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Electrically Induced Morphological Instabilities in Free Dendrite Growth
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We describe a new instability mechanism in free dendrite growth, which arises from electrically
enhanced diffusion of polar molecules near the dendrite tip. For a small applied potential, the dendrit
tip velocity increases slowly with potential, as is described by an extension of normal solvability
theory. Above a threshold potential, however, capillarity is insufficient to stabilize growth. We
present observations that confirm this instability, which brings about a transition from enhanced norma
dendrite growth to a rapidly growing needle morphology with strongly suppressed sidebranching
[S0031-9007(98)06496-5]
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The formation of stable spatial patterns is a fundame
tal problem in the study of nonlinear nonequilibrium sys
tems [1]. A now-standard example of a pattern-formin
system is the diffusion-limited growth of free crystalline
dendrites, which are nearly ubiquitous products of rap
solidification, from either liquid or vapor precursors. Mi-
croscopic solvability theory has succeeded in furnishing
mathematically consistent and dynamically stable solutio
for simple 2D and 3D dendrite growth (ignoring, for ex
ample, surface kinetic and surface transport effects, bo
of which can be quite important in many systems) [2].

While the diffusion equation alone is sufficient to de
fine a relation between the dendrite tip velocity and t
radius, capillarity (a typically weak but singular perturba
tion arising from surface tension) must be included in th
theory in order to select a unique dendrite solution, an
an anisotropic surface energy was found necessary
shape-preserving growth. In essence, solvability theo
describes the balance between the Mullins-Sekerka ins
bility [3], which tends to decrease the radius of curvatu
of a growing dendrite tip, and the Gibbs-Thomson effe
of surface tension, which tends to increase it. The res
in 3D is a dendrite roughly in the form of a paraboloid
of revolution near its tip, growing at constant tip veloc
ity, that is a solution to the equations of motion governin
heat or particule diffusion in the vicinity of the solidifica-
tion front [1,2]. Instabilities and noise amplification lead
ing to sidebranch generation have also been well studie

In this Letter, we introduce a new type of nonlinea
dendrite instability, arising when particle diffusion is en
hanced by the presence of the dendrite itself. Specifical
we consider the system of dendrite growth via vapor di
fusion in a solvent gas, where the condensing particl
possess a substantial electric polarizability. By applyin
an external electrical potential to the growing dendrite, th
strong electric fields and field gradients in the neighbo
hood of the dendrite tip increase the particle flux onto th
surface.

For small potentials, the dendrite growth is qualita
tively unchanged, while electrically enhanced diffusio
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increases the tip velocity approximately quadratically with
the value of the applied potential. This behavior is well
described by the addition of an external force to the dif-
fusion equation, resulting in an extension of normal solv-
ability theory, which is described below.

We find, however, both theoretically and experimen-
tally, that there exists a threshold potential for normal
dendrite growth, beyond which the modified solvability
theory no longer yields physical solutions. This indi-
cates that surface tension is insufficient to stabilize the
enhanced dendrite growth in this regime. Experimen-
tally, beyond the threshold potential we observe a run-
away growth of thin needle-shaped crystals, with strongly
suppressed sidebranching. This behavior lies outside th
realm of solvability theory, requiring mechanisms other
than capillarity to determine the stable growth point.

In the presence of an external force$F, the diffusion
equation is replaced by the Smoluchowski equation [4]:

≠c
≠t

­ D $= ? s $=c 2 c $FykTd , (1)

where cs$rd is the solute density, andD is a scalar
diffusion constant. In this we have assumed that the
particle mobility and diffusion constant are related via
the usual Einstein relation. Ignoring interface kinetics,
the continuity equation at the interface yields the normal
component of the surface growth rateyn:

yn ­
D

csolid
n̂ ? s $=c 2 c $FykT djsurf , (2)

wherecsolid is the solid density, and the right-hand side is
evaluated at the solidification front [4].

We now consider a specific external force, namely, tha
which arises when an electrical potential is applied to the
growing dendrite (assumed to be an electrical conductor)
and the solute molecules are electrically polarizable. We
assume the limit of a low solute density and unpolarizable
solvent molecules, so the applied electric fields and field
gradients do not depend oncs$rd. In this case, the
force $F can be expressed in terms of the gradient of a
© 1998 The American Physical Society
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potential, $F ­ $=s $m ? $Ed ­ a $=s $E ? $Ed ; a $=F, where
a is the electric polarizability. Assuming the dendrite de
fines an electrical equipotential surface which is near
a paraboloid of revolution, the force potential is simpl
F ø 4w

2
0h21sh 1 jd21 log22sh1yRd in parabolic coor-

dinates, wherew0 is the applied potential,h ­ R defines
the dendrite surface, andh ­ h1 is defined by the outer
limit of the experimental apparatus, which is assumed
be atwsh1d ­ 0.

