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Statistical Mechanics of Voting
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Decision procedures aggregating the preferences of multiple agents can produce cycles and hence
outcomes which have been described heuristically as “chaotic.” We make this description precise by
constructing an explicit dynamical system from the agents’ preferences and a voting rule. The dynamics
form a one-dimensional statistical mechanics model; this suggests the use of the topological entropy to
quantify the complexity of the system. We compute the expected complexity of a voting rule and
the degree of cohesion/diversity among agents using random matrix models—ensembles of statistical
mechanics models—in some representative cases. [S0031-9007(98)06864-1]
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The input for many mathematical models of social, po
litical, and economic systems includes a list of preferen
orders, one for each agent in the model. These pref
ences are aggregated, respectively, by some social welf
function, or voting rule, or market mechanism. More tha
200 years ago, however, Condorcet recognized poten
problems with voting rules, namely that aggregation mig
produce cycles [1]. For example, suppose that there a
three alternativesha, b, cj and three voters rank them in
the ordersa . b . c (by which we meana is preferred
to b which is preferred toc), b . c . a, andc . a . b.
Given a choice betweenb anda, a 2:1 majority prefersa;
if they are offered the opportunity to switch froma to c,
again a majority will vote to do so; finally, a majority also
prefersb to c, completing a cycle.

While this example may seem contrived, Arrow’s cele
brated theorem [2] states that among an apparently r
sonable set of voting rules, the only ones which do n
encounter peculiarities of this sort for someprofile (list of
preference orders) are dictatorial; i.e., they depend only
the preference order of a single, specified, voter. Taki
the example seriously then, we conceive it as describing
sequence of states (the successive preferred alternativ
a situation which is naturally modeled as a dynamical sy
tem. A similar perspective was originally suggested b
Saari [3]; in this Letter, motivated in part by potential ap
plications to autonomous machines [4] choosing new sta
from a sequence of alternatives, rather than analyzing
situation byanalogywith dynamical systems, we construc
anexplicit map from a profile and voting rule to a discrete
dynamical system.

The usual model for a preference order is a relatio
denoted$, which iscomplete(for all pairs of alternatives
a $ b or b $ a) and transitive (if a $ b and b $ c,
thena $ c) [2]. Whena $ b andb $ a, the voter with
this preference order isindifferentbetweena andb; when
only a $ b, say, the voterstrictly prefersa and we write
a . b. We consider aggregation formalized by map
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f from preference profilesp to directed graphsfp . A
directed edgea √ b in fp indicates that for profilep the
mapf chooses alternativea over alternativeb. We call
f a voting rule if for all profiles p, fp is completeor a
weak tournament[5] (for all pairs of alternativesa √ b
or b √ a in fp) and Pareto or unanimous(if a $ b in
each preference order inp thena √ b in fp). Notice that
for every alternativex, sincex $ x in every preference
order,x √ x in fp for every profile and voting rule. The
weak tournament for the profile and majority voting ru
of the example in the first paragraph is shown on the left
Fig. 1; we omit the edges connecting each vertex to its

We have motivated the introduction of weak tourn
ments by an example of what is essentially an amendm
procedure [6], i.e., successive pairwise votes betwee
new alternative and the current one. Notice that this defi
tion of voting rule is actually a generalization of the mo
familiar one which requires the outcome to be a pref
ence order on the set of alternatives. Such an outco
corresponds tofp being transitive as well as complete an
Pareto. But Arrow’s theorem [2], for example, says th
a broader definition is necessary if we forbid dictator
rules and impose the condition ofindependence of irrele-
vant alternatives(IIA)—that the relation betweena and

FIG. 1. The weak tournaments corresponding to majority ru
on the profilesp1  sa . b . c, b . c . a, c . a . bd and
p2  sa . b . c, c . b . a, c . a . bd. We suppress the
edges connecting each vertex to itself. Note the nontrivial cy
in the graphfp1 (on the left).
© 1998 The American Physical Society
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b in fp depends only on the relations ofa and b in the
preference orders inp [7]. In fact, the broader definition
applies equally well to voters whose pairwise preferenc
are not necessarily consistent, i.e., transitive.

