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Quantized Vortices and Collective Oscillations of a Trapped Bose-Einstein Condensate
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Using a sum rule approach we calculate the frequency shifts of the quadrupole oscillations of a
harmonically trapped Bose gas due to the presence of a quantized vortex. Analytic results are obtained
for positive scattering lengths and largeN where the shift relative to excitations of opposite angular
momentum is found to be proportional to the quantum circulation of the vortex and to decrease as
N22y5. Results are also given for smaller values ofN covering the transition between the ideal gas and
the Thomas-Fermi limit. The splitting of the collective frequencies in toroidal configurations is also
discussed. [S0031-9007(98)06849-5]
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After the experimental realization of Bose-Einstein con
densation in dilute atomic gases, the study of the collecti
excitations of these unique inhomogeneous quantum s
tems has been the object of both experimental [1–4] a
theoretical [5,6] work (for a recent theoretical review, se
[7]). These oscillations are characterized by proper qua
tum numbers, reflecting the symmetry of the confining po
tential. In an axially symmetric trap the third componen
of angular momentum is a natural quantum number and
the system is in a time reversal invariant configuration, el
mentary excitations carrying opposite angular momentu
are degenerate. This degeneracy is in general remove
time reversal symmetry is broken. The purpose of th
Letter is to describe the frequency shifts produced by th
presence of a quantized vortex. In view of the importan
role played by vortices in understanding the mechanism
of superfluidity, the possibility of their spectroscopic diag
nostics is highly interesting since the measurements of c
lective frequencies can be carried out with high precisio
in these systems.

The occurrence of splitting in the presence of a vorte
can be simply understood by noting that the averag
velocity flow associated with the collective oscillation
can be either parallel or opposite to the vortex flow
depending on the sign of the angular momentum carri
by the excitation. This produces a shift of the collectiv
frequency of orderdvyv , yyc, wherey , 1yR is the
velocity of the vortex flow andc is the sound velocity.
In a trapped Bose gasc increases linearly with the radius
R of the condensate, whilev is practically independent
of R, so one expects relative shifts of the order of1yR2.
These effects are larger than the typical corrections to t
Thomas-Fermi limit due to finite size effects which, in
the absence of the vortex, behave like logRyR4 [8]. The
problem of the frequency shift produced by a quantize
vortex has been already the object of theoretical work usi
semiclassical approaches based on a largeN expansion
[9], as well as by full numerical solution of the linearized
equations of motion [10].

In this Letter we develop a sum rule approach [11
which is expected to provide exact results for the frequen
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splitting in large systems. The method can be also app
to calculate the frequency shifts for small values ofN . Let
us introduce the strength distribution function

S6sEd ­
X
n

jknjF6j0lj2dsE 2 h̄vn0d (1)

relative to the operatorsF6 ­
PN

k­1 f6srkd carrying op-
posite angular momenta. In Eq. (1)h̄vn0 ­ sEn 2 E0d
are the excitation energies relative to the eigenstatesjnl of
the Hamiltonian

H ­
X

i

√
1

2M
p2

i 1 Vextsrid

!
1 g

X
i,j

dsri 2 rjd ,

(2)

which describesN interacting bosons confined by a
external potential. The potentialVextsrd ­ Msv2

'r2
' 1

v2
z z2dy2, with r2

' ­ x2 1 y2, is assumed to be axially
symmetric, and the interatomic force is a contact tw
body interaction whose coupling constantg ­ 4p h̄2ayM
is fixed by thes-wave scattering lengtha.

In the following we will focus on the collective oscil-
lations of low multipolarity which are easily excited in
experiments by suitable modulation of the harmonic tra
For the quadrupole case we will consider the modes
cited by the operators

f6 ­ sx 6 iyd2 (3)

and

f6 ­ sx 6 iyd z , (4)

carrying angular momentumm ­ 62 and m ­ 61, re-
spectively (here and in the following we will identify
m with the third component of angular momentum o
the elementary excitation). Only excitations withm fi 0
are relevant for the present discussion.

In the absence of vortices the ground state has z
angular momentum and, for largeN and positive scattering
lengths, the collective states excited by the operat
(3) and (4) are well described by hydrodynamic theo
of superfluids. This yields [6] the resultv6 ­

p
2 v'

and v6 ­
p

v2
' 1 v2

z for the m ­ 62 and m ­ 61
© 1998 The American Physical Society
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frequencies. Notice that these results differ from th
ideal gas predictions,v6 ­ 2v' and v6 ­ v' 1 vz ,
as a consequence of interaction effects which suppress
contribution of the kinetic energy pressure term in th
equations of motion. Differently from the quadrupole ex
citations, the frequencies of the dipole modes excited
f6 ­ x 6 iy are instead unaffected by two-body intera
tions and are given byv6 ­ v'. This behavior is the
consequence of the translational invariance of the int
atomic force which cannot affect the motion of the cent
of mass, even in the presence of a vortex.

