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Quantized Vortices and Collective Oscillations of a Trapped Bose-Einstein Condensate
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Using a sum rule approach we calculate the frequency shifts of the quadrupole oscillations of a
harmonically trapped Bose gas due to the presence of a quantized vortex. Analytic results are obtained
for positive scattering lengths and largé where the shift relative to excitations of opposite angular
momentum is found to be proportional to the quantum circulation of the vortex and to decrease as
N~2/5. Results are also given for smaller values\btovering the transition between the ideal gas and
the Thomas-Fermi limit. The splitting of the collective frequencies in toroidal configurations is also
discussed. [S0031-9007(98)06849-5]
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After the experimental realization of Bose-Einstein con-splitting in large systems. The method can be also applied
densation in dilute atomic gases, the study of the collectivéo calculate the frequency shifts for small value®vof Let
excitations of these unique inhomogeneous quantum systs introduce the strength distribution function
tems has been the object of both experimental [1-4] and 5
theoretical [5,6] work (for a recent theoretical review, see S«(E) = Z [n| F<|O)I"6(E — Tiwno) (1)
[7]). These oscillations are characterized by proper quan- "
tum numbers, reflecting the symmetry of the confining poJelative to the operatorg. = >, f-(r) carrying op-
tential. In an axially symmetric trap the third componentposite angular momenta. In Eq. (&,0 = (E, — Eo)
of angular momentum is a natural quantum number and i&re the excitation energies relative to the eigenstatesf
the system is in a time reversal invariant configuration, elethe Hamiltonian
mentary excitations carrying opposite angular momentum
are degenerate. This degeneracy is in general removed if g = Z( Pl + Ve (r;) ) +g Z s(r; — 1)),
time reversal symmetry is broken. The purpose of this M i<j
Letter is to describe the frequency shifts produced by the (@)
presence of a quantized vortex. In view of the importaniyhich describesN interacting bosons confined by an
role played by vortices in understanding the mechanismgxternal potential The pOtentia’{ext(r) = M(wirl +
of superfluidity, the possibility of their spectroscopic diag- w2z?)/2, with ri = x2 + y2, is assumed to be axially
nostics is highly interesting since the measurements of Cobymmetnc and the interatomic force is a contact two-
lective frequencies can be carried out with high precisiorhody interaction whose coupling constant 4 hi2a/M
in these systems. is fixed by thes-wave scattering length.

The occurrence of splitting in the presence of a vorteX |n the following we will focus on the collective oscil-
can be simply understood by noting that the averaggations of low multipolarity which are easily excited in
VelOCity flow associated with the collective oscillation experiments by suitable modulation of the harmonic trap_

can be either parallel or opposite to the vortex flow,For the quadrupole case we will consider the modes ex-
depending on the sign of the angular momentum carriedited by the operators

by the excitation. This produces a shift of the collective

— : 2
frequency of ordebw/w ~ v/c, wherev ~ 1/R is the [z = =iy 3)
velocity of the vortex flow and: is the sound velocity. and
In a trapped Bose gasincreases linearly with the radius fo=(x*iy)z (4)

R of the condensate, while is practically independent
of R, so one expects relative shifts of the orderlgR?.  carrying angular momentunz = +2 andm = *1, re-
These effects are larger than the typical corrections to thepectively (here and in the following we will identify
Thomas-Fermi limit due to finite size effects which, in m with the third component of angular momentum of
the absence of the vortex, behave like logr* [8]. The the elementary excitation). Only excitations with# 0
problem of the frequency shift produced by a quantizecare relevant for the present discussion.
vortex has been already the object of theoretical work using In the absence of vortices the ground state has zero
semiclassical approaches based on a la¥gexpansion angular momentum and, for largeand positive scattering
[9], as well as by full numerical solution of the linearized lengths, the collective states excited by the operators
equations of motion [10]. (3) and (4) are well described by hydrodynamic theory
In this Letter we develop a sum rule approach [11]of superfluids. This yields [6] the resuld. = v2 w,
which is expected to provide exact results for the frequencegnd w- = V% + w2 for the m = £2 and m = =1
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frequencies. Notice that these results differ from theabove will be exhausted by two modes with frequency
ideal gas predictionsp- = 2w, andw+ = w; + w;, excited, respectively, by the operatdrs:

