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Statistical Mechanics of Voting
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Decision procedures aggregating the preferences of multiple agents can produce cycles and hence
outcomes which have been described heuristically as “chaotic.” We make this description precise by
constructing an explicit dynamical system from the agents’ preferences and a voting rule. The dynamics
form a one-dimensional statistical mechanics model; this suggests the use of the topological entropy to
quantify the complexity of the system. We compute the expected complexity of a voting rule and
the degree of cohesion/diversity among agents using random matrix models—ensembles of statistical
mechanics models—in some representative cases. [S0031-9007(98)06864-1]

PACS numbers: 05.20.—y, 01.75.+m, 05.45.+b, 89.90.+n

The input for many mathematical models of social, po-f from preference profilep to directed graphg,. A
litical, and economic systems includes a list of preferencelirected edge: — b in f, indicates that for profile» the
orders, one for each agent in the model. These prefemap f chooses alternative over alternativeb. We call
ences are aggregated, respectively, by some social welfayea voting ruleif for all profiles p, f, is completeor a
function, or voting rule, or market mechanism. More thanweak tournamenfs] (for all pairs of alternatives: «— b
200 years ago, however, Condorcet recognized potenti@r b < a in f,) andPareto or unanimous(if « = b in
problems with voting rules, namely that aggregation mighteach preference order nthena — b in f,). Notice that
produce cycles [1]. For example, suppose that there afer every alternativer, sincex = x in every preference
three alternativega, b, c} and three voters rank them in order,x «— x in f, for every profile and voting rule. The
the ordersa > b > ¢ (by which we mean: is preferred weak tournament for the profile and majority voting rule
to b which is preferredt@), b > ¢ > a,andc > a > b.  of the example in the first paragraph is shown on the left in
Given a choice betweelm anda, a 2:1 majority preferg;  Fig. 1; we omit the edges connecting each vertex to itself.

if they are offered the opportunity to switch fromto c, We have motivated the introduction of weak tourna-
again a majority will vote to do so; finally, a majority also ments by an example of what is essentially an amendment
prefersb to ¢, completing a cycle. procedure [6], i.e., successive pairwise votes between a

While this example may seem contrived, Arrow’s cele-new alternative and the current one. Notice that this defini-
brated theorem [2] states that among an apparently re&on of voting rule is actually a generalization of the more
sonable set of voting rules, the only ones which do nofamiliar one which requires the outcome to be a prefer-
encounter peculiarities of this sort for soqmfile (list of  ence order on the set of alternatives. Such an outcome
preference orders) are dictatorial; i.e., they depend only onorresponds tg, being transitive as well as complete and
the preference order of a single, specified, voter. TakingPareto. But Arrow’s theorem [2], for example, says that
the example seriously then, we conceive it as describing a broader definition is necessary if we forbid dictatorial
sequence of states (the successive preferred alternativeg)les and impose the condition mfdependence of irrele-

a situation which is naturally modeled as a dynamical sysvant alternativeql1A)—that the relation between and
tem. A similar perspective was originally suggested by

Saari [3]; in this Letter, motivated in part by potential ap-

plications to autonomous machines [4] choosing new states c

from a sequence of alternatives, rather than analyzing the

situation byanalogywith dynamical systems, we construct

anexplicitmap from a profile and voting rule to a discrete a a
dynamical system.

The usual model for a preference order is a relation,
denoted=, which iscompletg(for all pairs of alternatives
a=b or b = a) and transitive (if a = b and b = c, ] o
thena = ¢) [2]. Whena = b andb = a, the voter with FIG. 1. The weak tournaments corresponding to majority rule

