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Universal Relation between the Kolmogorov-Sinai Entropy
and the Thermodynamical Entropy in Simple Liquids
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We report computation of the Kolmogorov-Sinai entropy in a variety of simple liquids studied by
molecular dynamics. It is found that this quantity, when expressed in terms of the atomic collision
frequency, is uniquely related to the thermodynamic excess entropy by a universal linear scaling law.
We also present a simple probabilistic model for relaxation in condensed atomic systems in which the
observed scaling relation arises naturally. [S0031-9007(98)07046-X]
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The intuition about the deep relation between the sta
tical mechanics of a system with many degrees of freed
and the instability of its dynamical evolution is alread
present in the work of Boltzmann. Nevertheless, only
the seminal contributions of Krylov [1] has the relevanc
of the exponential instability for the processes of relaxati
been stated in a clear way. In particular, that work show
that the relaxation rate in a system of hard spheres is
lated to the rate at which a beam of trajectories diverg
in the phase space. This rate can be quantified by the s
of all of the positive Lyapunov exponents which, accor
ing to the Pesin formula, expected to be true for gene
chaotic systems, is equal to the Kolmogorov-Sinai (K
entropy [2]. The latter can thus be regarded as a meas
for the loss of information about the state of the syste
per unit of time. This quantity is extensive; it has bee
shown that there is a thermodynamic limit for the KS e
tropy per particle in the hard-sphere gas [3]. In additio
there is clear numerical evidence [4] that in a large cla
of high-dimensional systems, e.g., products of random m
trices, symplectic maps, chain of nonlinear oscillators, a
models of simple liquids, there exist well-defined therm
dynamic limits for the Lyapunov exponents; i.e.,

li . lpfsiyNd , (1)

whereN ¿ 1 is the number of degrees of freedom an
lp is the first Lyapunov exponent in the limitN ! `.
For the hard-sphere gas, Eq. (1) has also been establis
rigorously [5]. From Eq. (1) and the Pesin formula, on
knows that the KS entropy is. hKSN , where

hKS ­ lp
Z 1

0
fsxduf fsxdg dx , (2)

whereu is the step function.
Pioneering numerical investigations of the spectra

Lyapunov exponents in liquids were performed by Pos
and Hoover [6]. For a discussion on the thermodynam
limit of the KS entropy per particle in the hard-sphere ga
see [3].
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An important issue is the relation between statistic
properties, e.g., transport coefficients, and dynamic
indicators as Lyapunov exponents and the KS entrop
In simplified models, as Lorentz gas, which are highl
nontrivial from the mathematical point of view, some
relevant results have been obtained (see, e.g., [7,8]).

On the other hand, it has recently been found [9
that the diffusion coefficient in simple atomic condense
systems, expressed in terms of the frequency of atom
collisions, is related to the thermodynamic entropy b
a universal scaling law. This law is valid for the cage
diffusion, a characteristic mechanism of atomic dynamic
at high densities [10,11], whereby the atomic transpo
is controlled by the structural relaxation. Therefore,
is conceivable to expect that, for this kind of dynamics
a similar universal relation between the KS entropy an
the thermodynamic entropy may be observed. In th
Letter, we present strong evidence, based on the molecu
dynamics simulations, that, at least in the case of simp
liquids, such a relation, indeed, exists.

Let us note that the KS entropy, at variance with th
thermodynamic entropy, is a quantity related to the tim
evolution. The KS entropy measures the time rate
loss of information as a chaotic phase-space trajecto
evolves [12].

Since the KS entropy has the dimensionality of invers
time, its unifying description requires a universal time
scale. Following the arguments presented earlier [9], w
adopt the Chapman-Enskog approach [13], whereby t
atomic dynamics is scaled in terms of the average collisio
frequency. This quantity can be calculated as [14,15]

Gcoll ­ 4s2rgssd

s
pkBT

m
. (3)

Here s is the effective atomic diameter, defined as th
position of the first maximum of the pair correlation
function gsrd; r is average number density;rgssd is the
density of neighbors at the collision distance.
© 1998 The American Physical Society
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The excess entropy,Sex, is the difference between
the thermodynamic entropy and that of the ideal gas
the same thermodynamic state. The difference betwe
the entropy of two states of a system can be calcula
using thermodynamic integration along a reversible the
modynamic path connecting the two states [16]. If th
path represents expansion at the constant temperaturT ,
the change in the entropy is

