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Sierpinski Gasket in a Reaction-Diffusion System
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We shall show by computer simulations that a Bonhoeffer van der Pol type reaction-diffusion system
in one dimension reveals a curious spatiotemporal pattern in the motion of interacting pulses. For
suitably chosen nonlinearity and parameters, the trajectory of pulses exhibits a self-similar regular
pattern like a Sierpinski gasket in the space-time coordinate. This is caused by self-replication of a
pulse and annihilation and/or preservation of propagating pulses upon collision. The formation of the
Sierpinski gasket can be understood by mapping the time evolution of pulses to an equivalent cellular
automaton. [S0031-9007(98)06956-7]

PACS numbers: 82.40.Bj, 05.45.+b, 82.20.Mj, 82.30.—-b

Pulse dynamics far from equilibrium has attractedwhere0 < a <1 and é are positive constants. Note
much interest recently. Computer simulations of varioughat the functionf becomes a piecewise linear form with
reaction-diffusion systems have revealed an unexpectedlf(0) = f(a) = f(1) = 0 in the limit § — 0.
rich variety of dynamical behaviors of pulses. In our previous papers [12,13], we have studied the set

One of the most remarkable properties is that propaef Egs. (1) and (2) forr = 1 by computer simulations
gating pulses do not necessarily annihilate upon collisioin one and two dimensions. What we have found is as
[1-5]. Two counterpropagating pulses interact but finallyfollows. First of all, when the diffusion terms are absent
leave unchanged like solitons in an integrable systemand 6 is sufficiently small, this set of equations has a
This phenomenon, which we call preservation of pulsessubcritical Hopf bifurcation by decreasing the parameter
occurs in some restricted parameter regime. In most of. Therefore the stable stationary state= v = 0 and
the parameter space, two pulses simply undergo pair ar stable limit cycle solution around it (and an unstable
nihilation upon collision as usual in a dissipative systemlimit cycle in between) coexist. Second, despite the
Another interesting property of pulses is self-replicationoscillatory property, the system has a stable propagating
which has been discovered by both computer simulationpulse solution when diffusion is present. Third, when the
[6—8] and real experiments [9,10]. parameter®d, anda are sufficiently small whileD,, is of

In the present Letter, we shall show that these three bahe order of unity, a collision of two counterpropagating
sic characters of pulses, i.e., pair annihilation, preservatiorpulses causes a localized oscillatory domain which emits
and self-replication, can coexist in some parameter regimpersistently outgoing waves.
and that the interplay of these components causes an inter-Here we explore the pulse dynamics in the case
esting spatiotemporal behavior. That is, the trajectory ofl. Throughout this paper, we sdd, =1 and é =
interacting pulses in a reaction-diffusion system produce8.05 unless stated otherwise. The Neumann boundary
a regular self-similar pattern like a Sierpinski gasket in thecondition is imposed at the system boundaries.
space-time coordinate. A preliminary result has been pub- Figure 1 summarizes the phase diagram obtained by
lished [11]. The main purpose here is to clarify the mechaone-dimensional simulations of (1) and (2) with (3)
nism of formation of the Sierpinski gasket by mapping thefor « = 0.1. When the diffusion constanb, is large,
pulse dynamics to a cellular automaton. the inhibitor v diffuses rapidly so that a propagating

Our model equation for the spatiotemporal evolutionpulse becomes unstable. The full line in Fig. 1 is a
of interacting pulses is given by the following reaction- line above which a stable steadily propagating pulse

diffusion system: does not exist. When the parameteris smaller than
ou 5 the broken line approximately given by = 0.3, two

T = DuViu fu) — v, (1) pulses annihilate upon collision as in the ordinary case.

I However, preservation of pulses occurs in the region right

Pyl D,V?v + u, (2) of the broken line. A representative example is shown in

Fig. 2 forD, = 8.5 andr = 0.31. A pair of propagating

pulses annihilates temporally upon collision but survives
R X : again and propagates in the opposite direction. It is
diffusion rates of andv, respectively. The functiofi(u)  eypected that this preservation is related to that found
takes the form in the sine-Gordon equation with a dissipative term [14].