The directed graph which is the image of a voting rul
f on a specific profilep defines asymbolic dynamical sys-
tem: Suppose the voters are presented with a sequence
alternatives—an agenda, by extension of the usual me
ing to allow arbitrarily long sequences. The results of su
cessive pairwise votes between the new alternative and
current one form a sequence of symbols representing
chosen alternatives. The possible sequences are exa
the directed paths infp; e.g., for the first example in Fig. 1,
baacbbaccc . . . are the first ten symbols of anadmissible
sequence/path infp1 . For contrast, examine the secon
example in Fig. 1, obtained by applying the same majo
ity voting rule to the profilep2  sa . b . c, c . b .

a, c . a . bd. An admissible sequence/path infp2 can
start the same way:baaccccccc . . . , but once alternative
c is chosen, no other alternative can beat it; the sequen
terminates with a string ofc’s. It is clear that the space
of admissible paths onfp completely characterizes a pro-
file/voting rule pair. This space, together with theshift
map(deletion of the first symbol of a sequence), forms th
promised dynamical system—a(one-sided) subshift of fi-
nite type[8].

In Fig. 1, the first set of admissible sequences see
more interesting/complex than the second. To quant
this perception we enumerate the admissible sequen
which are periodic with periodN : Define thetransition
matrix Fp by sFpdab  1 if a √ b in fp and sFpdab 
0 otherwise. Then the number ofN-periodic sequences
is the trace ofFN

p . It is easy to check, for example,
that 6  Tr F3

p1
. Tr F3

p2
 3; more generally TrFN

p 
l

N
1 1 · · · 1 l

N
k where there arek alternatives andli are

the eigenvalues ofFp.
The thermodynamic formalism [9] provides a physica

description of symbolic dynamical systems. Observe th

Tr FN
p  lim

T!0

X
s[AN

e2Efp ssdyT : lim
T!0

ZN f fp , T g , (1)

whereA is the set of alternatives and, with the conventio
thatsN11 ; s1,

Efp ssd :
NX

i1

1 2 sFpdsi11si . (2)

ZN f fp , T g is thepartition functionfor a statistical mechan-
ics model on the latticeZN where the set ofstatesis A and
the energyEfp ssd of a configurations [ AN is the sum
of contributions from adjacent states: 0 ifsi11 √ si in
fp and 1 otherwise. The zerotemperatureT ! 0 limit in
Eq. (1) eliminates the contributions from all but theground
stateconfigurations, so the number of ground states (a
henceZN f fp , 0g) is the same as the number of admissib
N-periodic sequences. From this perspective it is partic
larly natural to consider thefree energy density(the aver-
age energy per lattice site) or equivalently, thetopological
es

e

of
an-
c-
the
the
ctly

d
r-

ce

e

ms
ify
ces

l
at

n

nd
le
u-

entropy[10]:

Sf fpg : lim
N!`

1
N

logZN f fp , 0g . (3)

Inserting Eq. (1) into Eq. (3) we see thatSf fpg  logLfp ,
whereLfp is the largest eigenvalue ofFp .

The topological entropy measures the degree of mix
of the dynamical system defined byfp. When the entropy
is positive the dynamical system ischaotic and exhibits
the familiar features of chaos: topological transitivit
sensitive dependence on initial conditions, and a dense
of periodic points [11]. For the examples of Fig. 1, w
can computeSf fp1 g  1 (using logarithms in base 2) an
Sf fp2 g  0, which suggests that the presence of a cycle
fp makes the dynamical system chaotic. This is true
general:

PROPOSITION—The dynamical system defined b
complete directed graph has positive topological entro
iff the graph contains a nontrivial cycle.

Proof.—If the directed graph has no nontrivial cycl
there is some ordering of the vertices for which t
associated transition matrix is upper triangular. Hence,
its eigenvalues are 1, so the topological entropy vanish
Conversely, suppose there is a cycle of lengthl . 1 in
the directed graph. Considering only those paths wh
lie entirely on the cycle, at each vertex of the cycle suc
path may stay there or continue to the next vertex. Star
from any vertex on thel cycle, then, there are2N such paths
of lengthN , which may require at mostl 2 1 additional
steps to close. ThusS $ limN!`slog l2N dyN  1.

