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Electrically Induced Morphological Instabilities in Free Dendrite Growth
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We describe a new instability mechanism in free dendrite growth, which arises from electrically
enhanced diffusion of polar molecules near the dendrite tip. For a small applied potential, the dendrite
tip velocity increases slowly with potential, as is described by an extension of normal solvability
theory. Above a threshold potential, however, capillarity is insufficient to stabilize growth. We
present observations that confirm this instability, which brings about a transition from enhanced normal
dendrite growth to a rapidly growing needle morphology with strongly suppressed sidebranching.
[S0031-9007(98)06496-5]

PACS numbers: 68.70.+w, 81.30.Fb

The formation of stable spatial patterns is a fundamenincreases the tip velocity approximately quadratically with
tal problem in the study of nonlinear nonequilibrium sys-the value of the applied potential. This behavior is well
tems [1]. A now-standard example of a pattern-formingdescribed by the addition of an external force to the dif-
system is the diffusion-limited growth of free crystalline fusion equation, resulting in an extension of normal solv-
dendrites, which are nearly ubiquitous products of rapidability theory, which is described below.
solidification, from either liquid or vapor precursors. Mi- We find, however, both theoretically and experimen-
croscopic solvability theory has succeeded in furnishing dally, that there exists a threshold potential for normal
mathematically consistent and dynamically stable solutiomendrite growth, beyond which the modified solvability
for simple 2D and 3D dendrite growth (ignoring, for ex- theory no longer yields physical solutions. This indi-
ample, surface kinetic and surface transport effects, botbates that surface tension is insufficient to stabilize the
of which can be quite important in many systems) [2]. enhanced dendrite growth in this regime. Experimen-

While the diffusion equation alone is sufficient to de- tally, beyond the threshold potential we observe a run-
fine a relation between the dendrite tip velocity and tipaway growth of thin needle-shaped crystals, with strongly
radius, capillarity (a typically weak but singular perturba- suppressed sidebranching. This behavior lies outside the
tion arising from surface tension) must be included in therealm of solvability theory, requiring mechanisms other
theory in order to select a unique dendrite solution, andhan capillarity to determine the stable growth point.
an anisotropic surface energy was found necessary for In the presence of an external forée the diffusion
shape-preserving growth. In essence, solvability theorgquation is replaced by the Smoluchowski equation [4]:
describes the balance between the Mullins-Sekerka insta- 9e L )
bility [3], which tends to decrease the radius of curvature — =DV - (Ve — cF/kT), (1)
of a growing dendrite tip, and the Gibbs-Thomson effect ot
of surface tension, which tends to increase it. The resultvhere c¢(7) is the solute density, an® is a scalar
in 3D is a dendrite roughly in the form of a paraboloid diffusion constant. In this we have assumed that the
of revolution near its tip, growing at constant tip veloc- particle mobility and diffusion constant are related via
ity, that is a solution to the equations of motion governingthe usual Einstein relation. Ignoring interface kinetics,
heat or particule diffusion in the vicinity of the solidifica- the continuity equation at the interface yields the normal
tion front [1,2]. Instabilities and noise amplification lead- component of the surface growth ratg:
ing to sidebranch generation have also been well studied. D

In this Letter, we introduce a new type of nonlinear v, =
dendrite instability, arising when particle diffusion is en- Csolid
hanced by the presence of the dendrite itself. Specificallywherec,q;iq is the solid density, and the right-hand side is
we consider the system of dendrite growth via vapor dif-evaluated at the solidification front [4].
fusion in a solvent gas, where the condensing particles We now consider a specific external force, namely, that
possess a substantial electric polarizability. By applyingvhich arises when an electrical potential is applied to the
an external electrical potential to the growing dendrite, thegrowing dendrite (assumed to be an electrical conductor),
strong electric fields and field gradients in the neighborand the solute molecules are electrically polarizable. We
hood of the dendrite tip increase the particle flux onto theassume the limit of a low solute density and unpolarizable
surface. solvent molecules, so the applied electric fields and field

