:

with an earlier study [9], whereby the liquids we explore () = — Zpl, ZWU InW;; = H0) + NIn(1 — p).

in this simulation have been found to show a universal i 7

scaling relation between the diffusion coefficient and the. _ o )

excess entropy. In that study, positive deviation fromThis gives the KS entropy per particle and unit time:

the universal linear scaling behavior has been observed 1 1

at the thermodynamic conditions which correspond to hxs(p) = — H(p) = hgs(0) + —AS, (20)

the same region of., which bounds the linear relation Nt T

(7). That deviation has been concluded to manifest the&vhere = is the physical time interval between two

crossover from the regime of cage diffusion dynamicsconsecutive steps. Assuming that the relevant physical

characteristic of the liquid state, to the so-called vortexime scale is proportional to the average collision time,

diffusion observed in lower-density fluids [10]. In the for- we arrive at the Eq. (7), established numerically in the

mer, atomic transport is constrained by structural relaxaMD simulation experiment.

tions; in the latter, diffusive atomic motions are enhanced In this model, the probability of a particle jumping to a

by coupling to the transverse current modes [11]. Thenew position is proportional td — p = 5. Assuming

results presented here indicate that this dynamical transihat a particle is displaced by a typical distance at each

tion has a general impact on the phase-space behavior sfep, and that these steps are uncorrelated, we get for the

atomic systems. diffusion coefficientD the same scaling relation as has
It is worthwhile to discuss the results for the HX lig- been previously observed in MD simulations [9): o

uid which represent an interesting case for testing the obe®S. That observation, considered together with Egs. (7)

served universality of the relation betwegps and Se. and (10), allows one to establish a connection between the

This liquid, in contrast to the other two liquids investi- transport properties of simple liquids and the KS entropy.

gated in this study, has a much less pronounced struc- A tentative conclusion of this study is that, in equi-

ture which is manifested by the undersized first peak ofibrium simple liquids, the KS entropy is determined by

the radial distribution function (see Fig. 1). This featurethe thermodynamic excess entropy and the frequency of

results in a considerable reduction of the collision fre-atomic collisions. It is important to emphasize that the

quency. Another consequence of the distinctive structurétter quantity can be directly derived from structural data.

— S(0) + NAS. (8)
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