) L ) on the profilesp; = (¢ > b > ¢,b > ¢ > a,¢c > a > b) and
this preference order iadifferentbetweern andb; when """ S 7S S ) S 'S 4 > ). We suppress the

only a = b, say, the votestrictly prefersa and we write  edges connecting each vertex to itself. Note the nontrivial cycle
a > b. We consider aggregation formalized by mapsin the graphf,, (on the left).
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b in f, depends only on the relations ofand b in the  entropy[10]:
preference orders ip [7]. In fact, the broader definition 1
applies equally well to voters whose pairwise preferences SLfp]:=lim — logZy[ f,,0]. 3
are not necessarily consistent, i.e., transitive. N—e N
The directed graph which is the image of a voting rulelnserting Eq. (1) into Eq. (3) we see tt&jtf,] = log Ay, ,
f on a specific profile defines asymbolic dynamical sys- whereA; is the largest eigenvalue &f,.
tem: Suppose the voters are presented with a sequence of The topological entropy measures the degree of mixing
alternatives—an agenda, by extension of the usual meawf the dynamical system defined lfy. When the entropy
ing to allow arbitrarily long sequences. The results of sucis positive the dynamical system chaoticand exhibits
cessive pairwise votes between the new alternative and thibe familiar features of chaos: topological transitivity,
current one form a sequence of symbols representing theensitive dependence on initial conditions, and a dense set
chosen alternatives. The possible sequences are exact§ periodic points [11]. For the examples of Fig. 1, we
the directed paths ifi,; e.g., for the first example in Fig. 1, can compute[ f,,] = 1 (using logarithms in base 2) and
baacbbaccc ... are the first ten symbols of admissible  S[ f,,] = 0, which suggests that the presence of a cycle in
sequence/path iff,,. For contrast, examine the second f, makes the dynamical system chaotic. This is true in
example in Fig. 1, obtained by applying the same majorgeneral:
ity voting rule to the profilep, = (a > b > c,c > b > PROPOSITION—The dynamical system defined by a
a,c > a > b). An admissible sequence/pathjp, can complete directed graph has positive topological entropy
start the same wayiaaccccccc ..., but once alternative iff the graph contains a nontrivial cycle.
¢ is chosen, no other alternative can beat it; the sequence Proof.—If the directed graph has no nontrivial cycle
terminates with a string of’s. It is clear that the space there is some ordering of the vertices for which the
of admissible paths ofi, completely characterizes a pro- associated transition matrix is upper triangular. Hence, all
file/voting rule pair. This space, together with thkift its eigenvalues are 1, so the topological entropy vanishes.
map(deletion of the first symbol of a sequence), forms theConversely, suppose there is a cycle of length 1 in
promised dynamical system—ane-sided) subshift of fi- the directed graph. Considering only those paths which
nite type[8]. lie entirely on the cycle, at each vertex of the cycle such a
In Fig. 1, the first set of admissible sequences seemgath may stay there or continue to the next vertex. Starting
more interesting/complex than the second. To quantififfrom any vertex on thécycle, then, there a2 such paths
this perception we enumerate the admissible sequences$ length N, which may require at most — 1 additional
which are periodic with perio&/: Define thetransition  steps to close. Thu$ = limy_.(log/2V)/N = 1.
matrix F, by (F,)ap = 1 if a — b in f, and(F)). = Since Arrow’s theorem [2] guarantees the existence of
0 otherwise. Then the number of-periodic sequences cycles for any nondictatorial 1A voting rule and some pro-
is the trace ofFﬁ,V . It is easy to check, for example, file on at least three alternatives, positivity of the topologi-

that6 = Tr F,3,l > Tr Ff,z = 3; more generally TF,/)’ = cal entropy demonstrates the connection among Arrow’s
AV + ... + AY where there aré alternatives and; are  theorem, cycles, and chaos hinted at by the chaos theo-
the eigenvalues aof . rems in spatial voting models [12] as well as by Saari's

The thermodynamic formalism [9] provides a physica|suggestive analogies [3]. We therefore propose to use

description of symbolic dynamical systems. Observe thath€ topological entropy as a measure of the complexity
of a profile/voting rule pair. It identifies the associated