The moments

m6
p ­

Z `

0
dE fS1sEd 6 S2sEdg Ep (5)

of the strength distribution (1) can be calculated usi
closure relations. For the lowest moments we find t
following results:

m2
0 ­ kfF2, F1gl ­ 0 , (6)

m1
1 ­ kfffF2, fH, F1ggggl ­

Nh̄2

M
kj===f1j2l , (7)

m2
2 ­ kffffF2, Hg, fH, F1ggggl ­ Nkf j2, j1gl , (8)

where the averagek l is taken on the statej0l which may
or may not contain a vortex and we have used the prope
F

y
1 ­ F2.
The first commutator (6) vanishes because the opera

F1 andF2 depend only on the spatial coordinates. Th
double commutator (7) is the analog of thef-sum rule
[12] and gets contributions only from the kinetic energ
term since both the external potential and the two-bo
interaction commute withF6. Finally the current opera-
tors entering the third sum rule are defined by

j6 ­
h̄

2Mi
===f6srd ? p 1 H.c., (9)

wherep is the usual momentum operator. Evaluation
the sum rulesm1

1 and m2
2 is straightforward in the case

of the quadrupole operators (3) and (4). Form ­ 62 we
find the result

m1
1 ­

8h̄2

M
Nkr2

'l , (10)

m2
2 ­

16h̄3

M2 Nklzl ­
16h̄4

M2 Nk , (11)

wherelz is thezth component of the angular momentum
operator, whose average value, in the case of axia
symmetric geometry, can be expressed in terms of
quantum of circulation,k, of the vortex (k ­ 61, 62, . . .).

The results for the momentsm2
0 , m1

1 , andm2
2 can be

used to calculate the shift of the collective frequenci
when the number of atoms in the trap is large anda
is positive. In fact, in this limit, where the behavior o
the system is properly described by hydrodynamic theo
of superfluids, one expects that the moments calcula
e
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above will be exhausted by two modes with frequencyv6

excited, respectively, by the operatorsF6:

S6sEd ­ s6dsE 2 h̄v6d , (12)

wheres6 are the corresponding strengths. Assumpti
(12) is equivalent to a Bijl-Feynman ansatz [13] ofte
used to describe the collective excitations in interacti
many-body systems. In the case of superfluid helium
provides an exact description of the excitation spectr
in the phonon regime (for a recent discussion on s
rules and collective excitations in Bose superfluids, s
for example, [14]).

Let us discuss the consequence of the vanishing of
m2

0 moment (6). With assumption (12) for the streng
distribution one immediately finds the results1 ­ s2

and the splitting between the two frequencies can
directly written as

h̄sv1 2 v2d ­ m2
2 ym1

1 . (13)

Use of (10) and (11) then yields the relevant result

v1 2 v2 ­
2
M

klzl
kr2

'l
­

7v'k

l2y5

√
15

Na
a'

!22y5

(14)

for the m ­ 62 modes, wherea' ­
p

h̄yMv' is the
oscillator length in the radial direction, whilel ­ vzyv'

characterizes the deformation of the harmonic trap. T
same calculation can be carried out for the modes exc
by them ­ 61 quadrupole operators (4). In this case th
result is

v1 2 v2 ­
2
M

klzl
kr2

' 1 2z2l
­

7v'kl8y5

1 1 l2

√
15

Na
a'

!22y5

.

In the last equalities of the above equations we ha
used the Thomas-Fermi approximation [15] to evalua
the square radii of the condensate. Notice that for sph
cal trapping the splitting between them ­ 62 quadrupole
frequencies is twice the splitting between them ­ 61
modes. It is worth noting that the above results depend
macroscopic features of the system (angular momen
and square radii) and for largeN they are consequently
insensitive to microscopic detalis of the wave functio
such as, for example, the structure of the vortex core.
large N the shifts become smaller and smaller showi
that in this limit the effects associated with the current
the vortex are small corrections to the collective flow
the oscillation. Nevertheless the splittings can be sizab
For example, using a spherical configuration withaya' ­
1023 andN ­ 106 and taking one quantum of circulatio
(k ­ 1) one finds that the relative shiftsv1 2 v2dyv

of the m ­ 62 states is about 10%, having used th
largeN result

p
2 v' for the average frequencyv. This

shift is much larger than the typical experimental unce
tainties in the measurements of the collective frequenc
[1–4].

