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Sierpinski Gasket in a Reaction-Diffusion System
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We shall show by computer simulations that a Bonhoeffer van der Pol type reaction-diffusion system
in one dimension reveals a curious spatiotemporal pattern in the motion of interacting pulses. For
suitably chosen nonlinearity and parameters, the trajectory of pulses exhibits a self-similar regular
pattern like a Sierpinski gasket in the space-time coordinate. This is caused by self-replication of a
pulse and annihilation and/or preservation of propagating pulses upon collision. The formation of the
Sierpinski gasket can be understood by mapping the time evolution of pulses to an equivalent cellular
automaton. [S0031-9007(98)06956-7]

PACS numbers: 82.40.Bj, 05.45.+b, 82.20.Mj, 82.30.–b
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Pulse dynamics far from equilibrium has attracte
much interest recently. Computer simulations of variou
reaction-diffusion systems have revealed an unexpecte
rich variety of dynamical behaviors of pulses.

One of the most remarkable properties is that prop
gating pulses do not necessarily annihilate upon collisio
[1–5]. Two counterpropagating pulses interact but finall
leave unchanged like solitons in an integrable system
This phenomenon, which we call preservation of pulse
occurs in some restricted parameter regime. In most
the parameter space, two pulses simply undergo pair a
nihilation upon collision as usual in a dissipative system
Another interesting property of pulses is self-replicatio
which has been discovered by both computer simulatio
[6–8] and real experiments [9,10].

In the present Letter, we shall show that these three b
sic characters of pulses, i.e., pair annihilation, preservatio
and self-replication, can coexist in some parameter regim
and that the interplay of these components causes an in
esting spatiotemporal behavior. That is, the trajectory
interacting pulses in a reaction-diffusion system produc
a regular self-similar pattern like a Sierpinski gasket in th
space-time coordinate. A preliminary result has been pu
lished [11]. The main purpose here is to clarify the mech
nism of formation of the Sierpinski gasket by mapping th
pulse dynamics to a cellular automaton.

Our model equation for the spatiotemporal evolutio
of interacting pulses is given by the following reaction
diffusion system:

t
≠u
≠t

­ Du=2u 1 fsud 2 y , (1)

≠y

≠t
­ Dy=2y 1 u , (2)

wheret is the ratio of the relaxation rates of the variable
u and y. The positive constantsDu and Dy are the
diffusion rates ofu andy, respectively. The functionfsud
takes the form

fsud ­
1
2

∑
tanh

µ
u 2 a

d

∂
1 tanh

µ
a
d

∂∏
2 u , (3)
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where 0 , a , 1 and d are positive constants. Note
that the functionf becomes a piecewise linear form with
fs0d ­ fsad ­ fs1d ­ 0 in the limit d ! 0.

In our previous papers [12,13], we have studied the s
of Eqs. (1) and (2) fort ­ 1 by computer simulations
in one and two dimensions. What we have found is a
follows. First of all, when the diffusion terms are absen
and d is sufficiently small, this set of equations has
subcritical Hopf bifurcation by decreasing the paramet
a. Therefore the stable stationary stateu ­ y ­ 0 and
a stable limit cycle solution around it (and an unstab
limit cycle in between) coexist. Second, despite th
oscillatory property, the system has a stable propagati
pulse solution when diffusion is present. Third, when th
parametersDy anda are sufficiently small whileDu is of
the order of unity, a collision of two counterpropagating
pulses causes a localized oscillatory domain which em
persistently outgoing waves.

Here we explore the pulse dynamics in the caset ,

1. Throughout this paper, we setDu ­ 1 and d ­
0.05 unless stated otherwise. The Neumann bounda
condition is imposed at the system boundaries.

Figure 1 summarizes the phase diagram obtained
one-dimensional simulations of (1) and (2) with (3
for a ­ 0.1. When the diffusion constantDy is large,
the inhibitor y diffuses rapidly so that a propagating
pulse becomes unstable. The full line in Fig. 1 is
line above which a stable steadily propagating puls
does not exist. When the parametert is smaller than
the broken line approximately given byt ø 0.3, two
pulses annihilate upon collision as in the ordinary cas
However, preservation of pulses occurs in the region rig
of the broken line. A representative example is shown
Fig. 2 forDy ­ 8.5 andt ­ 0.31. A pair of propagating
pulses annihilates temporally upon collision but survive
again and propagates in the opposite direction. It
expected that this preservation is related to that foun
in the sine-Gordon equation with a dissipative term [14
In the region right of the dotted line in Fig. 1, a stable
oscillatory domain is nucleated as in the caset ­ 1.
© 1998 The American Physical Society
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FIG. 1. The phase diagram in theDy-t plane. The details of
the lines are given in the text.

