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Suppose that a finite dimensional quantum source is known to have von Neumann entropy less than
or equal toS but is otherwise completely unspecified. We describe a method of universal quantum data
compression which will faithfully compress the quantum information of any such soueubits per
signal (in the limit of large block lengths). [S0031-9007(98)06944-0]

PACS numbers: 03.67.—a

The question of compressibility of information is one be related to an extension of constructions occurring in
of the central issues in information theory. For classicathese schemes. Consider a source of classical informa-
information Shannon’s noiseless coding theorem [1,2}ion which generates signalwith probability p;. Note
provides a tight bound (equal to the Shannon entropy ofhat the signals may be faithfully represented usingibog
the source) on the extent to which information may bebits/signal by just using their names (he¥eis the num-
compressed. For quantum information an analogous tighier of signals; in this Letter logarithms are always to base
bound (equal to the von Neumann entropy of the source). LetS = —; p;log p; be the Shannon entropy of the
was established by Schumacher [3] and further developesburce (which is alwayss log N). Shannon’s theorem
in [4,5]. The methods of information compression whichasserts that the signals may be represented asymptotically
are generally used to establish these resultssargce faithfully using only S bits/signal and no fewer number
specific;i.e., they apply only to each given source sepa-of bits can suffice for this task. Thus a sender (Alice) can
rately. As elaborated below, the classical compressiocommunicate the sequence of generated signals to a re-
protocol requires knowledge of the probability distribution ceiver (Bob) by sending bits/signal, and this transmis-
of the source, and the quantum compression protocdion rate is optimal. The compression may be achieved
requires knowledge of the density matrix of the sourceby the following method oblock coding,i.e., processing
In this Letter we will consider the question ahiversal long sequences of signals rather than individual signals
gquantum information compression. Is there a protocothemselves separately. Note that we do not require that
which will faithfully compress quantum information even Bob is able to recover the signals perfectly but only that
if we do not know the density matrix of the source?the probability of any error tends to zero in the limit of
More precisely, suppose that all we know about theincreasing block length. (This is the meaning of the term
source is that its von Neumann entropy does not exceetsymptotically faithfully.”) Consider all possible signal
some given value. Is it then still possible to faithfully sequences$,i,...i, of lengthn (with associated proba-
compress the quantum information$ajubits per signal? bility p; p;,...p; ). Let SEQn) be the set of all such
Remarkably, in the case of classical information suctsequences of length. Our basic ingredient is the theo-
universal compression schemes are known to exist. Arem of typical sequences [2] which asserts the following.
explicit example is a scheme based on the theory of Theorem of typical sequencesFor any givene > 0
types developed by Csiszar and Korner [6] (which is als@and § > 0 and for all sufficiently largen there is a
described in Sec. 12.3 of [2]). In this Letter we will subset TYPz) C SEQn) which has siz&"*9 [i.e., an
establish the existence of universal compression schemesponentially small fraction of SE®)] but whose total
for quantuminformation generated by sources of finite probability exceedsl — € (i.e., is as high as desired).
dimension. (Henceforth all sources will be assumed tdrhe sequences in TYR) are calledtypical sequences,
have this property.) and those not in TY®:) are calledatypical sequences.

We begin with an outline of some source-specific com- Intuitively this theorem asserts that (for all sufficiently
pression schemes which may be used to realize the Shalargen) any sequence of signals generated by the source
non and Schumacher bounds. Later our main results wilinay be assumed with arbitrarily high probability, to be
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a typical sequence. Thus to achieve compressiof to (Winlpoutlthin) > 1 — 2€,

bits/signal Alice and Bob set up a list of names of all _ )

the typical sequences [requirimgS + &) bits per typical Where pou is the state obtained by Bob f{i/i,) was
sequence]. Then for sequences of lengthenerated by generated by_ the source (and.the average den_oted by
the source Alice sends the name of the sequence if it if'e overbar is taken over all input blocks of signals
a typical sequence and the name of some fixed choseffin))- Thus, Bob receives the staii,) with arbitrarily
typical sequence if it is atypical. In the latter case BobNigh fidelity [3,7] and in the limit of5 — 0 only S

will be unable to regenerate the correct message an@tPits/signal were transmitted. _

an error will have occurred. However, according to the_ W& now come to the issue ainiversal compression.
theorem of typical sequences, this can be arranged th'€ above compression schemes based on typical se-

occur with arbitrarily small probability by choosing duences and the typical subspace are source specific._.For
large enough. classical compression we need to know the probability