While techniques exist for numerically addressing th
problem of dendrite growth [5], an illuminating analytic
solution for the dendrite tip velocityy can be obtained
by assuming axial symmetry for the growing crystal an
using the approximationF ø 4w

2
0h22 log22sh1yRd. The

latter approximation formally holds only near the dendri
tip, but we believe it does not obscure any essent
physics in the problem. With this, the equations separa
in parabolic coordinates, giving the solution

y ­
2D

R logsh1yRd

√
1 1

R2
elec

R2

!
D0 , (3)

wherecsat ­ csRd is the solute density near the surface
D0 ; fcsh1d 2 csatgycsolid is the supersaturation level,
and

R2
elec ­

√
csat

csolid

!
4aw

2
0

D0kT log2sh1yRd
. (4)

This solution, for which we have taken≠cy≠t ­ 0
in the diffusion equation, is appropriate in the limi
h1 ø ,, where, ­ 2Dyy is the diffusion length, which
is the case for the experiments described below.
the limit Relec ! 0, this reduces to the well-known
Ivantsov relation for growing dendrites [6]. For modera
molecular polarizabilities, it is possible to achieveRelec .

R under reasonable experimental conditions; hence,
dendrite growth is found to be strongly influenced by th
applied electrical potential.

It can be seen from this expression that the su
stantive effect of the electrical potential is to add a
R-dependent term to the supersaturation, yielding an
fective D

p
0sRd ­ D0s1 1 R2

elecyR2d. At the same time,
the applied electrical potential does not alter the surfa
capillarity, so physically we expect that the crystal grow
will be modified primarily by the effects of this electri-
cally enhanced supersaturation. One of the main resu
from 3D selection theory, however, provides that the st
bility parameter

s ;
2Dd0

R2y
(5)

is independent of supersaturation (but depends on cr
talline anisotropic roughly ass , e7y4 for small e),
whered0 ­ RcritD0y2 is the capillary length, proportional
to the isotropic part of the surface tension, withRcrit equal
to the critical radius for homogeneous nucleation. Th
we argue on physical grounds thats is expected to be at
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most weakly dependent onw0, at a level which we will
ignore in comparison to the effects of enhanced diffusion
With this assumption, we then use relation (5) from
3D selection theory, together with the modified Ivantsov
relation (3), to select bothy andR.

Combining these yields an approximately quadratic
equation forR:

R2 2 R0R 1 R2
elec ­ 0 , (6)

where R0 is the normal selected dendrite tip radius
whenRelec ­ 0 [sinceh1 ¿ R, logsh1yRd depends only
very weakly on R]. For Relec ø R0, this gives the
tip radius R ø R0s1 2 R2

elecyR2
0d and tip velocity y ø

y0s1 1 2R2
elecyR2

0 d. The radius decreases with increasing
Relec until a limit is reached atRmin ­ R0y2, andymax ­
4y0. The quadratic equation has no real roots forRelec .

R0y2, indicating that the above modified solvability theory
cannot be used for largeRelec.

The lack of real roots for large applied potentials is
related to the familiar phenomenon of nucleation in a
cloud chamber. For uncharged droplets, there exists
critical radius Rcrit, below which the Gibbs-Thomson
effect prevents spontaneous growth. Sufficiently charge
droplets, however, can grow at all radii, which can
be seen from a spherically symmetric solution to the
Smoluchowski equation. In the present case of dendrit
growth, above a threshold potential we find that surfac
tension can no longer stabilize the tip radius. At this
point, the tip experiences runaway growth asR ! 0
under the influence of the Mullins-Sekerka instability
(here enhanced by electric forces). The tip velocity thu
increases until it is stabilized by some other mechanism.

An experimental demonstration of this growth insta-
bility was realized by growing ice dendrites from water
vapor, in a solvent gas of ordinary air at 1–atm pres
sure [7,8]. Although surface kinetic effects are impor-
tant in ice crystal formation, often producing strongly
faceted crystal growth, we find at215 C (the peak of
the dendrite growth regime for ice) and supersaturation
D1 ; scsolidycsatdD0 * 0.4 the prism faces are rough, re-
sulting in dendrites with approximately parabolic tips. In
this parabolic regime, the growth of the prism faces is
described by the Hertz-Knudsen relation [9], and is no
longer dominated by surface kinetics. Thus in this regime
we expect the dendrite growth to be approximately de
scribed by the above modified solvability theory.