For small potentials, the dendrite growth is qualita-gradients do not depend on(7). In this case, the
tively unchanged, while electrically enhanced diffusionforce F can be expressed in terms of the gradient of a

n- (66‘ - C?/kT)lsurf» (2)
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potential, ¥ = V(& - E) = aV(E - E) = aVd, where most weakly dependent opy, at a level which we will

a is the electric polarizability. Assuming the dendrite de-ignore in comparison to the effects of enhanced diffusion.
fines an electrical equipotential surface which is nearlyWith this assumption, we then use relation (5) from
a paraboloid of revolution, the force potential is simply 3D selection theory, together with the modified Ivantsov
® ~ 493y (n + & 'log2(n,/R) in parabolic coor- relation (3), to select both andR.

dinates, wherep, is the applied potentialy = R defines Combining these yields an approximately quadratic
the dendrite surface, angl = 7, is defined by the outer equation forR:
limit of the experimental apparatus, which is assumed to R® — RoR + R%,, = 0, (6)

be ate(n;) = 0.
While techniques exist for numerically addressing thewhere R, is the normal selected dendrite tip radius
problem of dendrite growth [5], an illuminating analytic WhenReie. = 0 [sincen; > R, log(n;/R) depends only
solution for the dendrite tip velocity can be obtained very weakly onR]. For R < Ry, this gives the
by assuming axial symmetry for the growing crystal andtip radius R = Ro(1 — Rze./R;) and tip velocityv ~
using the approximatio® ~ 437 2log=2(n:/R). The  vo(l + 2RZ./Rj). The radius decreases with increasing
latter approximation formally holds only near the dendriteReiec until a limit is reached aRmin = Ro/2, andvmax =
tip, but we believe it does not obscure any essentiadvo. The quadratic equation has no real rootsRog. >

physics in the problem. With this, the equations separat&o/2, indicating that the above modified solvability theory

in parabolic coordinates, giving the solution cannot be used for large, c..
2D R2 The lack of real roots for large applied potentials is
v = (1 + °16C>AO, (3) related to the familiar phenomenon of nucleation in a
R log(n:/R) R? cloud chamber. For uncharged droplets, there exists a

wherecg,, = ¢(R) is the solute density near the surface,cfitical radius R.ri;, below which the Gibbs-Thomson
Ao = [c(n1) — csacl/csona IS the supersaturation level, €ffect prevents spontaneous growth. Sufficiently charged

and droplets, however, can grow at all radii, which can
2 be seen from a spherically symmetric solution to the
R%.. = ( Crat ) 4”9‘;0 . 4)  Smoluchowski equation. In the present case of dendrite

Csolid ) AokT l0g*(m1/R) growth, above a threshold potential we find that surface

This solution, for which we have takedc/at = 0 tension can no longer stabilize the tip radius. At this
in the diffusion equation, is appropriate in the limit POINt, the tip experiences runaway growth As— 0

n1 < €, where¢ = 2D /v is the diffusion length, which under the influence of the Mullins-Sekerka instability
is the case for the experiments described below. Ifhere enhanced by electric forces). The tip velocity thus
the limit R...c — 0, this reduces to the well-known Increases until it is stabilized by some other mechanism.
Ivantsov relation for growing dendrites [6]. For moderate An experimental demonstration of this growth insta-
molecular polarizabilities, it is possible to achiekg,. >  Pility was realized by growing ice dendrites from water
R under reasonable experimental conditions; hence, théaPor, in a solvent gas of ordinary air at 1-atm pres-

dendrite growth is found to be strongly influenced by theSure [7,8]. Although surface kinetic effects are impor-
applied electrical potential. tant in ice crystal formation, often producing strongly

It can be seen from this expression that the subfaceted crystal growth, we find at15 C (the peak of
stantive effect of the electrical potential is to add anthe dendrite growth regime for ice) and supersaturations
R-dependent term to the supersaturation, yielding an efd1 = (Csolia/csat)Ao = 0.4 the prism faces are rough, re-
fective Aj(R) = Ag(1 + R%../R?). At the same time, sulting in dendrites with approximately parabolic tips. In
the applied electrical potential does not alter the surfactis parabolic regime, the growth of the prism faces is
capillarity, so physically we expect that the crystal growthdescribed by the Hertz-Knudsen relation [9], and is no
will be modified primarily by the effects of this electri- longer dominated by ;urface kinetics. Thus |n'th|s regime
cally enhanced supersaturation. One of the main resull¥€ €xpect the dendrite growth to be approximately de-

from 3D selection theory, however, provides that the staScribed by the above modified solvability theory.
bility parameter An electrical potential was applied after establishing the