The compression of quantum information was first conJdistribution of the source in order to_identify the typical
sidered by Schumacher [3], who developed a quanturf€duénces. For quantum compression we need to know
analog of Shannon’s theorem. The quantum compressidf€ density matrix of the source to identify the typical
protocol was subsequently simplified by Jozsa and Schsubspace. In the case of classical universal compression

macher [4] (hereafter referred to as the JS protocol) ant] €xplicit knowledge of the probability distribution is
later Barnumet al. [5] showed that the limit of compres- NOt required—knowledge of a bourlon the Shannon

sion provided by the JS protocol is optimal, i.e., that notntropy of the source suffices to compress the information

other conceivable compression protocol can provide furl® S bits/signal. Our main result below will show that,
ther asymptotically faithful compression. similarly, knowledge of the density matrix of a quantum

Consider a source of quantum states which produce3PUrce is not required to achieve faithful compression of
pure statedy;) € H with probabilities p;. Let p =  guantum information—there exists a universal quantum
> pili) (il be the density matrix of the source and COMPression protocol which will faithfully asymptotically
let S(p) = —tr p log p be its von Neumann entropy. COMPress any quantum source with von Neumann entropy
Then the JS protocol [4] provides asymptotically faithful = S 10 S qubits per signal [8].

compression t&(p) qubits per signal state. The method But first, to illustrate the utility of the result, consider the
rests again on the theorem of typical sequences abovEecently investigated problem of compression of quantum

Note that the density matrix of all signal sequences offformation with incomplete data [9]. Namely, suppose
lengthn is just p® = p ® ... ® p. Let A; denote the that the information about the source is obtained via mea-

eigenvalues ofp so that the eigenvalues g5®" are surements performed over a subensemble of the generated
given by all products of the form\; ; = A; ... A, . signal sequence. Suppose further that the set of measured
Let A(n) be the subspace of{®" gil\)é'h by tlhe sp;an observables was too small to ensure a complete reconstruc-

of all eigenstate$A;, ... A; ) corresponding to altypical tion of the density matrix of_the source. The questi_on was
sequences, ...i, of eigénvalues. A(n) is called the @S follows: what is the maximal possible compression rate

typical subspacéfor block lengthn). Since the Shannon R gllowing fa_LithfuI transmission in this qase? It has be_en
entropy of the distribution; is equal to the von Neumann Pointed out in [9] that the Jaynes maximal entropy prin-
entropyS(p) we see that dim\(n) = 2"6©)*+9: je. the ciple [10] places a lower bound ab,

typical subspace occupies abouf(p) qubits. LetII R=5,. )
denote the projection onto the typical subspace. Then

by consideringp®" in its eigenbasis and recalling the HereS; is maximal entropy admissible by the measured

theorem of typical sequences we easily see that mean values (Jaynes entropy). It has also been shown that
for any qubit source the inequality passes into equality.
trp®' Il >1— €. (1) Now, applying the universal quantum compression proto-

col we obtain that the equality holds in the general case, so
This gives the JS compression protocol: for sufficientlythat the Jaynes entropy gives the optimal compression with
large n Alice accumulates a sequence ofsignal states incomplete experimental data characterizing the source.
lgin) = |4, ... 14}, and performs a measurement which  We will now briefly outline a method of classical uni-
determines whether the joint state lies ix(n) or its  versal data compression. Suppose we have a classical
orthogonal complement; i.e., the joint state is projectedsource and we know only that its Shannon entropy is
into one or other of these complementary subspacesess than some given numbér (and we do not know
If the state projects to\(n) Alice sends the resulting its probability distribution). Then a result of Csiszar and
n(S(p) + &) qubits to Bob. If it projects to the orthogo- Korner [6] shows that there exists a set of sequences
nal complement (which occurs with probability €) she CK(n) C SEQn) of lengthn (whose description depends
sends to Bob any chosen state/ofz). Now, as proved only on the value of) which satisfies all of the properties
in Ref. [4], Eqg. (1) implies that enjoyed by TYPn) in the theorem of typical sequences
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not only for some one probability distribution with Shan-  To prove (3) letB® = {¢}, ..., )} be any fixed chosen

non entropys but simultaneously for all distributions with orthonormal basis ofH{. Then any other basi® =

entropy= S, i.e., the total probability of Ckz) with re-  {ey,..., e} is obtained fromB® by applying somel X d

spect to any such distribution exceelds- € and the size unitary transformationU. Now Z=(B) is the span of

of CK(n) is 2"$%9, The explicit construction of Ck)  2"¢+9 states of the forme; ® ... ® ¢; (where we

is also described in Sec. 12.3 of [2]. Hence if we replacehoose all CK sequences of the labels). Denote this basis