An electrical potential was applied after establishing the
growth of a single normalsw0 ­ 0d dendrite, which had
a tip velocity of typically y ø 3 mmys; the finite con-
ductivity of ice, along with the very low current flow [7]
ensured that the dendrite possessed an equipotential s
face. Occasionally the applied potential resulted in den
drites with a large uniform sidebranch spacing [8], but
more typically the growth remained qualitatively similar
to that of normal growth at low potentials, withy in-
creasing withw0 up to a threshold potential. An example
177
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of this behavior is shown in Fig. 1. A comparison o
the data and theory can be made by combining Eqs. (
and (6) above intoy ­ 4y0f1 1 s1 2 w

2
0yw2

maxd1y2g22,
where y0 ­ 2Dd0ysR2

0 is the normal tip velocity. In
Fig. 1, the two parametersy0 andwmax were adjusted via
least squares to best fit the measured points. This fit ga
wmax ­ 1450 V, which was in reasonable agreement with
the observed threshold value.

Above the threshold potential, the enhanced dendr
growth behavior became unstable. If the potential we
slowly raised above threshold withD1 & 0.6, the dendrite
tip would sometimes make a smooth transition to a rap
growth behavior, shown in Fig. 2(a). This resulted in
thin, featureless needle-shaped crystal, with a diameter
,20 30 mm, moving at velocities typically20 70 mmys
along the originala-axis direction (although velocities as
fast as200 mmys were observed). The needle velocitie
were observed to show considerable variation, whic
remains inexplicable since it was not simply correlate
with the external growth conditions.

If the potential was slowly raised at higher saturation
s0.6 , D1 , 2d, the dendrite tip often underwent the tip-
splitting instability shown in Fig. 2(b). This resulted in
a restructuring of the crystal at the dendrite tip, so th
further growth occurred from an appended crystal who
f1100g axis was approximately collinear with thea axis
of the original crystal [8]. We are uncertain of the
cause of this peculiar behavior, which may be related
electrofreezing phenomena [10].

If a potential value above the threshold was sudden
applied at any saturation, the result was usually th
copious production of thin needle crystals, similar t
that shown in Fig. 2(a), which typically appeared from
the sharp corners of faceted crystals. We believe th
“hyperelectric” needle growth is stabilized by heating a

FIG. 1. Data points show measurements of the tip veloci
of a single growing dendrite as a function of the applie
electrical potential. The solid line is a fit to the points using th
modified solvability theory described in the text. The two fre
parameters in the theory,y0 andwmax, were adjusted in a least-
squares fit to the data, which gave a best fitwmax ­ 1450 V.
This dendrite underwent a tip-splitting instability when the
potential was raised from 1300 to 1400 V.
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the needle tip, which is substantial owing to the large
latent heat of sublimation of ice. Calculations show tha
the degree of heating is sufficient, given dissipation via
conduction to the surrounding air, to significantly raise
the temperature of the growing tip and thus to halt furthe
increase of the tip velocity.

It is conceivable that the mobility of water molecules on
the growing crystal surface may be affected by the stron
electric field gradients near the sharp dendrite tip [11]
and thus may be responsible for some of the phenome
reported here. We believe, however, that such effects a
minor in comparison to the enhanced diffusion describe
above. First of all, the surface fields, while substantia
are small compared to intrinsic crystal surface fields [12]
And second, we observed that none of the phenomen
described here exhibited any dependence on the sign
the applied potential. This observation also allows us t
effectively rule out ionization effects near the dendrite tip
as playing any significant role in the growth dynamics.

FIG. 2. Images of electrically induced dendrite instabilities,
which occurred as the applied potential was slowly raise
above its threshold value. Both images were passed through
solarizing filter for edge and contrast enhancement. In (a) th
dendrite tip transformed from its normal form, withytip ø
3 mmys and exhibiting sidebranches, to a rapid electric need
growth withytip ø 30 mmys and suppressed sidebranching. In
(b) the dendrite tip underwent a tip-splitting instability which
rotated the crystal axis by30±; after further growth the same
instability repeated on the two advancing branches.
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In summary, we suggest a new class of dendrite grow
instabilities, brought about when the presence of th
dendrite itself affects the diffusion of material to its
surface, adding a nontrivial external force term to th
diffusion equation. Within this class, we have examine
dendrite growth from polar molecules in the presence
an applied electrical potential, which is well describe
by a modified solvability theory. The principal result
of this theory is the existence of a threshold potentia
above which dendrite growth can no longer be stabilize
by surface tension effects.

