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Suppose that a finite dimensional quantum source is known to have von Neumann entropy less
or equal toS but is otherwise completely unspecified. We describe a method of universal quantum
compression which will faithfully compress the quantum information of any such source toS qubits per
signal (in the limit of large block lengths). [S0031-9007(98)06944-0]
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The question of compressibility of information is on
of the central issues in information theory. For classic
information Shannon’s noiseless coding theorem [1,
provides a tight bound (equal to the Shannon entropy
the source) on the extent to which information may b
compressed. For quantum information an analogous ti
bound (equal to the von Neumann entropy of the sourc
was established by Schumacher [3] and further develop
in [4,5]. The methods of information compression whic
are generally used to establish these results aresource
specific; i.e., they apply only to each given source sep
rately. As elaborated below, the classical compressi
protocol requires knowledge of the probability distributio
of the source, and the quantum compression proto
requires knowledge of the density matrix of the sourc
In this Letter we will consider the question ofuniversal
quantum information compression. Is there a protoc
which will faithfully compress quantum information even
if we do not know the density matrix of the source
More precisely, suppose that all we know about th
source is that its von Neumann entropy does not exce
some given valueS. Is it then still possible to faithfully
compress the quantum information toS qubits per signal?
Remarkably, in the case of classical information su
universal compression schemes are known to exist.
explicit example is a scheme based on the theory
types developed by Csiszar and Körner [6] (which is al
described in Sec. 12.3 of [2]). In this Letter we wil
establish the existence of universal compression schem
for quantum information generated by sources of finit
dimension. (Henceforth all sources will be assumed
have this property.)

We begin with an outline of some source-specific com
pression schemes which may be used to realize the Sh
non and Schumacher bounds. Later our main results w
0031-9007y98y81(8)y1714(4)$15.00
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be related to an extension of constructions occurring
these schemes. Consider a source of classical infor
tion which generates signali with probability pi. Note
that the signals may be faithfully represented using logN
bitsysignal by just using their names (hereN is the num-
ber of signals; in this Letter logarithms are always to ba
2). LetS ­ 2

P
i pi logpi be the Shannon entropy of th

source (which is always# log N). Shannon’s theorem
asserts that the signals may be represented asymptoti
faithfully using only S bitsysignal and no fewer numbe
of bits can suffice for this task. Thus a sender (Alice) c
communicate the sequence of generated signals to a
ceiver (Bob) by sendingS bitsysignal, and this transmis
sion rate is optimal. The compression may be achie
by the following method ofblock coding,i.e., processing
long sequences of signals rather than individual sign
themselves separately. Note that we do not require
Bob is able to recover the signals perfectly but only th
the probability of any error tends to zero in the limit o
increasing block length. (This is the meaning of the te
“asymptotically faithfully.”) Consider all possible signa
sequencesi1i2 . . . in of length n (with associated proba
bility pi1 pi2 . . . pin ). Let SEQsnd be the set of all such
sequences of lengthn. Our basic ingredient is the theo
rem of typical sequences [2] which asserts the followin

Theorem of typical sequences.—For any givene . 0
and d . 0 and for all sufficiently largen there is a
subset TYPsnd # SEQsnd which has size2nsS1dd [i.e., an
exponentially small fraction of SEQsnd] but whose total
probability exceeds1 2 e (i.e., is as high as desired)
The sequences in TYPsnd are calledtypical sequences,
and those not in TYPsnd are calledatypicalsequences.

Intuitively this theorem asserts that (for all sufficient
largen) any sequence of signals generated by the sou
may be assumed with arbitrarily high probability, to b
© 1998 The American Physical Society



VOLUME 81, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 AUGUST 1998

by
ls

se-
For

ity
l
ow
l
ion

on
,

of
m

py

e
m
e
a-

ated
red

ruc-
as
te
n
-

d
that
y.
o-
so
ith
.

ical
is

d
es

s

a typical sequence. Thus to achieve compression toS
bitsysignal Alice and Bob set up a list of names of a
the typical sequences [requiringnsS 1 dd bits per typical
sequence]. Then for sequences of lengthn generated by
the source Alice sends the name of the sequence if it
a typical sequence and the name of some fixed chos
typical sequence if it is atypical. In the latter case Bo
will be unable to regenerate the correct message a
an error will have occurred. However, according to th
theorem of typical sequences, this can be arranged
occur with arbitrarily small probability by choosingn
large enough.