Since Arrow’s theorem [2] guarantees the existence
cycles for any nondictatorial IIA voting rule and some pr
file on at least three alternatives, positivity of the topolo
cal entropy demonstrates the connection among Arro
theorem, cycles, and chaos hinted at by the chaos th
rems in spatial voting models [12] as well as by Saar
suggestive analogies [3]. We therefore propose to
the topological entropy as a measure of the complex
of a profile/voting rule pair. It identifies the associate
dynamical system as chaotic or nonchaotic and quanti
how chaotic the system is. Consider the pair of profi
p3  sb . c . a . d, c . d . a . b, d . b . c .

ad and p4  sb . c . a . d, c . a . d . b, d .

b . c . ad for three voters and four alternatives. Majo
ity rule gives the weak tournaments shown in Fig. 2, bo
of which contain cycles and so define chaotic dynami
systems. Notice thatfp3 contains a 3-cycle whilefp4 con-
tains a 4-cycle; the entropies differ correspondingly [13

Sf fp3 g  1 and Sf fp4 g ø 1.260 . (4)

Formulating the system as a statistical mechanics mo
focuses our attention on the energy functional: The ene
of a configuration is defined [Eq. (2)] by a matrix with en
tries 1 2 sFpdab. As the profilep or the voting rulef
changes, this matrix can change. For a (probabilistic)
semble of possible matrices the partition function [Eq. (
defines arandom matrix model[14].
1719
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FIG. 2. The weak tournaments corresponding to majori
rule on the profiles p3  sb . c . a . d, c . d . a .
b, d . b . c . ad and p4  sb . c . a . d, c . a .
d . b, d . b . c . ad. On the left,fp3 contains a 3-cycle;
on the right,fp4 contains a 4-cycle.

The first type of ensemble we consider is generated
a random distribution of profiles. For a given voting rule
the statistical mechanics model defined byZN f fp , T g will
be present in the ensemble with probability proportional
the number of profiles with the same image underf. For
example, again consider the situation of majority votin
on three alternatives. There ares3!d3 profiles for three
voters with strict preferences, out of which2 ? 3! map to
a weak tournament with a cycle as infp1 . Thus, for a
random ensemble over these profiles, the average entr
for majority rule is1 3

1
18 1 0 3

17
18  1

18 ø 0.056. In
the limit of an infinite (odd) number of voters, we can
use a result originally obtained by Guilbaud [15] that th
probability of a cycle is1

4 2
3

2p arcsin1
3 , to find that the

average entropy for majority rule on three alternatives go
up to approximately 0.088.

Similarly, for four alternatives, there ares4!d3 strict pro-
files for three voters, out of which 1632 map to a wea
tournament with a 3-cycle as infp3 and 720 map to a weak
tournament with a 4-cycle as infp4 . Weighting the en-
tropies in Eq. (4) accordingly, over this ensemble of pro
files the average entropy for majority rule is approximate
0.184. In the limit of an infinite (odd) number of voters, we
can use a result of May and of Fishburn [16] that the prob
bility of a Condorcet winner [13] is1

2 1
3
p arcsin1

3 , to-
gether with the result of Gehrlein and Fishburn [17] tha
the probability that there is no nontrivial cycle is

3
8

1
6

p2

Z 1y3

0

arccosf2xys1 2 2x2dg
s1 2 x2d1y2 dx ,

to find that the average entropy for majority rule on fou
alternatives goes up to approximately 0.391.

We can also consider the same ensembles of profi
aggregated by other voting rules. The Borda count [18
for example, assigns weights ofn 2 1, n 2 2, . . . , 0 to
each voter’s first, second, . . . , last preferences, resp
tively, sums the weights of each alternative, and ranks t
n alternatives accordingly. Since there is now the po
sibility of alternatives with equal ranks, even though th
resulting weak tournament is transitive, it may still con
tain cycles [19]. For three voters the average entro
for the Borda count on three alternatives is log3 3

1
18 1

1 3
1
6 ø 0.255, while on four alternatives it is log3 3
1720
ty

by
,

to

g

opy

e

es

k

-
ly

a-

t

r

les
],

ec-
he
s-
e
-

py

1
18 1 1 3

37
96 ø 0.473. For comparison, we may use th

Copeland method [20] to make the weak tournaments
tained by majority rule transitive: assign each alternative
weight which is the number of incoming minus the num
ber of outgoing edges and rank the alternatives acco
ingly. For three voters the average entropy of the Copela
method on three alternatives is log3 3

1
18 ø 0.088, while

on four alternatives it is log3 3
17

144 1 1 3
5

96 ø 0.239,
each of which, although higher than for majority rule
is lower than the corresponding average entropy for t
Borda count.