S2 2 S1 ­
1
T

Z V2

V1

P dV 1
1
T

sE2 2 E1d , (4)

where P is pressure andE is the energy. At constant
density, the entropy change can be calculated as

S2 2 S1 ­
E2

T2
2

E1

T1
1

Z T2

T1

dT
E
T2 . (5)

To obtain Sex by integration, equilibrium values of the
quantities involved must be calculated at state poin
along a reversible path connecting the current state
a liquid with the perfect gas state. By using both th
isothermal integration and the constant volume integratio
it is possible to produce for each liquid such a path avoidi
the irreversibility that may arise when crossing two-pha
regions in the phase diagram.

In order to investigate the relation between the K
entropy and the excess entropy, we examine a set
simple monatomic liquid systems simulated by molecul
dynamics (MD). These liquids, characterized by th
pair potentials shown in Fig. 1(a), represent distinct
different prototypes of liquid structure. The local orde
in the Lennard-Jones (LJ) liquid is topologically relate
to the fcc packing. Another liquid [17], referred to a
IC, is dominated by icosahedral order. The structure
the so-called “hexon” liquid (HX) [18], related to the
primitive hexagonal lattice, has an anomalously sm
number of neighbors at the contact distance as compa
to densely packed structures. It is important to note th
structural diversity of these liquids, which is appare
from comparison of theirgsrd shown in Fig. 1(b), has a
profound impact on their kinetic properties [9].

The KS entropy has been computed using the stand
algorithm introduced by Benettinet al. [19]. For a system
of N particles,3N phase-space trajectories are generat
by MD, initially separated from the reference trajector
by an orthogonalized set of tangent phase-space vec
of assumed small lengthZ0. At each iterationi, after
elapsed run-timeT , one obtains3N vectors measuring the
deviation of the perturbed trajectories from the referen
one, and the volumeVi of the phase space spanned b
these vectors is computed. The next iteration starts w
orthogonalizing the tangent vectors and scaling them
the initial sizeZ0. The average value of the KS entrop
afterM iterations is

hKS ­
1

MT

MX
i­1

ln

√
Vi

V0

!
, (6)

whereV0 ­ Z3N
0 .
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FIG. 1. (a) The pair potentials utilized in this simulation;
(b) the pair correlation functions of the liquids generated b
these pair potentials. Solid line, IC liquid [17]; dashed line
the Lennard-Jones (LJ) liquid; dash-dotted line, the hexo
liquid [18].

The simulation has been carried out using a syste
of 500 particles. By choosingT within the range of
10 20 collision times and theM ­ 100, we achieved the
statistical accuracy of0.5% for hKS.

The equations of motion were integrated using the Verl
algorithm [16] which, due to its symplectic nature, con
serves the phase-space volume [20]. A cumulative err
in the KS entropy caused by a limitation of numerical accu
racy could be estimated from the spectrum of the Lyapuno
exponentsli for i . 3N . This error did not exceed1%.

The results of this calculation are presented in Fig. 2
They show convincingly that there exists a unique an
universal relation between the KS entropy, scaled b
Gcoll, and the excess thermodynamic entropy. Within
wide range of thermodynamic conditions which essential
cover the whole equilibrium liquid domain, the observed
universal relation can be approximated by a linear law:

hKS

Gcoll
­ A 1 BSex, A ­ 0.62, B ­ 0.106 .

(7)
1763
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FIG. 2. The Kolmogorov-Sinai entropy, per particle,hKS,
scaled by the atomic collision frequencyGcoll, as a function
of Sex, the thermodynamic excess entropy. The dashed l
indicates the universal scaling relation [Eq. (7)].