The compression of quantum information was first con
sidered by Schumacher [3], who developed a quantu
analog of Shannon’s theorem. The quantum compress
protocol was subsequently simplified by Jozsa and Sch
macher [4] (hereafter referred to as the JS protocol) a
later Barnumet al. [5] showed that the limit of compres-
sion provided by the JS protocol is optimal, i.e., that n
other conceivable compression protocol can provide fu
ther asymptotically faithful compression.

Consider a source of quantum states which produc
pure statesjcil [ H with probabilities pi . Let r ­P

i pijcil kcij be the density matrix of the source and
let Ssrd ­ 2tr r log r be its von Neumann entropy.
Then the JS protocol [4] provides asymptotically faithfu
compression toSsrd qubits per signal state. The method
rests again on the theorem of typical sequences abo
Note that the density matrix of all signal sequences
length n is just r≠n ­ r ≠ . . . ≠ r. Let li denote the
eigenvalues ofr so that the eigenvalues ofr≠n are
given by all products of the formli1...in ­ li1 . . . lin .
Let Lsnd be the subspace ofH ≠n given by the span
of all eigenstatesjli1 . . . lin l corresponding to alltypical
sequencesi1 . . . in of eigenvalues. Lsnd is called the
typical subspace(for block lengthn). Since the Shannon
entropy of the distributionli is equal to the von Neumann
entropySsrd we see that dimLsnd ­ 2nsssSsrd1dddd; i.e., the
typical subspace occupies aboutnSsrd qubits. Let P

denote the projection onto the typical subspace. Th
by consideringr≠n in its eigenbasis and recalling the
theorem of typical sequences we easily see that

tr r≠nP . 1 2 e . (1)

This gives the JS compression protocol: for sufficient
large n Alice accumulates a sequence ofn signal states
jcinl ­ jcj1 l . . . jcjn l and performs a measurement whic
determines whether the joint state lies inLsnd or its
orthogonal complement; i.e., the joint state is projecte
into one or other of these complementary subspac
If the state projects toLsnd Alice sends the resulting
nsssSsrd 1 dddd qubits to Bob. If it projects to the orthogo-
nal complement (which occurs with probability, e) she
sends to Bob any chosen state ofLsnd. Now, as proved
in Ref. [4], Eq. (1) implies that
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kcinjroutjcinl . 1 2 2e ,

where rout is the state obtained by Bob ifjcinl was
generated by the source (and the average denoted
the overbar is taken over all input blocks of signa
jcinl). Thus, Bob receives the statejcinl with arbitrarily
high fidelity [3,7] and in the limit of d ! 0 only S
qubitsysignal were transmitted.

We now come to the issue ofuniversal compression.
The above compression schemes based on typical
quences and the typical subspace are source specific.
classical compression we need to know the probabil
distribution of the source in order to identify the typica
sequences. For quantum compression we need to kn
the density matrix of the source to identify the typica
subspace. In the case of classical universal compress
[6] explicit knowledge of the probability distribution is
not required—knowledge of a boundS on the Shannon
entropy of the source suffices to compress the informati
to S bitsysignal. Our main result below will show that
similarly, knowledge of the density matrix of a quantum
source is not required to achieve faithful compression
quantum information—there exists a universal quantu
compression protocol which will faithfully asymptotically
compress any quantum source with von Neumann entro
# S to S qubits per signal [8].

But first, to illustrate the utility of the result, consider th
recently investigated problem of compression of quantu
information with incomplete data [9]. Namely, suppos
that the information about the source is obtained via me
surements performed over a subensemble of the gener
signal sequence. Suppose further that the set of measu
observables was too small to ensure a complete reconst
tion of the density matrix of the source. The question w
as follows: what is the maximal possible compression ra
R allowing faithful transmission in this case? It has bee
pointed out in [9] that the Jaynes maximal entropy prin
ciple [10] places a lower bound onR,

R $ SJ . (2)

Here SJ is maximal entropy admissible by the measure
mean values (Jaynes entropy). It has also been shown
for any qubit source the inequality passes into equalit
Now, applying the universal quantum compression prot
col we obtain that the equality holds in the general case,
that the Jaynes entropy gives the optimal compression w
incomplete experimental data characterizing the source

We will now briefly outline a method of classical uni-
versal data compression. Suppose we have a class
source and we know only that its Shannon entropy
less than some given numberS (and we do not know
its probability distribution). Then a result of Csiszar an
Körner [6] shows that there exists a set of sequenc
CKsnd # SEQsnd of lengthn (whose description depends
only on the value ofS) which satisfies all of the properties
enjoyed by TYPsnd in the theorem of typical sequence
1715
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not only for some one probability distribution with Shan
non entropyS but simultaneously for all distributions with
entropy# S; i.e., the total probability of CKsnd with re-
spect to any such distribution exceeds1 2 e and the size
of CKsnd is 2nsS1dd. The explicit construction of CKsnd
is also described in Sec. 12.3 of [2]. Hence if we repla
TYPsnd by CKsnd in the classical compression schem
described previously we will have a universal compre
sion scheme which faithfully asymptotically compresse
any source with Shannon entropy# S to S bitsysignal.