growth of a single normale, = 0) dendrite, which had

(5 a tip velocity of typicallyv = 3 um/s; the finite con-
R?v ductivity of ice, along with the very low current flow [7]

is independent of supersaturation (but depends on crygnsured that the dendrite possessed an equipotential sur-
talline anisotropic roughly asr ~ €’/* for small €), face. Occasionally the applied potential resulted in den-
whered, = R.;i1Ay/2 is the capillary length, proportional drites with a large uniform sidebranch spacing [8], but
to the isotropic part of the surface tension, with;; equal more typically the growth remained qualitatively similar
to the critical radius for homogeneous nucleation. Thugo that of normal growth at low potentials, with in-
we argue on physical grounds thatis expected to be at creasing withpy up to a threshold potential. An example

_ 2Dd,

ag =
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of this behavior is shown in Fig. 1. A comparison of the needle tip, which is substantial owing to the large
the data and theory can be made by combining Egs. (3atent heat of sublimation of ice. Calculations show that
and (6) above inta = 4vo[1 + (1 — ¢§/02,)"/2]72,  the degree of heating is sufficient, given dissipation via
where vy = 2Ddy/o R} is the normal tip velocity. In conduction to the surrounding air, to significantly raise

Fig. 1, the two parametens and ¢,,.x were adjusted via the temperature of the growing tip and thus to halt further
least squares to best fit the measured points. This fit gavecrease of the tip velocity.

emax = 1450 V, which was in reasonable agreement with It is conceivable that the mobility of water molecules on

the observed threshold value. the growing crystal surface may be affected by the strong

Above the threshold potential, the enhanced dendritelectric field gradients near the sharp dendrite tip [11],
growth behavior became unstable. If the potential werénd thus may be responsible for some of the phenomena
slowly raised above threshold with; < 0.6, the dendrite  reported here. We believe, however, that such effects are
tip would sometimes make a smooth transition to a rapidninor in comparison to the enhanced diffusion described
growth behavior, shown in Fig. 2(a). This resulted in aabove. First of all, the surface fields, while substantial,
thin, featureless needle-shaped crystal, with a diameter @fre small compared to intrinsic crystal surface fields [12].
~20-30 wm, moving at velocities typicallg0-70 um/s  And second, we observed that none of the phenomena
along the originak-axis direction (although velocities as described here exhibited any dependence on the sign of
fast as200 wm/s were observed). The needle velocitiesthe applied potential. This observation also allows us to
were observed to show considerable variation, whickeffectively rule out ionization effects near the dendrite tip
remains inexplicable since it was not simply correlatedas playing any significant role in the growth dynamics.
with the external growth conditions.

If the potential was slowly raised at higher saturations
(0.6 < A; < 2), the dendrite tip often underwent the tip- ?’
splitting instability shown in Fig. 2(b). This resulted in
a restructuring of the crystal at the dendrite tip, so that
further growth occurred from an appended crystal whose
[1100] axis was approximately collinear with theaxis
of the original crystal [8]. We are uncertain of the
cause of this peculiar behavior, which may be related to
electrofreezing phenomena [10].

If a potential value above the threshold was suddenly
applied at any saturation, the result was usually the
copious production of thin needle crystals, similar to
that shown in Fig. 2(a), which typically appeared from
the sharp corners of faceted crystals. We believe this
“hyperelectric” needle growth is stabilized by heating at
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Applied Potential (volts) FIG. 2. Images of electrically induced dendrite instabilities,

which occurred as the applied potential was slowly raised

FIG. 1. Data points show measurements of the tip velocityabove its threshold value. Both images were passed through a
of a single growing dendrite as a function of the appliedsolarizing filter for edge and contrast enhancement. In (a) the
electrical potential. The solid line is a fit to the points using thedendrite tip transformed from its normal form, with;, =~
modified solvability theory described in the text. The two free3 um/s and exhibiting sidebranches, to a rapid electric needle
parameters in the theoryy and ¢max, Were adjusted in a least- growth withv,;, = 30 um/s and suppressed sidebranching. In
squares fit to the data, which gave a bestgfi{ax = 1450 V. (b) the dendrite tip underwent a tip-splitting instability which
This dendrite underwent a tip-splitting instability when the rotated the crystal axis b§0°; after further growth the same
potential was raised from 1300 to 1400 V. instability repeated on the two advancing branches.
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