Ter,V _ ]l"iLnO Z e Er(@)/T —. Irimo Zy[fp.T], (1) dynamical system as chaotic or nonchaotic and quantifies

ocEAN how chaotic the system is. Consider the pair of profiles
whereA is the set of alternatives and, with the conventionps = (b > ¢ >a >d,c>d>a>b,d>b > c >
thatoy., = o, a) and py=0b>c>a>d,c>a>d>b,d>
N b > ¢ > a) for three voters and four alternatives. Major-
Er(0) =D 1= (Fploo, - (2) ity rule gives the weak tournaments shown in Fig. 2, both

i=1 of which contain cycles and so define chaotic dynamical
Znl f,, T]is thepartition functionfor a statistical mechan- systems. Notice that,, contains a 3-cycle whilg,, con-
ics model on the lattic# y where the set oftatesis A and  tains a 4-cycle; the entropies differ correspondingly [13]:
the energyE,, (o) of a configurationo € A is the sum _ _
of contributi{Jns from adjacent states: Odf+; — o; in SLfnl=1 and S[fp]~ 1.260. (4)
fp and 1 otherwise. The zetemperaturel’ — 0 limit in Formulating the system as a statistical mechanics model
Eqg. (1) eliminates the contributions from all but ip@und  focuses our attention on the energy functional: The energy
stateconfigurations, so the number of ground states (andf a configuration is defined [Eq. (2)] by a matrix with en-
henceZy[ f,,0]) is the same as the number of admissibletries 1 — (F,).,. As the profilep or the voting rulef
N-periodic sequences. From this perspective it is particuehanges, this matrix can change. For a (probabilistic) en-
larly natural to consider thiree energy densitfthe aver- semble of possible matrices the partition function [Eq. (1)]
age energy per lattice site) or equivalently, tbpological  defines aandom matrix mod€ll4].
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7% + 1 X 37 =~ 0.473. For comparison, we may use the

Copeland method [20] to make the weak tournaments ob-

\ tained by majority rule transitive: assign each alternative a
d d weight which is the number of incoming minus the num-

, ber of outgoing edges and rank the alternatives accord-

ingly. Forthree voters the average entropy of the Copeland

method on three alternatives is IB)Q< § = 0 088, while

FIG. 2. The weak tournaments corresponding to majorityOn four alternatives it is log x s+ 1 X g5 = 0239,
rule on the profilesps = (b >c¢>a>d,c >d>a> each of which, although higher than for majority rule,
b,d>b>c>a) and py=(>c>a>d,c>a> s |lower than the corresponding average entropy for the
d>b,d>b>c>a). Ontheleftf, contains a 3-cycle; Bgrda count.
on the right.f,,, contains a 4-cycle. The second type of ensemble is generated by a random
distribution of voting rules. We consider, for example,
The first t ¢ bl ider i ted ba uniform distribution of rules which satisfy IIA and

€ 1irst type of ensemblé we consider IS generated by e gn image in the set of strict tournamentStrit

a rando_m_distribution 9f profiles. Fpr agiven voting rule, tournamentsare weak tournaments with exactly one edge
the statistical mechanics model definedZy f,, 71w between every pair of vertices.) Each such voting rule
be present in the ensemble with probability proportronal 9 defined by its images on the profiles restricted to all
the number of profiles with the same image unflerFor pairs of alternatives. For a pair of alternatives there are
example, again consider the situation of majority votlngzn possibilities for the restriction of a profile of strict

on three_ alter_natrves. There af@!)’ pro_flles for three preferences. The voting rule maps each of these to an edge
voters with strict preferences, out of Wh'ah' 3I'map 1o irected one of two ways between these alternatives in a

a weak tournament with a cycle as . Thus, for a strict tournament. Since voting rules are Pareto, the two

ra”dom e_nsembl_e overlthese pr01f7|Ies, tlhe average entropy,animous restricted profiles have fixed images, but the

for majority rule is1 X g5 + 0 X 75 = 75 ~ 0.056. N \oainingpn — 2 may be mapped, independently, to either

thz I;rﬁgszﬁtirlli?;iglilte égg?%e%u{)nbguﬁg;’uoée[rlsf)]V;ﬁatc?hedrrected edge. Thus, if there atealternatives, there are
ginatty y 2@=2C) possible IIA voting rules for voters. Although

probability of a cycle |sz - 5= arc5|n3, to find that the is forms a huge ensemble of maps given a profile
ver ntr form r|rI n thr lternativ o . . ; -
average entropy for majority rule on three alternatives goep, it is straightforward to determine with what probability

up to approximately 0.088. S . .
Similarly, for four alternatives, there a(é!)* strict pro- each stafistical mechanics mod&i[ f,,, T] occurs in the
kensemble

files for three voters, out of which 1632 map to a wea
For example, consider the profiles = (¢ > a >

tournament with a 3-cycle as jf),, and 720 map to a weak

tournament with a 4-cycle ag}rﬁm Weighting the en- 2~ d-d>a>c>b,a>c>d> b). Restricted to

tropies in Eq. (4) accordingly, over this ensemble of pro- {a, b} orto{b, ¢} this profile is unanimous, severyvoting

files the average entropy for majority rule is approxrmatelyruIe being Pareto, must maps to a strict tournament