as a consequence of interaction effects which suppress the s

contribution of the kinetic energy pressure term in the $=(E) = 078(E — ho-), (12)
equations of motion. Differently from the quadrupole ex-where o= are the corresponding strengths. Assumption
citations, the frequencies of the dipole modes excited by12) is equivalent to a Bijl-Feynman ansatz [13] often
f+= = x * iy are instead unaffected by two-body interac-used to describe the collective excitations in interacting
tions and are given bw+ = w,. This behavior is the many-body systems. In the case of superfluid helium it
consequence of the translational invariance of the interprovides an exact description of the excitation spectrum
atomic force which cannot affect the motion of the centerin the phonon regime (for a recent discussion on sum

of mass, even in the presence of a vortex. rules and collective excitations in Bose superfluids, see,
The moments for example, [14]).
. o Let us discuss the consequence of the vanishing of the
m, = fo dE[S+(E) = S—(E)]E" (5)  my moment (6). With assumption (12) for the strength

distribution one immediately finds the resutt™ = o~

of the strength distribution (1) can be calculated usingand the splitting between the two frequencies can be
closure relations. For the lowest moments we find theyirectly written as

following results:

i — w-) =m; /m. 13
my = AF . F:) =0, © on = 0 = m -
2 Use of (10) and (11) then yields the relevant result
my = ([F-,[H,F.]) = V(|Vf+|2>, (7) 2 {l,) Tw | Kk Na 25
W+ — W- = M <ri> = /\2/5 15; (14)

my =([F- HL[H,F:]) = N{j-.j+D. (8)

where the averagé) is taken on the statd)) which may for the m = +2 modes, where:, = \/i/Mw, is the

or may not contain a vortex and we have used the propert§Scillator length in the radial direction, while= «./w,

FI —F Characterizes the deformation of the harmonic trap. The
The first commutator (6) vanishes because the operato ame calculiltlon can be carried out for the ques excited

F+ and F_ depend only on the spatial coordinates. The y them = =1 quadrupole operators (4). In this case the

double commutator (7) is the analog of tiiesum rule result is 8/ ~2/5
[12] and gets contributions only from the kinetic energy , _ ., — 2 (L) _Tw. kA Na
term since both the external potential and the two-body M (r? + 272) 1+ A2 aj '

interaction commute withF.. Finally the current opera- . .
- y P In the last equalities of the above equations we have

tors entering the third sum rule are defined by used the Thomas-Fermi approximation [15] to evaluate
je = L_Vfi(r) -p + H.c., (9) the square radii of the condensate. Notice that for spheri-
2Mi cal trapping the splitting between the = *2 quadrupole
wherep is the usual momentum operator. Evaluation offrequencies is twice the splitting between the= *1
the sum rulesn;” andm; is straightforward in the case modes. Itis worth noting that the above results depend on
of the quadrupole operators (3) and (4). ko= +2we  macroscopic features of the system (angular momentum

find the result and square radii) and for larg€ they are consequently
82 insensitive to microscopic detalis of the wave function,
m = 573 N(r1)., (10)  such as, for example, the structure of the vortex core. For