The linear relation between the excess entropy a
the KS entropy described by Eq. (7) breaks at arou
Sex ­ 22.5. Beyond that limit, the pattern of results
while remaining universal, exhibit an appreciable pos
tive deviation from the scaling behavior described b
Eq. (7). It is worthwhile to compare this observatio
with an earlier study [9], whereby the liquids we explor
in this simulation have been found to show a univers
scaling relation between the diffusion coefficient and th
excess entropy. In that study, positive deviation fro
the universal linear scaling behavior has been observ
at the thermodynamic conditions which correspond
the same region ofSex which bounds the linear relation
(7). That deviation has been concluded to manifest t
crossover from the regime of cage diffusion dynamic
characteristic of the liquid state, to the so-called vorte
diffusion observed in lower-density fluids [10]. In the for
mer, atomic transport is constrained by structural relax
tions; in the latter, diffusive atomic motions are enhanc
by coupling to the transverse current modes [11]. T
results presented here indicate that this dynamical tran
tion has a general impact on the phase-space behavio
atomic systems.

It is worthwhile to discuss the results for the HX liq
uid which represent an interesting case for testing the o
served universality of the relation betweenhKS and Sex.
This liquid, in contrast to the other two liquids investi
gated in this study, has a much less pronounced str
ture which is manifested by the undersized first peak
the radial distribution function (see Fig. 1). This featur
results in a considerable reduction of the collision fre
quency. Another consequence of the distinctive structu
1764
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of this liquid is that the absolute value of its excess en
tropy, at the thermodynamic conditions close to the tripl
point [18], is anomalously small (see Fig. 2). Neverthe
less, the results for this liquid presented in Fig. 2 are in
good agreement with the observed universal pattern.

To rationalize the universal relation between the KS en
tropy and the excess entropy observed in this simulatio
we propose a simple model of relaxation in liquids in th
spirit of the Boltzmann approach to kinetic theory. Con
sider a system ofN particles such that, at each step, eac
particle takes any ofC ¿ 1 accessible positions, in them
space (i.e., the phase space of the single particle). In ord
to change the thermodynamic state we assume a structu
constraint on the model: each particle position, in them

space, is closed with the probabilityp, 0 # p # 1. The
probabilityPi of each configurationi of the system which
remains open increases by the factors1 2 pd2N . The en-
tropy of the system as a function ofp can be written as

Sspd ­ 2
X

i

Pi ln Pi ­ Ss0d 1 N lns1 2 pd

­ Ss0d 1 NDS . (8)

DS ­ lns1 2 pd is thus the excess entropy, per particle
of the constrained system measured with respect
the reference system withp ­ 0. Furthermore, in the
constrained system, the probability to have a transition
an available new configuration,Wi,j, is increased by the
factor s1 2 pd2N . Now we approximate the dynamics
as a Markov chain; therefore the KS entropy per step
nothing but the Shannon entropy:

Hspd ­ 2
X

i

Pi

X
j

Wij ln Wij . Hs0d 1 N lns1 2 pd .

(9)
This gives the KS entropy per particle and unit time:

hKSspd ­
1

Nt
Hspd ­ hKSs0d 1

1
t

DS , (10)

where t is the physical time interval between two
consecutive steps. Assuming that the relevant physic
time scale is proportional to the average collision time
we arrive at the Eq. (7), established numerically in th
MD simulation experiment.

In this model, the probability of a particle jumping to a
new position is proportional to1 2 p ­ eDS. Assuming
that a particle is displaced by a typical distance at eac
step, and that these steps are uncorrelated, we get for
diffusion coefficientD the same scaling relation as has
been previously observed in MD simulations [9]:D ~

eDS. That observation, considered together with Eqs. (7
and (10), allows one to establish a connection between t
transport properties of simple liquids and the KS entropy

A tentative conclusion of this study is that, in equi-
librium simple liquids, the KS entropy is determined by
the thermodynamic excess entropy and the frequency
atomic collisions. It is important to emphasize that th
latter quantity can be directly derived from structural data



VOLUME 81, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 31 AUGUST 1998

t.
.

,

Thus, we obtained strong evidence for a general relatio
ship between the static properties and the dynamical p
cesses in liquids. The thermodynamic entropy may
regarded as a measure of the volume of the region of m
tion in the phase space which confines the equilibriu
dynamics of a system of particles [21]. The observatio
described in this Letter indicate that the characteristic tim
scale of the relaxation processes in an equilibrium liqu
which can be related to the rate at which it explores its r
gion of motion in the phase space, is uniquely determin
by the volume of that region.
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