We note that the enhanced diffusion brought about b
an applied potential is well understood at a fundament
level, and is straightforward to compute. Thus the applie
potential provides the experimenter with a convenien
continuously adjustable parameter with which to alte
dendrite growth. Further studies on other polar system
with less complex surface properties in comparison
ice should provide new insights into pattern formatio
in diffusion-limited growth. Such studies may shed ligh
on remaining problems in understanding the dependen
of the stability parameter on crystal anisotropy [13]
and should also contribute to the general theory
morphological transitions during nonequilibrium growth
[14]. Qualitatively similar morphological transitions are
well known in studies of electrodeposition [15], bu
in these cases the physical mechanisms driving t
transitions remain poorly understood. The transitio
we have described here is currently more amenable
quantitative theoretical analysis.

A particularly interesting outcome of the dendrite
instability described above is the stable production o
thin, featureless needle crystals, which can in princip
be grown to any length. The growth dynamics of thes
needles is qualitatively different from needles grown vi
more conventional means, for example, via single scre
dislocations at needle tips [16], or via the vapor-liquid
solid mechanism [17], and may be of some practic
interest, particularly for large organic molecules, whic
can have substantial electric polarizabilities.

We acknowledge support for V. M. T. by Mr. and
Mrs. Downie D. Muir III.
th
e

e
d
of
d

l,
d

y
al
d
t,
r
s

to
n
t
ce
,
of

t
he
n
to

f
le
e
a
w
-
al
h

*Electronic address: kgl@caltech.edu
[1] For reviews, see E. Ben-Jacob, Contemp. Phys.38, 205

(1997);34, 247 (1993); J. S. Langer, inChance and Mat-
ter, Proceedings of the Les Houches Summer Schoo
Session XLVI (Elsevier, New York, 1987); H. Muller-
Krumbhaar, inMaterials Science and Technology: a Com-
prehensive Treatment,edited by R. W. Cahnet al. (VCH,
Weinheim, 1991); M. C. Cross and P. C. Hohenberg, Re
Mod. Phys.65, 851 (1993).

[2] E. Brener, Phys. Rev. Lett.71, 3653 (1993); A. Karma and
W. J. Rappel, Phys. Rev. Lett.77, 4050 (1996); Y. Saito,
Statistical Physics of Crystal Growth(World Scientific,
Singapore, 1996).

[3] W. W. Mullins and R. F. Sekerka, J. Appl. Phys.34, 323
(1963); J. S. Langer, Rev. Mod. Phys.52, 1 (1980).

[4] S. Chandrasekhar, Rev. Mod. Phys.15, 1 (1943).
[5] Y. Saito, G. Goldbeck-Wood, and H. Muller-Krumbhaar,

Phys. Rev. Lett.58, 1541 (1987); Phys. Rev. A38, 2148
(1988).

[6] G. P. Ivantsov, Dokl. Akad. Nauk SSSR58, 1113 (1947).
[7] J. T. Bartlett, A. P. van den Heuval, and B. J. Mason

Z. Angew. Math. Phys.14, 599–610 (1963).
[8] V. M. Tanusheva and K. G. Libbrecht (to be published).
[9] E. Yokoyama, J. Cryst. Growth128, 251 (1993);

T. Kuroda and R. Lacmann, J. Cryst. Growth56, 189
(1982).

[10] I. M. Svishchev and P. G. Kusalik, J. Am. Chem. Soc
118, 649 (1996); M. Gavishet al., Science 256, 815
(1992).

[11] C. R. Slaughterbecket al., J. Vac. Sci. Technol. A14,
1213 (1996).

[12] P. V. Hobbs,Ice Physics(Clarendon, Oxford, 1974).
[13] A. Dougherty and A. Gunawardana, Phys. Rev. E50, 1349

(1994); M. Muschol, D. Liu, and H. Z. Cummins, Phys.
Rev. A 46, 1038 (1992).

[14] O. Shochetet al., Physica (Amsterdam)187A, 87 (1992).
[15] Y. Sawada, A. Dougherty, and J. P. Gollub, Phys. Rev

Lett. 56, 1260 (1986); D. Grieret al., Phys. Rev. Lett.56,
1264 (1986).

[16] F. C. Frank, Discuss. Faraday Soc.5, 48 (1949); W. Miao
et al., J. Mater. Sci.32, 1969 (1997).

[17] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett.4, 89
(1964); A. M. Morales and C. M. Lieber, Science279, 208
(1998).
179