Figure 1 was obtained numerically by incrementing th
parameters byDt ­ 0.01 and DDy ­ 0.5. Within this
uncertainty, all the phase boundaries are found to be giv
by straight lines. We have found numerically that no stab
uniform oscillation exists whent , 0.3 for a ­ 0.1. This
is almost coincident with the broken line in Fig. 1. O
the other hand, we have verified that the full line agre

FIG. 2. Preservation of pulses upon a head-on collision f
t ­ 0.31. The time steps aret ­ 0, 12, 17, 30 from top to
bottom. The full (dotted) line indicates the profile ofu syd.
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with the stability limit of a propagating pulse, which wa
obtained analytically for the piecewise linear limit of (3
sd ! 0d [15]. At present, however, we do not have an
definite theoretical interpretation why the dotted line
straight.

The phase diagram weakly depends on the scheme
numerical computation. However, the global property
qualitatively unaltered by changing the time increme
and the space mesh size.

As mentioned above, a propagating pulse is not sta
above the full line. However, a pulse can propaga
transiently for some finite interval. Whent , 0.33 and
Dy ­ 10 such a pulse becomes small and disappears a
traveling a finite distance. Whent . 0.33 for Dy ­ 10,
on the other hand, a pulse ceases to move after a fi
time interval changing its shape and breaks up into tw
pulses which propagate in opposite directions. A new
generated pulse decreases its velocity and repeats
above process. An example of pair production is show
in Fig. 3 wherea ­ 0.1 andt ­ 0.34.

A spectacular phenomenon appears in the collisi
of pulses generated by the self-replication. Figure
displays an example where a spatiotemporal evolution
pulses is plotted fora ­ 0.1 and t ­ 0.34. The initial
conditions areu ­ exps2x2d and y ­ 0. One can see
two different behaviors upon collision. When two pulse
have almost the same velocity, those pulses unde

FIG. 3. Self-replication of a pulse fort ­ 0.34. The time
steps aret ­ 0, 11, 18, 25 from top to bottom. The full (dotted)
line indicates the profile ofu syd.
1727



VOLUME 81, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 AUGUST 1998

he

ce

-
rt

r
n-
ce

in-
ird
d

e-
e
rgo
at
at
on
r,

ars
as-
ny
e

ti-

-

t-

a

FIG. 4. Spatiotemporal pattern of interacting pulses fort ­
0.34 and Dy ­ 10. The lines indicate the contour line of
u ­ 0.2.

preservation as in Fig. 2. On the other hand, when t
velocity difference exceeds a certain magnitude, th
undergo a pair annihilation. Two pulses born at differe
times have a different velocity and a different shap
This asymmetry is responsible for the pair annihilatio
Successive events of self-replication and preservation
annihilation of pulses cause a Sierpinski gasket pattern
the space-time coordinate. To our knowledge, a regu
self-similar pattern has not been obtained so far in a
partial differential equations [16].

It is well known that a Sierpinski gasket is generated b
a cellular automaton [17] where both space and time a
discretized. The rule can be expressed by the recurre
formula

at11sid ­ atsi 2 1d 1 atsi 1 1d mod k , (4)

where i is the cell number in one dimension andatsid
takes non-negative integers. Whenk ­ 3, the pattern for
atsid ­ 1 and 2 in thet 2 i space exhibits the Sierpinsk
gasket.

We shall show that the pattern evolution in Fig. 4
equivalent to the rule (4). Let us summarize the fo
basic properties of the pulse dynamics in Fig. 4. (i)
pulse stops moving after propagating for a time interv
T at a distanceX and then self-replicates. The velocity
is a decreasing function of time. (ii) Two pulses wit
the same velocity exhibit preservation. That is, the
annihilate when they are a distanceapart, and then a
pair of outgoing pulses is generated. The distanceis
of the order of the pulse width. There is no appreciab
interaction between pulses when the distance is larg
than . (iii) When the velocity is different, two pulses
undergo a pair annihilation when they are a distance
apart. (iv) The time dependence of the velocity of a pul
1728
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produced by a self-replication is the same as that of t
one produced by a preservation.

These are schematically shown in Fig. 5 where spa
and time are discretized by the unitsX and T , respec-
tively. For simplicity we assume that the duration of self
replication is the same as that of preservation. We sta
with a pair of pulses of first generation born att ­ 0.
At t ­ T , these undergo self-replication and produce fou
pulses of second generation. The middle two pulses u
dergo, by symmetry, preservation when they are a distan

apart [property (ii)]. Since is finite, preservation occurs
earlier, with a finite time difference, i.e., att ­ 2T 2 e,
than the self-replication of the other two pulses att ­ 2T
as is shown in Fig. 5. The distanceis found to be in-
sensitive to the parameter so that the above behavior is
dependent of the parameters. The two pulses at the th
generation produced by the preservation collide [18] an
annihilate with the pulses produced by self-replication b
cause of the asymmetry of the velocity. Therefore all th
pulses except for the one at the edges of the group unde
extinction at the third generation. There are 12 pulses
the sixth generation, and, by symmetry, the pair of pulses
the middle point has the same velocity so that preservati
of pulses occurs there. At the ninth generation, howeve
the number of pulses is 18 and hence the extinction appe
again. Repeating the above processes, the Sierpinski g
ket is formed as a spatiotemporal pattern. Note that a
pair of pulses which undergo a simple annihilation hav
the age difference of.