TYP(n) by CK(n) in the classical compression schemeby CK(B). HenceE(B) is precisely the subspace obtained

described previously we will have a universal compresby applying U®" to Z(B%) (where U®" is the unitary

sion scheme which faithfully asymptotically compressesransformation orfH " given byU ® ... ® U). ThenY

any source with Shannon entropy S to S bits/signal. is the span of alE(B) as B ranges over all bases, which
Consider next the prospect of replacing TP by in turn equals the span of all®”¢ whereU ranges over

CK(n) in the JS protocol. It is not difficult to see all d X d unitary matrices andp ranges over CKBY).

that this modified protocol will faithfully compress to Let M, denote the linear space of all X d complex

S qubits/signal all those quantum sources whose densitynatrices. Sincé/, contains all unitary matrices we get

matricescommute witlp and have von Neumann entropy

= S. Thus this does not provide a fully universal Y C spafA®'¢ : A € My, ¢ € CK(B")}.  (4)

quantum compression scheme: if we consalépossible

sources with von Neumann entropyS then their density 70" any fixede let

matrices need not commute. Below we describe an 1 en
; . . = SpaRA TAE Myy. 5
alternative quantum compression scheme which is fully ¢ paria™ ¢ at ®)
universal. _ We will show that
For any givenp let E be the subspace dH ®” in the i
modified JS protocol, which is spanned by all eigenstates dmHy = (n + De. (6)

of p®" labeled by CK sequences; i.e5 is the analog

of the typical subspacé(n). Thus projection onta  Then using (4) and the fact that diE(B°) = 2" we

will achieve faithful compression for all sources with von Will immediately obtain our desired result (3).

Neumann entropy= S whose density matrices commute 10 prove (6) we use the notion of the symmetric

with p. A set of mutually commuting density matrices Subspace.

is characterized by the corresponding common eigenbasis, Definition—The symmetric subspace of a spate®”

and this may be any chosen orthonormal basis?bf is the space SYK/H‘[) of the vectors which are invariant

Thus asp varies overall possible density matrices with under any permutation of the positions in the tensor

von Neumann entropy= S there will be a subspace Product.

E associated with each choice of orthonormal basis of The symmetric subspace has found various applica-

FH . We make this dependence explicit by writiggfB)  tions in quantum information theory [11,12]. In[12] itis

(where B denotes an orthonormal basis 8{), and we Pproved that the space SYI¥H ) has the following prop-

suppress explicit mention of the values mfand S on  erties: (i) It is spanned by the vectors of the forfi";

which E also depends. (ii) its dimension is equal tcb”;ifl) whered = dim .
Now let Y be the smallest subspace 6f ® which In fact, by considering the symmetrization of a product

containsE(B) for all choices of basi. Then projection basis of H{®" it is easy to obtain the simpler overesti-

into Y will achieve quantum compression for all sourcesmate dim SYMH ) = (n + 1)? which will suffice for

with von Neumann entropy= S. Below we will prove  Our purposes. . _ _
that An important point to note is that for fixed and vary-

ing n the size of SYMZ ) grows only polynomially
dimY = (n + 1)¥2n5+9), (3) With n, whereas the full spacé{ ®" (of dimensiond”")
grows exponentially. Thus SYMH ) becomes exponen-

whered = dim #, n is the block length, and > 0may  tially small inside{ ®" asn grows. .
be as small as desired. Thus we will achieve universal SinceM, is a linear space we can conside}" and the
compression t&® qubits/signal wherer is given by symmetric subspace SYW(,) C M;". According to (i)

SYM(M,) = spadA®" : A € M,},

log dimY - lim 42 log(n + 1)

R = lim lim + 8+ 8, -
n—o n n— n and hence (5) gives
which tends toS + & qubits/signal. Sinced can be as Hy = spadBe : B € SYM(M,)}.

small as desired, asymptotically we ha¥eubits/signal.
This is our universal quantum information compression Now, we can define a linear mappitgfrom the space
scheme. SYM(M,) to H, by
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SYM(M,) 3 B—T'(B) = B¢ € Hy. (7)

This mapping is onto the spacd,, and since it is linear
it cannot increase dimension. Hence

dim Hy = dim SYM(M,) .
Recalling that dimM,; = 42, (i) gives that

+ 42—
n+d 1)S(n+1)d2’

dim SYM(Md) = ( P21
which proves (6) and completes the proof of (3).
Thus we have shown that for any giveéhand suffi-
ciently largen, projection intoY (S, n) will provide uni-
versal quantum data compression$Soqubits/signal for

all sources of pure quantum states with von Neumann en-

tropy = S. The same method will also work faithfully for
all sources ofnixedstatesp; where the von Neumann en-
tropy of p = >, pip; does not excee$l. Indeed, we may

signal used for faithful transmission tends to zero with
increasing:.
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