The second type of ensemble is generated by a rand
distribution of voting rules. We consider, for example
a uniform distribution of rules which satisfy IIA and
have an image in the set of strict tournaments. (Strict
tournamentsare weak tournaments with exactly one edg
between every pair of vertices.) Each such voting ru
is defined by its images on the profiles restricted to
pairs of alternatives. For a pair of alternatives there a
2n possibilities for the restriction of a profile ofn strict
preferences. The voting rule maps each of these to an e
directed one of two ways between these alternatives i
strict tournament. Since voting rules are Pareto, the t
unanimous restricted profiles have fixed images, but
remaining2n 2 2 may be mapped, independently, to eith
directed edge. Thus, if there arek alternatives, there are
2s2n22d s k

2
d possible IIA voting rules forn voters. Although

this forms a huge ensemble of mapsf, given a profile
p, it is straightforward to determine with what probabilit
each statistical mechanics modelZnf fp , T g occurs in the
ensemble.

For example, consider the profilep5  sc . a .

b . d, d . a . c . b, a . c . d . bd. Restricted to
ha, bj or to hb, cj this profile is unanimous, soeveryvoting
rule, being Pareto, must mapp5 to a strict tournament
with the edgesa √ b and c √ b. The other pairwise
restrictions, however, are not unanimous. Since we
considering an ensemble of IIA voting rules, this mea
that a √ c (or c √ a), a √ d (or d √ a), b √ d (or
d √ b), and c √ d (or d √ c) are independent events
Furthermore, since the voting rules in this ensemble m
profiles to strict tournaments, each of the 16 resulti
possibilities has probability1

16 . No further analysis of
the ensemble is necessary; we can immediately obse
that with probability 3

16 the strict tournament to whichp5

maps has a 4-cycle (likefp4 ), with probability 5
16 is has a

3-cycle (like fp3 ), and with probability1
2 it is transitive.

Thus, using the entropies in Eq. (4), the average entro
for p5 over the ensemble of strict IIA voting rules is
approximately1.260 3

3
16 1 1 3

5
15 ø 0.549. We can

compare this to the average entropy forp3 or p4 over the
same ensemble. Each of these profiles is only unanim
upon restriction toha, cj; the consequent probabilities
for a 4-cycle, a 3-cycle, and transitivity are932 , 11

32 , and
3
8 , respectively, leading to a larger average entropy
approximately 0.698.
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This shows that the average entropy over an ensem
of voting rules is a plausible measure of the cohesion
diversity in a society [21], as described by a profile: Whe
the number of pairs on which the profile is unanimou
decreases, the average entropy increases. Furthermor
is sensitive towhichpairs the voters rank consistently. It is
clear that for this IIA ensemble, unanimity on two disjoin
pairs, e.g.,ha, cj and hb, dj, does not reduce the entropy
from the value found forp3 andp4.

Taking a statistical mechanics approach to a gene
problem in social dynamics [1,2,6,12,21,22]—iterate
preference aggregation—we have been led to the topolo
cal entropy as a quantitative measure of the complexity
profile/voting rule pairs. Unlike traditional approache
which have concentrated merely on the existence (or n
of cycles, use of this quantitative measure allows compa
son between systems differing even in number of vote
or alternatives. Furthermore, we have constructed
annealed random matrix model for voting and considere
ensembles corresponding to two natural social/politic
questions: What level of complexity can we expect from
a given voting rule? How cohesive/diverse is the syste
relative to some collection of voting rules? Not only doe
the topological entropy provide for quantitative answer
to these questions, it also makes precise the connect
between the existence of cycles and chaos. Increasing
number of autonomous agents or the number of altern
tives increases the complexity of the system; chaos can
reduced or avoided only by severely restricting [2,6,21
the class of agent preferences and/or aggregation rules
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