large N the shifts become smaller and smaller showing
3 4 that in this limit the effects associated with the current of
_ 16k 167 ; .
my; = ——N(l.) = — Nk, (11) the vortex are small corrections to t_he_z collective fI(_)W of
M M the oscillation. Nevertheless the splittings can be sizable.
wherel, is the zth component of the angular momentum For example, using a spherical configuration wiffa, =
operator, whose average value, in the case of axially0~2 andN = 10° and taking one quantum of circulation
symmetric geometry, can be expressed in terms of théx = 1) one finds that the relative shifw: — w-)/w
guantum of circulationk, ofthe vortex ¢ = *1,*2,...). of the m = =2 states is about 10%, having used the
The results for the momenis; , m; , andm, can be largeN resultv/2 w, for the average frequenay. This
used to calculate the shift of the collective frequenciesshift is much larger than the typical experimental uncer-
when the number of atoms in the trap is large and tainties in the measurements of the collective frequencies
is positive. In fact, in this limit, where the behavior of [1-4].
the system is properly described by hydrodynamic theory It is worth pointing out that the frequency shift due
of superfluids, one expects that the moments calculatetd the vortex is exhibited by the quadrupole excitations,
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but not by the dipole modes excited by the operator§15) for mi permits one to obtain directly the largé
f+ =x = iy. In fact in the dipole case the operatorsbehavior of the quadrupole frequency. In fact, in this
j+ = h(py * ip,)/Mi commute and the sum rule, limit the kinetic energy term in (15) is negligible and
identically vanishes. As a consequence one fiads= the ratio(ms /m;)'/? approaches the hydrodynamic result
w— as expected from general arguments. Notice, however/2 iw ;. Result (16) form; provides a crucial check of
that in addition to the above modes excited by the centethe validity of the main result (14). In fact, one can see
of mass operators, another dipole mode, localized near ththat in the largeN limit the single-mode approximation
core of the vortex, has been predicted [10] to occur with(12), with the dispersion law
frequency different fromw . It has been suggested [16]
f[hat th_ig mode could play an important role in driving the ws = V2w, = Aw., (18)
instability of the vortex.

The above results for the shift of the quadrupole fre-
quencies hold for large/, where the assumption (12) that and Aew = w; — w- given by (14), is consistent with
the operatorsf; and f_ excite a single mode is justi- result (16) for the sum ruleny, up to effects linear
fied. When the dimensionless parame¥er/a, becomes N Aw. Differently from the other sum rulesms
small, this assumption is no longer valid. In particular,depends explicitly on the two-body interaction. This
in the limit of a noninteracting gas, a vortex with quan- contribution is very sensitive to the core region of the
tum of circulationk = +1 Corresponds to putting all the vortex and is important to describe the crossover from the
atoms in thel p state (. = +1) of the harmonic oscilla- noninteracting to the Thomas-Fermi limit.
tor hamiltonian and then = —2 operator f_ gives rise We have calculated numerically the sum rUb; with
t0 Sw = 2wy as well as todw = Ow, transitions, and, » = L,...,5 using the solution of the Gross-Pitaevskii
vice versa, the operatgt; gives rise only toSw = 2w, €quation for a vortex of quantum circulation = +1

transitions. The corresponding strengths are, respectivel{7]. These sum rules are then used to evaluate the
oo =2a*N, 0igun = 4a% N, ande* = 6a* N. As a quadrupole energies and strengths using the new ansatz

consequence, in order to study the transition from the norfor the strength distribution. The results for a spherical
interacting to the largev regime we have to remove the Potential are reported in Fig. 1, where, for simplicity, we
single-mode assumption (12) for the strength distributiorhave plotted only the frequeneyy,w, of the lowest mode
S_. In the following we will use the ansatg (£) =  excited by f-. One can prove thaig,w,, calculated
Tpd(E — fiwg) + Odound(E — liwgown) Which prop- with the above procedure, corresponds to a rigorous upper
erly accounts for the behavior of the strength distributionoound to the lowest frequency of the modes given by the
in both the large and sma¥l limits. Of course in this case full solution of the linearized Gross-Pitaevskii equation.
the knowledge of the three sum rules (6)—(8) is no longer he strength relative to the high frequency mode excited
sufficient to determine the collective frequencies and resulfY /- vanishes rapidly whenV increases and hence
(13) for the splitting is no longer valid. In order to cal- this mode is not physically relevant, except for small
culate the new frequencies and strengths we have evaliy@lues of N. In the figure we also report the average
ated the additional momentsy, m; , andmy. Forthe energyiws, = (ms /my)"/? calculated in the absence of

m = +2 quadrupole operators (3) we find the results ~ Vortices. This energy turns out to be very close to the
exact numerical solution of the linearized Gross-Pitaevskii