Consider next the prospect of replacing TYPsnd by
CKsnd in the JS protocol. It is not difficult to see
that this modified protocol will faithfully compress to
S qubitsysignal all those quantum sources whose dens
matricescommute withr and have von Neumann entropy
# S. Thus this does not provide a fully universa
quantum compression scheme: if we considerall possible
sources with von Neumann entropy# S then their density
matrices need not commute. Below we describe
alternative quantum compression scheme which is fu
universal.

For any givenr let J be the subspace ofH ≠n in the
modified JS protocol, which is spanned by all eigensta
of r≠n labeled by CK sequences; i.e.,J is the analog
of the typical subspaceLsnd. Thus projection ontoJ
will achieve faithful compression for all sources with vo
Neumann entropy# S whose density matrices commute
with r. A set of mutually commuting density matrices
is characterized by the corresponding common eigenba
and this may be any chosen orthonormal basis ofH .
Thus asr varies overall possible density matrices with
von Neumann entropy# S there will be a subspace
J associated with each choice of orthonormal basis
H . We make this dependence explicit by writingJsBd
(where B denotes an orthonormal basis ofH ), and we
suppress explicit mention of the values ofn and S on
which J also depends.

Now let Y be the smallest subspace ofH ≠n which
containsJsBd for all choices of basisB. Then projection
into Y will achieve quantum compression for all source
with von Neumann entropy# S. Below we will prove
that

dim Y # sn 1 1dd2

2nsS1dd, (3)

whered ­ dim H , n is the block length, andd . 0 may
be as small as desired. Thus we will achieve univers
compression toR qubitsysignal whereR is given by

R ­ lim
n!`

log dim Y

n
# lim

n!`
d2 logsn 1 1d

n
1 S 1 d ,

which tends toS 1 d qubitsysignal. Sinced can be as
small as desired, asymptotically we haveS qubitsysignal.
This is our universal quantum information compressio
scheme.
1716
-

ce
e
s-
s

ity

l

an
lly

tes

n

sis,

of

s

al

n

To prove (3) letB0 ­ he0
1, . . . , e0

dj be any fixed chosen
orthonormal basis ofH . Then any other basisB ­
he1, . . . , edj is obtained fromB0 by applying somed 3 d
unitary transformationU. Now JsBd is the span of
2nsS1dd states of the formei1 ≠ . . . ≠ ein (where we
choose all CK sequences of the labels). Denote this b
by CKsBd. HenceJsBd is precisely the subspace obtaine
by applying U≠n to JsB0d (where U≠n is the unitary
transformation onH ≠n given byU ≠ . . . ≠ U). ThenY

is the span of allJsBd asB ranges over all bases, whic
in turn equals the span of allU≠nf whereU ranges over
all d 3 d unitary matrices andf ranges over CKsB0d.
Let Md denote the linear space of alld 3 d complex
matrices. SinceMd contains all unitary matrices we get

Y # spanhA≠nf : A [ Md , f [ CKsB0dj . (4)

For any fixedf let

Hf ­ spanhA≠nf : A [ Mdj . (5)

We will show that

dimHf # sn 1 1dd2

. (6)

Then using (4) and the fact that dimJsB0d ­ 2nsS1dd we
will immediately obtain our desired result (3).

To prove (6) we use the notion of the symmetr
subspace.

Definition.—The symmetric subspace of a spaceH ≠n

is the space SYMsH d of the vectors which are invarian
under any permutation of the positions in the tens
product.

The symmetric subspace has found various appli
tions in quantum information theory [11,12]. In [12] it is
proved that the space SYMsH d has the following prop-
erties: (i) It is spanned by the vectors of the formc≠n;
(ii) its dimension is equal tos n1d21

d21 d whered ­ dim H .
In fact, by considering the symmetrization of a produ
basis ofH ≠n it is easy to obtain the simpler overest
mate dim SYMsH d # sn 1 1dd which will suffice for
our purposes.