0.184. Inthe limit of an infinite (odd) number of voters, we with the edges: — b andc —b. The other pairwise

can use a result of May and of Flshburn [16] that the probarestrrctrons however, are not unanimous. Since we are
considering an ensemble of IIA voting rules, this means

bility of a Condorcet winner [13] |9§ + = arcsm3, to-
gether with the result of Gehrlein and Fishburn [17] thatthat a —c(orce—a) a—dord—a)b—dor
«— b), andc «— d (or d — ¢) are independent events.

the probabrlrty thatlir;ere 's no nontrivial iycle 'S Furt_hermore, eince the voting rules in this ensemble map
3,6 f arccog—x/(1 — 2x7)] profiles to strict tournaments, each of the 16 resulting
(1 — x2)1/2 possibilities has probabilitys. No further analysis of
to find that the average entropy for majority rule on fourthe errsemble 'S .necessary, we can |mmed|ately observe
alternatives goes up to approximately 0.391. that with probabrlrty16 the strict tournament to whichs
We can also consider the same ensembles of profile®aps has a 4-cycle (likg,,), with probabrlrty 16 Is has a
aggregated by other voting rules. The Borda count [18]3-cycle (like f,,,), and with probability} it is transitive.
for example, assigns weights @f — 1,n — 2,...,0 to  Thus, using the entropies in Eq. (4), the average entropy
each voter's first, second, last preferences respeéor ps over the ensemble of SUICT IIA voting rules is
tively, sums the weights of each alternative, and ranks thapproximately1.260 X 16 +1X E ~ (0.549. We can
n alternatives accordingly. Since there is now the pos€eompare this to the average entropy faror p, over the
sibility of alternatives with equal ranks, even though thesame ensemble. Each of these profiles is only unanimous
resulting weak tournament is transitive, it may still con-upon restriction to{a, c}; the consequent probabrlltles
tain cycles [19]. For three voters the average entropyor a 4-cycle, a 3-cycle, and transitivity arg, 32, and
for the Borda count on three alternatives is o 118 + ; respectively, leading to a larger average entropy of
1 X % ~ 0.255, while on four alternatives it is log§ X  approximately 0.698.
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This shows that the average entropy over an ensemble
of voting rules is a plausible measure of the cohesion or
diversity in a society [21], as described by a profile: When

the number of pairs on which the profile is unanimous [6

decreases, the average entropy increases. Furthermore, it
is sensitive tavhichpairs the voters rank consistently. Itis

clear that for this IIA ensemble, unanimity on two disjoint

[7]

pairs, e.g.{a, c} and{b, d}, does not reduce the entropy 8]
from the value found fop; and p;.
Taking a statistical mechanics approach to a general
problem in social dynamics [1,2,6,12,21,22]—iterated [9]
preference aggregation—we have been led to the topologi-

cal entropy as a quantitative measure of the complexity of
profile/voting rule pairs. Unlike traditional approaches[10]
which have concentrated merely on the existence (or not)
of cycles, use of this quantitative measure allows compari-

son between systems differing even in number of voter

or alternatives. Furthermore, we have constructed a

11]

annealed random matrix model for voting and considered
ensembles corresponding to two natural social/political

questions: What level of complexity can we expect from

a given voting rule? How cohesive/diverse is the systen12]

relative to some collection of voting rules? Not only does

the topological entropy provide for quantitative answers

to these questions, it also makes precise the connection
between the existence of cycles and chaos. Increasing the
number of autonomous agents or the number of alterna-
tives increases the complexity of the system; chaos can

8231

reduced or avoided only by severely restricting [2,6,21]
the class of agent preferences and/or aggregation rules.
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