It is worth pointing out that the frequency shift du
to the vortex is exhibited by the quadrupole excitation
1755
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but not by the dipole modes excited by the operato
f6 ­ x 6 iy. In fact in the dipole case the operator
j6 ­ h̄spx 6 ipydyMi commute and the sum rulem2

2
identically vanishes. As a consequence one findsv1 ­
v2 as expected from general arguments. Notice, howev
that in addition to the above modes excited by the cen
of mass operators, another dipole mode, localized near
core of the vortex, has been predicted [10] to occur wi
frequency different fromv'. It has been suggested [16
that this mode could play an important role in driving th
instability of the vortex.

The above results for the shift of the quadrupole fre
quencies hold for largeN , where the assumption (12) tha
the operatorsf1 and f2 excite a single mode is justi-
fied. When the dimensionless parameterNaya' becomes
small, this assumption is no longer valid. In particula
in the limit of a noninteracting gas, a vortex with quan
tum of circulationk ­ 11 corresponds to putting all the
atoms in the1p state (lz ­ 11) of the harmonic oscilla-
tor hamiltonian and them ­ 22 operatorf2 gives rise
to dv ­ 2v0 as well as todv ­ 0v0 transitions, and,
vice versa, the operatorf1 gives rise only todv ­ 2v0
transitions. The corresponding strengths are, respective
s2

up ­ 2a4
'N , s

2
down ­ 4a4

'N , and s1 ­ 6a4
'N . As a

consequence, in order to study the transition from the no
interacting to the largeN regime we have to remove the
single-mode assumption (12) for the strength distributio
S2. In the following we will use the ansatzS2sEd ­
s2

updsE 2 h̄v2
upd 1 s

2
downdsE 2 h̄v

2
downd which prop-

erly accounts for the behavior of the strength distributio
in both the large and smallN limits. Of course in this case
the knowledge of the three sum rules (6)–(8) is no long
sufficient to determine the collective frequencies and res
(13) for the splitting is no longer valid. In order to cal-
culate the new frequencies and strengths we have eva
ated the additional momentsm1

3 , m2
4 , andm1

5 . For the
m ­ 62 quadrupole operators (3) we find the results

m1
3 ­

16h̄4v
2
'

M
Nkr2

'l

"
1 1

Ekin'

Eho'

#
, (15)

m2
4 ­

64h̄5v
2
'

M2 Nklzl ­
64h̄6v

2
'

M2 Nk , (16)

m1
5 ­

32h̄6v
4
'

M
Nkr2

'l

"
1 1 3

Ekin'

Eho'

1
Ṽint

16Eho'

#
.

(17)

In (15)–(17)Ekin'
and Eho'

are the radial contributions
to the kinetic and oscillator energies, respectively, and

Ṽint ­ ga4
'

Z
dr

"
8k2n2

0

r4
'

1 =2
'n0

√
j==='n0j

2

n0
2 =2

'n0

!#
is the contribution tom1

5 arising from two-body inter-
actions wheren0 is the density of the condensate an
k is the quantum of circulation of the vortex. Resu
1756
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(15) for m1
3 permits one to obtain directly the largeN

behavior of the quadrupole frequency. In fact, in thi
limit the kinetic energy term in (15) is negligible and
the ratiosm1

3 ym1
1 d1y2 approaches the hydrodynamic resulp

2 h̄v'. Result (16) form2
4 provides a crucial check of

the validity of the main result (14). In fact, one can se
that in the largeN limit the single-mode approximation
(12), with the dispersion law

v6 ­
p

2 v' 6 Dv , (18)

and Dv ­ v1 2 v2 given by (14), is consistent with
result (16) for the sum rulem1

4 , up to effects linear
in Dv. Differently from the other sum rules,m1

5
depends explicitly on the two-body interaction. This
contribution is very sensitive to the core region of the
vortex and is important to describe the crossover from th
noninteracting to the Thomas-Fermi limit.