An important point to note is that for fixedd and vary-
ing n the size of SYMsH d grows only polynomially
with n, whereas the full spaceH ≠n (of dimensiondn)
grows exponentially. Thus SYMsH d becomes exponen-
tially small insideH ≠n asn grows.

SinceMd is a linear space we can considerM≠n
d and the

symmetric subspace SYMsMdd # M≠n
d . According to (i)

SYMsMdd ­ spanhA≠n : A [ Mdj ,

and hence (5) gives

Hf ­ spanhBf : B [ SYMsMddj .

Now, we can define a linear mappingG from the space
SYMsMdd to Hf by
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SYMsMdd ] B ! GsBd ­ Bf [ Hf . (7)

This mapping is onto the spaceHf, and since it is linear
it cannot increase dimension. Hence

dim Hf # dim SYMsMdd .

Recalling that dimMd ­ d2, (ii) gives that

dim SYMsMdd ­

√
n 1 d2 2 1

d2 2 1

!
# sn 1 1dd2

,

which proves (6) and completes the proof of (3).
Thus we have shown that for any givenS and suffi-

ciently largen, projection intoYsS, nd will provide uni-
versal quantum data compression toS qubitsysignal for
all sources of pure quantum states with von Neumann e
tropy # S. The same method will also work faithfully for
all sources ofmixedstatesri where the von Neumann en-
tropy of r ­

P
i piri does not exceedS. Indeed, we may

always represent each of these mixed states as a pro
bilistic mixture of pure states whose identities we hav
forgotten. Also according to the results of Barnumet al.
[5] our compression scheme is optimal—compression b
yond S qubitsysignal cannot be faithful for sources of
entropy equal toS and hence cannot be faithful for all
sources of entropy# S.

Finally we remark that our bound (3) on dimY,
although sufficient for our purposes, is not generally tigh
Indeed, all we needed to show was that dimY is some
polynomial(in n) multiple of dim JsB0d. It is interesting
to note that dimY can be calculated exactly for the cas
of S ­ 0. Here we are considering all possible trivia
sourcesSscd which generate repeatedly one and the sam
vector c (i.e., have von Neumann entropy zero). Fo
Sscd the subspaceJ and the typical subspace are bot
just the one dimensional spanhc ≠ . . . ≠ cj [ H ≠n.
HenceY is the span of all states of the formc ≠ . . . ≠ c,
and by (i) we see thatY equals SYMsH d in this case. As
noted previously, SYMsH d becomes vanishingly small
inside H ≠n as n increases so the number of qubits pe
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signal used for faithful transmission tends to zero wi
increasingn.

M. H. and P. H. gratefully acknowledge the suppo
from the Foundation for Polish Science. R. J. is support
in part by the European TMR network ERB-FMRX
CT96-0087.

*Email address: rjozsa@plymouth.ac.uk
†Email address: michalh@iftia.univ.gda.pl
‡Email address: pawel@mifgate.mif.pg.gda.pl
§Email address: fizrh@univ.gda.pl

[1] E. Shannon, Bell Syst. Tech. J.27, 379 (1948).
[2] T. M. Cover and J. A. Thomas,Elements of Information

Theory(John Wiley and Sons, New York, 1991).
[3] B. Schumacher, Phys. Rev. A51, 2738 (1995).
[4] R. Jozsa and B. Schumacher, J. Mod. Opt.41, 2343

(1994).
[5] H. Barnum, Ch. Fuchs, R. Jozsa, and B. Schumach

Phys. Rev. A54, 4707 (1996).
[6] I. Csiszar and J. Körner,Information Theory: Coding

Theorems for Discrete Memoryless Systems(Academic
Press, New York, 1981).

[7] R. Jozsa, J. Mod. Opt.41, 2315 (1994).
[8] C. Krattenthaler and P. B. Slater, in http:yyxxx.lanl.govy

quant-phy9612043, have considered a different approa
to the issue of universal quantum coding and obtain
results for a parametrized family of distributions of two
level quantum systems.

[9] M. Horodecki, R. Horodecki, and P. Horodecki, Acta
Phys. Slovaca48, 133 (1998). Also available at quant
ph/9803080.

[10] E. Jaynes, Phys. Rev.108, 171 (1957);108, 620 (1957);
Am. J. Phys.31, 66 (1963).

[11] S. Massar and S. Popescu, Phys. Rev. Lett.74, 1259
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