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We corroborate the idea of a close connection between replica-symmetry breaking and aging in the
linear response function for a large class of finite-dimensional systems with short-range interactions.
In these systems, which are characterized by a continuity condition with respect to weak random
perturbations of the Hamiltonian, the “fluctuation dissipation ratio” in off-equilibrium dynamics should
be equal to the static cumulative distribution function of the overlaps. This allows for an experimental
measurement of the equilibrium order parameter function. [S0031-9007(98)06959-2]
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The glassy state of matter can appear in systems witmicroscopic—atomic—level, which is impossible. (In
guenched disorder (like spin-glasses), or in nondisorderesimulations, the second objection disappears, and one can
systems. Ergodicity breaking takes a special form inget around the first one by working with smart algorithms
these systems. A rather generic situation is the existenand small enough systems.)
of many solid, “glass,” phases, which are very different The first objection is a very basic one: experimentally,
from one another, and unrelated among themselves bglassy systems exhibit a nonequilibrium behavior, which
symmetry transformations. Hence the Gibbs equilibriunrequires a dynamical description. Quite often, they ex-
measure decomposes into a mixture of many pure statelibit a special type of dynamical behavior called aging,
This phenomenon was first studied in detail in the mean.e., the property that extensive one-time quantities like
field theory of spin-glasses, where it received the nam¢he energy, magnetization, etc., are asymptotically close
of replica-symmetry breaking [1]. But it can be definedto time-independent values, whereas two-time quantities,
in a straightforward way and easily extended to othefike the autocorrelation functions and their associated
systems, by considering an order parameter function, thinear response functions, continue to depend on the time
overlap distribution function. This function measures theelapsed after the quench even for long times. Aging, de-
probability that two configurations of the system, pickedfined in this way, appears in mean field spin-glasses and
up independently with the Gibbs measure, lie at a giverhas been exhibited in spin-glass experiments [4,5]. We
distance from each other [2]. Replica-symmetry breakingvill not discuss systems undergoing “stabilization” [6]
is made manifest when this function is nontrivial. (sometimes called “physical aging” [7]), where one-time

The existence of nontrivial overlap distributions, quantities cannot be considered close to their asymptotic
first found in mean field systems, has been showvalues during typical experiments. (This phenomenon has
unambiguously, through numerical simulations, inbeen recently observed in a lattice gas model with con-
finite-dimensional spin-glass systems with short-rangestrained dynamics [8].) In aging dynamics the usual
interactions [3]. This order parameter function is aequilibrium properties do not hold. The analysis of some
very important tool for the mathematical descriptionspin-glass mean field models [9] has suggested, in par-
of the Gibbs state. Unfortunately it seems impossibldicular, that the usual fluctuation-dissipation relation be-
to access it experimentally for two reasons: (1) Largeween the correlation and the response should be modified
glassy systems never reach equilibrium at low temperain a well-defined way. This modification, which holds
tures; (2) The measurement of the distance betweewhen both the age of the system and the measurement
configurations requires a detailed observation at théme are large, involves the rescaling of the temperature
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by a “fluctuation-dissipation ratio” (FDR), which depends ues, ¢(7) and r(7). In short-range systems this regime
on the relation between the two times involved [10,11].relates to the property of “local equilibrium,” i.e., to the
This FDR can be found experimentally by simultaneoudact that any finite region of space reaches equilibrium
measurements of the noise and the response on variolecally. The Edwards-Anderson order parameter is de-
time scales and age scales. fined dynamically bygga = lim,—. ¢(7), and the usual
The aim of this paper is twofold. We shall first fluctuation-dissipation theorem asserts that,Jor gga,
show that, infinite dimensionalsystems withshort- X(g) = 1. The aging regime concerns systems with weak
rangeinteractions, there exists an identity relating the—ergodicity breaking, such that the correlatioy, ¢') re-
experimentally accessible—FDR to an equilibrium orderlaxes belowggs whenr — « (at fixed ¢') [14]. Then
parameter function. This static order parameter functionhe FDR X(g) can become different from unity in the
is an interesting new object. We shall then discuss itsegimeg < gga. Numerical measures of the FDR have
relationship to the usual distribution of overlaps. Ourbeen performed in short-range spin-glasses, ferromagnets,
argument relies on a perturbation of the original Hamil-and structural glass models [15], through parametric plots
tonian by the addition of some weak—but thermody-of the integrated response function versus the correlation
namic—random perturbations. This method has beefb]. The ratio7T/X(g) can be interpreted as an effective
recently used to derive interesting properties of the overtemperature [16].
lap distribution at equilibrium [12,13]. We wish to relate the FDR to an equilibrium order
We use the language of magnetic systems, and denog@arameter. Let us add to the original Hamiltonian a
by S, the spin at a poink of a lattice of sizeL? in d  perturbation of the forne H,, with
dimensions. We work with classical spins which are real
variables in a double well potential, and the Ising limit H, = Z hySxST () » 4)
will often be considered for simplicity. We cali/(S) x
the Hamiltonian. Our argument is rather general, and weyhere theh,’s are independent Gaussian random vari-
do not have to specify much the Hamiltonian: it containsgples of variance one, and@ is a translation of length
short-range interactions, inc&dimensional space; it may /2 in a fixed directiore, say, thex axis [so thatZ (x) =
contain quenched disorder or not. The evolution of they + (L/2)e]. The thermal expectation value of the per-
spin dynamics is governed by the Langevin equation afurbation(H,) is a contribution to the internal energy of