We have calculated numerically the sum rulesm6
p with

p ­ 1, . . . , 5 using the solution of the Gross-Pitaevski
equation for a vortex of quantum circulationk ­ 11
[17]. These sum rules are then used to evaluate t
quadrupole energies and strengths using the new ans
for the strength distribution. The results for a spherica
potential are reported in Fig. 1, where, for simplicity, we
have plotted only the frequencyv2

down of the lowest mode
excited by f2. One can prove thatv2

down, calculated
with the above procedure, corresponds to a rigorous upp
bound to the lowest frequency of the modes given by th
full solution of the linearized Gross-Pitaevskii equation
The strength relative to the high frequency mode excite
by f2 vanishes rapidly whenN increases and hence
this mode is not physically relevant, except for sma
values ofN . In the figure we also report the average
energyh̄v3,1 ­ sm1

3 ym1
1 d1y2 calculated in the absence of

vortices. This energy turns out to be very close to th
exact numerical solution of the linearized Gross-Pitaevsk
equation (differences are always smaller than 0.5%).

The frequenciesv6 start, respectively, from2v' and
0v' and approach the value

p
2 v' for large N . In

the same limit the strengthss1 and s
2
down tend to the

asymptotic value4
p

2 a4
'Nl2y5s15Naya'd2y5y7. The fig-

ure shows that for largeNaya' the asymptotic disper-
sion relation (18) reproduces well the behavior of th
two collective frequencies. Notice that for such values o
Naya' the strengthss1 ands

2
down practically coincide,

confirming the validity of the single-mode assumption
(12). The strengths2

up is simply given by the difference
s1 2 s

2
down and differs significantly from zero only for

very small values ofNaya'. The small asymmetry of the
calculated frequencies with respect to the hydrodynam
value is a consequence of the fact that for the values
Naya' reported in the figure the excitation energy differs
from

p
2 v' even in the absence of vortices.

We have also explored in an explicit way the cas
of weak interactions (Naya' ø 1): in this case the
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FIG. 1. Frequencies (a) and strengths (b) relative to them ­
62 quadrupole modes in the presence of ak ­ 1 vortex, as
a function of Naya' for a spherical trap. The dotted lines
correspond to the largeN behavior (18). The arrow indicates
the Thomas-Fermi limitv ­

p
2v'. The dashed dotted line

corresponds to the ratiosm1
3 ym1

1 d1y2 without vortex. Strengths
are given in units ofa4

'N.

dispersion law of the lowest energy solution is given by

v2
down ­ v'

√
Na
a'

! s
l

2p
. (19)

The excitation energy (19) becomes negative f
a , 0. It has been, however, shown that system
interacting with attractive forces do not exhibit vortica
configurations because of the fragmentation of the co
densate [18].

It is finally interesting to discuss how the above resul
are modified by changing the geometry of the problem
This is important because toroidal configurations are e
pected to suppress the mechanisms of instability of the v
tex [16]. A useful way to pin a vortex might be achieve
with a thin laser beam stabilizing the core of the vorte
along thez axis. The thicknessd of the beam can be a few
microns. This is larger than the size of the core, fixed b
the coherence lengthj ­ a2

'yR, but can be significantly
smaller than the size of the condensateR. In this case
the structure of the core of the vortex will be significantl
modified by the pinning, but the macroscopic behavior
the collective excitations and, in particular, result (14) fo
the splitting, will be modified in a minor way. An estimate
of this effect can be obtained by calculating the change
kr2

'l due to the presence of the repulsive potential gen
ated by the laser beam. We expect small effects ifd ø R.

A quite different behavior is achieved by choosing
ring geometry. In the case of an ideal ring of radiusR
the problem is analytically soluble using Bogoliubov the
or
s
l
n-

ts
.

x-
or-
d
x

y

y
of
r

of
er-

a

-

ory [16]. In this case the natural excitation operators hav
the form f6 ­ exps6imfd, where f is the azimuthal
angle and6m is the angular momentum carried by the
excitation. The kinetic energy operator can be replace
by s2h̄2y2MR2d≠2y≠f2 and the sum rules (7) and (8)
becomem1

1 ­ h̄2m2yMR2 andm2
2 ­ 2h̄3m3klzlyM2R4.

Using the Bijl-Feynman ansatz (12) one immediately finds
v1 2 v2 ­ 2h̄mkyMR2, wherek is the quantum of cir-
culation of the vortex, in agreement with the results re-
cently discussed in [16]. Notice that for largeR the lowest
collective excitations in the ring geometry correspond to
one-dimensional compression waves with dispersion

v ­ cjmjyR 6 h̄kmyMR2 , (20)

wherec is the sound velocity. These frequencies, which
are the analog of (18), coincide with the ones calculate
for a system at rest in a frame rotating with angular
velocity v ­ h̄kyMR2.

Useful discussions with F. Dalfovo, A. L. Fetter,
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Note added.—After completing this paper we received
a preprint by A. A. Svidzinsky and A. L. Fetter [19] based
on a hydrodynamic approach. The results of this work ar
in full agreement with our findings.
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