1 u—a a In the region right of the dotted line in Fig. 1, a stable
= — | tan +tanh — )| — 3 . o ) !
flw) 2 [ r( 1 ) r( o ﬂ us () oscillatory domain is nucleated as in the case 1.

wherer is the ratio of the relaxation rates of the variables
u and v. The positive constant®, and D, are the

1726 0031-900798/81(8)/1726(4)$15.00 © 1998 The American Physical Society



VOLUME 81, NUMBER 8 PHYSICAL REVIEW LETTERS 24 AGUST 1998

Dv with the stability limit of a propagating pulse, which was
obtained analytically for the piecewise linear limit of (3)
(6 — 0) [15]. At present, however, we do not have any
definite theoretical interpretation why the dotted line is
straight.

The phase diagram weakly depends on the scheme of
numerical computation. However, the global property is
qualitatively unaltered by changing the time increment
and the space mesh size.

As mentioned above, a propagating pulse is not stable
above the full line. However, a pulse can propagate

transiently for some finite interval. When < 0.33 and
5+ o D, = 10 such a pulse becomes small and disappears after
! traveling a finite distance. When> 0.33 for D, = 10,
L ; on the other hand, a pulse ceases to move after a finite
0.3 0.35 T time interval changing its shape and breaks up into two
, . . pulses which propagate in opposite directions. A newly
,:Zhlg iinlés ;Peegecgﬁeindt'ﬁgr{aer;_m iz, -7 plane. The details of generated pulse decreases its velocity and repeats the
above process. An example of pair production is shown
in Fig. 3 wherez = 0.1 andr = 0.34.

Figure 1 was obtained numerically by incrementing the A spectacular phenomenon appears in the collision
parameters byA7 = 0.01 and AD, = 0.5. Within this  of pulses generated by the self-replication. Figure 4
uncertainty, all the phase boundaries are found to be givedisplays an example where a spatiotemporal evolution of
by straightlines. We have found numerically that no stablgulses is plotted foz = 0.1 and 7 = 0.34. The initial
uniform oscillation exists when < 0.3 fora = 0.1. This  conditions arex = exp(—x?) and v = 0. One can see
is almost coincident with the broken line in Fig. 1. On two different behaviors upon collision. When two pulses
the other hand, we have verified that the full line agreeave almost the same velocity, those pulses undergo
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FIG. 2. Preservation of pulses upon a head-on collision folFIG. 3. Self-replication of a pulse for = 0.34. The time
7= 0.31. The time steps are = 0,12,17,30 from top to  steps are = 0, 11, 18,25 from top to bottom. The full (dotted)

bottom. The full (dotted) line indicates the profile ®fv).

line indicates the profile of (v).
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T AT A ITH T produced by a self-replication is the same as that of the
500 \5/ \(\j \w\@@/ \z\? \z\/ one produced by a preservation.
VY \va Y These are schematically shown in Fig. 5 where space
\O/ W \O/ and time are discretized by the uniXs and T', respec-
\*VVWQV\J\X’VVW\J\/\J\/ tlvel_y. For _S|mpI|C|ty we assume that the duratlon of self-
W) W AR (X)W replication is the same as that of preservation. We start
x‘i\/\%\/\y %\J\%vy with a pair of pulses of first generation born at= 0.
¥ (VORVY W UK At ¢+ = T, these undergo self-replication and produce four
,§ %\J\y % 5/ pulses of second generation. The middle two pulses un-
K Q{; dergo, by symmetry, preservation when they are a distance
v vV ¢ apart [property (ii)]. Sincé s finite, preservation occurs
\(I\{)’\{/\O\/‘(}O) earlier, with a finite time difference i.e., atr = 2T — e,
vy oV than the self-replication of the other two pulses at 2T
COACS as is shown in Fig. 5. The distanéds found to be in-
vV sensitive to the parameter so that the above behavior is in-
N4 dependent of the parameters. The two pulses at the third
0 \Oj generation produced by the preservation collide [18] and
0 2500 annihilate with the pulses produced by self-replication be-
X cause of the asymmetry of the velocity. Therefore all the

FIG. 4. Spatiotemporal pattern of interacting pulses for pul_ses_except forthe one at th_e edges of the group undergo
034 and D, = 10. The lines indicate the contour line of extinction at the third generation. There are 12 pulses at

u=02. the sixth generation, and, by symmetry, the pair of pulses at
the middle point has the same velocity so that preservation
pulses occurs there. At the ninth generation, however,