temperaturd’ the system which is extensive and self-averaging, i.e., in-
§ o= — oH + 1) dependent (in the thermodynamical limit) of the particular
* 98, e realization of the disorder contained in eithror H,.
where 7, is a white noise of variancén,(r)n,(+)) =  The interactiont,, which looks long range, is, in fact, a

2T 8,,6(r — t'). (We denote by angular brackets thermallocal perturbation in a different space. Let us divide the
averages, i.e., either in the dynamic framework, the averspace into two halvesS{ and S,) and rename the spins in
age with respect to the realization of the random noisethe right-hand part so thatif € S; thenT (x) € S, and
or in the static framework, the average with respect to thé 1) = S.. The total Hamiltonian can now be written as
Gibbs measure.) The system starts at time 0 from / / /

" - e = + H, + ,
a random initial condition. Important quantities are the H(S,8') = Hi($) + H(S) + B(S,S)

correlation functionC(z,t') = (1/N) > (S, (¢)S.(¢')), and T e Z WS S (5)
the response function, which measures the response of the = e
spins at time to an instantaneous field at tinne
, 1 8(S.(1)) The HamiltonianH; and H, refer, respectively, to the
R(t, 1) = N Z (1)) (2)  spinsinS, and S,. The termB(S, S’) is a surface term

The quantity which is measured experimentally (thermoreyvhose presence does not affect the averagé,of Drop-

o ; .~ping it, the Hamiltonian (5) characterizes a spin system
manent magnetization) is the integrated response functlo@T size L4/2, with two spinssS,, S’ on each site, and a
1 XMy 1

. t!
defined byy(r.#') = T [, di"R(z.1"). _ .. purely local interaction. Notice that in the case of disor-
The FDRX(q) is obtained by considering the infinite- yareq systems the spin systefiand S’ taken individu-

time limit of the response function, fixing the correlation g1y contain two independent realizations of the disorder.

functionC(z, #') to a given valuey [9-11], Since the perturbatio#l, is a sum of local terms, the
X(g) = lim ax(,1) / aC(t,1) 3) thermal expectation value (for almost all realizations of the
11100 o’ ot disorderXH,(t)) measured in the dynamics has a long-time

Cltr)=q limit which is equal to its equilibrium expectation value.

The usual equilibrium dynamics is obtained by sendingThe proof of this fact is standard for systems with short-
the two timest, ¢’ to infinity while keeping their differ- range interactions. We first notice that the free energy
encer =t — t' fixed. Then the correlation and responsedensityf(z) must reach, at long times, its equilibrium value
functions,C(z, ') andR(z, '), reach their equilibrium val-  f.q: if it were to converge to a valug(«) larger than the
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equilibrium one, one could always nucleate a bubble ofral result that holds for every sample in the case where
radiusr with the equilibrium free energy, with a cost of there is quenched disorder.
free energy less than or equalte! ~! + [ foq — f(0)]r?, We now turn to the statics. The thermal equilibrium
which becomes negative for large enoughTherefore the average ofH, is self-averaging with respect to disorder.
free energy reaches equilibrium, as well as its derivativéVe can thus evaluate it as follows:
with respect toe, proving the convergence diH,(z)). 1
(Notice that we do not discuss here the time scale for (Hy) = Ej — D e AHSTEREIN b S Sr . (11)
reaching this equilibrium, which may become very long s x
iLn some) systems: what matters here is that it is finite Wherlhtegrating by parts over the,’s, we obtain