The explanation mentioned above can be more quan
fied. We assign the variablebgsid at each event which
is caused by a pulse ofgth generation at the discretized
space pointi. By an event we mean preservation, self
replication, and pair annihilation. If a pair annihilation
occurs, we setbgsid ­ 0. As shown in Fig. 5, an event
does not necessarily occur at the lattice point of the rec
angular cell because of the time difference. We put
bgsid ­ n 1 1 with n a non-negative integer for events
at t ­ gT 2 ne. An example is shown in Fig. 5 where

FIG. 5. Schematic trajectory of pulses. The number in
circle indicates the state variablebgsid.
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self-replication of the pulses of the second generation h
b2s2d ­ b2s22d ­ 1, whereas preservation at the middl
point hasb2s0d ­ 2.

The above assignment of the state variablebgsid is
equivalent with the following rule for the time evolution
The state of the next generationbg11sid is determined
uniquely from bgsi 2 1d, bgsid, and bgsi 1 1d. A
self-replication can be represented by one of the th
processes: (a)bgsi 2 1d ­ 0, bgsid ­ 0, bgsi 1 1d ­
m ! bg11sid ­ m; (b) bgsi 2 1d ­ 0, bgsid ­ m,
bgsi 1 1d ­ 0 ! bg11sid ­ 0; and (c)bgsi 2 1d ­ m,
bgsid ­ 0, bgsi 1 1d ­ 0 ! bg11sid ­ m with m posi-
tive integers. In the case of collision, there are tw
possibilities due to the properties (ii) and (iii). Tha
is, a symmetric collision produces a pair of pulse
which is represented as (d)bgsi 2 1d ­ m, bgsid ­ 0,
bgsi 1 1d ­ m ! bg11sid ­ m 1 1, whereas an asym-
metric collision with different velocities causes ann
hilation of pulses, i.e., (e)bgsi 2 1d ­ n, bgsid ­ 0,
bgsi 1 1d ­ m ! bg11sid ­ 0 with n fi m. Since we
have started with a single pulse, a configuration such
bgsi 2 1d ­ n, bgsid ­ m, bgsi 1 1d ­ 0 with positive
integersn and m does not exist. Note that when two
pulses do not cause preservation upon collision, t
difference of their ages is always equal to. Therefore
one may put the restrictionn ­ m 6 1 in the above
rule (e). In this way, it is proved that although the sta
variablebgsid takes on any positive integer value (apa
from the zero state for annihilation), the configuration
odd and even integers is identical to that ofatsid ­ 1 and
atsid ­ 2 generated by (4) withk ­ 3.

Since the emergence of the Sierpinski gasket resu
as a delicate balance of the properties (i)–(iv), it
indispensable to choose a suitable set of parameters.
instance, the Sierpinski gasket can be observed, in
present numerical scheme, only in the narrow regi
0.338 , t , 0.342 for Dy ­ 10 and 9.7 , Dy , 10.1
for t ­ 0.34 starting with the same initial condition
as in Fig. 4. However, the limitation of the paramete
domain does not necessarily imply that the present res
is an exceptional one specific to the particular reactio
diffusion system, Eqs. (1) and (2). Our expectatio
is that a self-similar evolution is possible when th
three basic characters of pulses coexist although furt
investigation is necessary for this. In this respect, w
mention an elasticlike collision which is one aspect
preservation of pulses. This was found first for ve
restricted parameters in simulations of special mod
equations [1–5], but later it was shown theoretical
that it originates from the existence of a supercritic
translational bifurcation where a motionless pulse los
stability and begins to propagate [19–21]. In this wa
it was uncovered that the elasticlike collision is indee
a quite general property free from any specific mod
systems. Furthermore, it has also been shown tha
translational bifurcation is responsible for self-replicatio
of a domain in two dimensions [22].
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In summary, we have shown that a regular self-simila
pattern can be self-organized in a reaction-diffusion sy
tem. The relation with a cellular automaton is elucidate
It is found that the interplay of preservation, pair anni
hilation, and self-replication of pulses plays the decisiv
role of formation of a Sierpinski gasket pattern. Finally
we emphasize that formation of the Sierpinski gasket in
reaction-diffusion system described by a partial differenti
equation provides us with a possibility that such a regul
pattern generated so far only by an artificial model syste
of cellular automata can be observed in a real experime
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