. N f
preservation as in Fig. 2. On the other hand, when th%e number of pulses is 18 and hence the extinction appears

velocity difference exceeds a certain magnitude, theyé

. L . ain. Repeating the above processes, the Sierpinski gas-
qndergo a pair apn|h|lat|0n. T.WO pulses bprn at dlfferentkgt is formzd as% spatiotemgoral pattern Notepthat agny
times have a different velocity and a different shape. :

This asymmetry is responsible for the pair annihilation.FhiiraOfep;E:rsergzc(; undergo a simple annihilation have
Successive events of self-replication and preservation or 9 : s .
The explanation mentioned above can be more quanti-

annihilation of pulses cause a Sierpinski gasket pattern i led. We assign the variablet (i) at each event which

the space-time coordinate. To our knowledge, a regular ; . :
self-similar pattern has not been obtained so far in any” caused by a pulse ofth generation at the discretized

partial differential equations [16]. %pace point. By an event we mean preservation, self-

It is well known that a Sierpinski gasket is generated byrie:lbcrztls\?é 223 A Z?Ir:a(;] nlzléagro]g\./vnlfina FFi)glrSar;T:he"\?gr?tn

a cellular automaton [17] where both space and time ar oes not necessarily occur at the lattice point of the rect-

?Sf&f&zed' The rule can be expressed by the recurren%%gular cell because of the time difference We put

1 . . b8(i) = n + 1 with n a non-negative integer for events
am (i) =a'(i — 1) +a'(+1)modk, (4 atr = gT — ne. An example is shown in Fig. 5 where

where i is the cell number in one dimension amd(;)

takes non-negative integers. Wheen= 3, the pattern for

a'(i) = 1 and 2 in ther — i space exhibits the Sierpinski ) T« ¢ ‘
gasket. i=4 ;
We shall show that the pattern evolution in Fig. 4 is :
equivalent to the rule (4). Let us summarize the four X ) 7
TN

basic properties of the pulse dynamics in Fig. 4. (i) A
pulse stops moving after propagating for a time interval
T at a distanceX and then self-replicates. The velocity
is a decreasing function of time. (ii) Two pulses with
the same velocity exhibit preservation. That is, they
annihilate when they are a distanéeapart, and then a
pair of outgoing pulses is generated. The distafce

of the order of the pulse width. There is no appreciable
interaction between pulses when the distance is larger i =4
than £. (iii) When the velocity is different, two pulses -

undergo a pair annihilation when they are a distafice FiG. 5. Schematic trajectory of pulses. The number in a
apart. (iv) The time dependence of the velocity of a pulseircle indicates the state variabbé(i).
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self-replication of the pulses of the second generation has In summary, we have shown that a regular self-similar
b(2) = b*(—2) = 1, whereas preservation at the middle pattern can be self-organized in a reaction-diffusion sys-
point hash?(0) = 2. tem. The relation with a cellular automaton is elucidated.
The above assignment of the state variabfdi) is It is found that the interplay of preservation, pair anni-
equivalent with the following rule for the time evolution. hilation, and self-replication of pulses plays the decisive
The state of the next generatidrt™!(i) is determined role of formation of a Sierpinski gasket pattern. Finally,
uniquely from b8(i — 1), b8(i), and b8(i + 1). A  we emphasize that formation of the Sierpinski gasket in a
self-replication can be represented by one of the threeeaction-diffusion system described by a partial differential
processes: (aps(i — 1) =0, b8(i) =0, b8(i + 1) =  equation provides us with a possibility that such a regular
m— b8Tl(i) =m; (b) bE(i — 1) =0, b%(i)=m, pattern generated so far only by an artificial model system
b8(i + 1) =0— bet1(i) = 0; and (c)b2(i — 1) = m, of cellular automata can be observed in a real experiment.
b8(i) =0, b8 + 1) = 0 — beT1(i) = m with m posi- We are grateful to Helmut Brand and Stefan Mueller
tive integers. In the case of collision, there are twofor valuable discussions. This work was supported by
possibilities due to the properties (i) and (iii). That the Grant-in-Aid of Ministry of Education, Science and
is, a symmetric collision produces a pair of pulsesCulture of Japan.
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