165%w? Ev: equation (differences are always smaller than 0.5%).
+ L 2 kin . .
my = NG| 1+ e | (15) The frequencies— start, respectively, frolw, and
o 0w, and approach the valug2 w, for large N. In
s 0 2 the same limit the strengthe ™ and o4, tend to the
- _ Gl 60w )  asymptotic valuey/2 ai N \**(15Na/a,)*°/7. The fig-
my = 2 < z/ 2 K, (1 ) H H
M M ure shows that for larg&va/a, the asymptotic disper-
sion relation (18) reproduces well the behavior of the
32wt Eiin Vot two collective frequencies. Notice that for such values of
my = v NG| 1+ 3 E -+ 161; : Na/a, the strengthsr* and og,w, practically coincide,
ho, ho, 17) confirming the validity of the single-mode assumption

_ o (12). The strengthr,, is simply given by the difference
In (15)—(17) Exin, and Ey,, are the radial contributions 4+ — 3. and differs significantly from zero only for
to the kinetic and oscillator energies, respectively, and  yery small values oNVa/a . The small asymmetry of the

~ 8x2n2 \v 2 calculated frequencies with respect to the hydrodynamic
Vine = ga* [ dr|: ASLUON V2 no (4' ol _ Vino):|

7 value is a consequence of the fact that for the values of
L Na/a, reported in the figure the excitation energy differs
is the contribution toms arising from two-body inter- from+/2 @, even in the absence of vortices.
actions wheren, is the density of the condensate and We have also explored in an explicit way the case
k is the quantum of circulation of the vortex. Resultof weak interactions Na/a, < 1): in this case the
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20 | - ory [16]. In this case the natural excitation operators have
. Q0 the form f. = exp(*£imd¢), where ¢ is the azimuthal
L angle and=m is the angular momentum carried by the
o o , excitation. The kinetic energy operator can be replaced
g 10 F down by (—h?/2MR?)9%/9¢? and the sum rules (7) and (8)
- becomem; = h2m?/MR? andm; = 21*m3(l,)/M*R*.
05 @ Using the Bijl-Feynman ansatz (12) one immediately finds

w+ — w- = 2hmk/MR?*, wherex is the quantum of cir-
culation of the vortex, in agreement with the results re-
cently discussed in [16]. Notice that for largethe lowest
collective excitations in the ring geometry correspond to
one-dimensional compression waves with dispersion

strength

w = clm|/R = hikm/MR?, (20)

wherec is the sound velocity. These frequencies, which
R I — are the analog of (18), coincide with the ones calculated

Na/a for a system at rest in a frame rotating with angular

ho velocity w = fik /MR?.
FIG. 1. Frequencies (a) and strengths (b) relative tonthe Useful discussions with F. Dalfovo, A.L. Fetter,
+2 quadrupole modes in the presence oka= 1 vortex, as M. Gunn, and N. Wilkin-Gunn are acknowledged. This
a function of Na/a, for a spherical trap. The dotted lines work was supported by the BEC advanced research
correspond to the larg& behavior (18). The arrow indicates project of INFM and by the National Science Foundation
the Thomas-Fermi limitwo = +/2w,. The dashed dotted line under Grant No. PHY94-07194
corresponds to the rationy /m,")'/? without vortex. Strengths Note added—.After com Ietin. this paper we received
are given in units of:4 N. _ ' compieting pap
a preprint by A. A. Svidzinsky and A. L. Fetter [19] based

) . L on a hydrodynamic approach. The results of this work are
dispersion law of the lowest energy solution is given by i, ¢ agreement with our findings.

_ Nal | A
@Ddown — (l)J_(Z) % . (19)
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