— 00

We now compute the expectation value of the perturba- — _ 1 2
tion H, in the dynamics and in the statics. Sinds (7)) (H2) 'geNEh<l N §<SXST(X)> ) (12)
is self-averaging, it is equal to its average over the rani ki i i f | h ith
dom field 2 and all other possible quenched disorder in nvoking again inéar response for small toget er wit
the system, which we denote b, (H,(1)). In the dy- the fact thatx_ and .T(x) are |nf_|n|tely far apart in the
namical framework, starting from the Langevin equationthermOdyn"’mIC limit, we can write
in the presence of the perturbatiert/,, we express the Eh<SxST(x)>2 = Eh<SxSy>2 + 0(e), (13)
average ofH, in the Martin-Siggia-Rose formalism [17]
as a path integral,

(Hy(1)) = Ej(Hy(2))

_ [ D($) D) 55S b8, (105 70(1).

(6)  The last equality, involving the overlap distributiéh (¢)
for the perturbed system, results from the decomposition
of the Gibbs measure into a sum of pure states character-

wherex andy are two far away spins not directly coupled
in H,. We obtain then (up to higher orderséi

<H2>=BeNEh(1 - f quf(q)f). (14)

with the dynamical action

1[S,i8] = f dr' Z iS.(t" ized by a clustering property [2].
P Comparing the two results, (10) and (14), for the dy-
. OH OH, . namics and the statics, we see that the second moments of
X Se 35S, e 35S, +iTSc |- (7)  the dynamical order parameter functiéki. (¢)/dg and of

) i the static oneP.(g) coincide for the system in the pres-
Integrating by parts over the,’s, and observing that the ence of the perturbatiosH,. It is straightforward to gen-
insertion of iS,(¢') acts as the derivative with respect g gjize this derivation to perturbations of the tyfg =
to an impulsive magnetic field at site and at timet/, S S ST ST ), where T;(x) = x + (k/pL)e.
8/8hx(1'), we obtain [18] (For p = 1 the perturbation is nothing but a small ran-

/ / dom field term.) This shows that thgh moments of the
(Sx(O8:(t)ST (0 (1)) two functionsdX.(q)/dg andP.(g) coincide.
(8) Let us now_ consider the functionsX(¢) =
lime_oXe(g) andP(q) = lim.—o P.(g). (To be precise,
we need to introduce simultaneously all the perturbations
(vith arbitrary p and strengthe,,, and send all the,’s
to 0.) These are two characteristic functions of our

Ep(Hy(1)) = 2¢ Z En #()(l‘)

In the linear response regin@e < 1, the average of the
product on far away sites factorizes up to terms of orde
€, and one has

0 bl One describes the violation of the FDR in the

Ey —— (S, (1)S:(t) ST ()) = C(t,t)R(t, 1 problem.
h BhT(x)(t)< DS:()S T (1)) (& ORE 1) out of equilibrium dynamics, and the other describes
+ O(e). (9) some equilibrium correlations. These two functions are

Assuming that the bound holds uniformly in time (remem-€qual, and thus an unexpected link between statics and
ber that the large volume limit is taken before the largedynamics is established.
time limit) and substituting the definition (3) of the FDR  We now discuss the relationship between the new func-

we obtain for large values of tionsdX /dq, P(g), and the more conventional definitions
1 1 dX of the FDR and the overlap distribution. Let us first

Ze,BN] dgX.(q)qg = e,BN(l - f dg —= q2>, consider the equilibrium distributioR(g). Clearly, in a
0 0 dq situation with ergodicity breaking and several nearly de-

(10) generate pure states, the effect of ¢hgerturbation which
where we have assumed lim. C(z,0) = 0 for simplic-  scales assvL4 induces a reshuffling of the weights of
ity. We have denoted b¥. the FDR of the system with the states. A simple example appears when there is an
the perturbed Hamiltonian. Notice that this is a very gen-exact degeneracy due to a symmetry. For instance, in
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