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Effects of Reduced Dimensionality on Spin Dynamics in the Layered Perovskite
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We report zero-field muon spin rotation data in single crystals ¢f88cMn,0; for T = 5-325 K.
The spin-lattice relaxation rate is spatially inhomogeneous below the 3D magnetic transition temperature
Tc and anisotropic abové&-. We find evidence against 2D spin ordering or in-plane correlations
aboveT.. Additionally, the very slow spin fluctuations found beld in cubic (3D) perovskites like
(La, CMnO; or (La, SHMnO;, and attributed to relatively small magnetoelastic polarons, are absent in
La; 4Sn ¢Mn,0,. This suggests that the polaron size in the layered material is significantly larger than
in the 3D perovskites. [S0031-9007(98)06898-7]

PACS numbers: 75.30.—m, 72.80.Ga, 75.40.Gb, 76.75.+i

The discovery of “colossal” negative magnetoresistancdilayers separated by an insulatitig, Sr),O, plane [10],
(CMR) in the cubic three-dimensional (3D) perovskiteto investigate the effects of dimensionality on polaron
(R,A)MnO; manganites [1,2], wher® is a trivalent rare behavior. This Letter addresses the following key is-
earth and4 is a divalent metal such as Ca, Sr, or Ba, hasues: (1) Does lower dimensionality in L& ¢Mn,0O;
set off a vigorous experimental [3] and theoretical [4]cause 2D spin ordering and/or in-plane spin correlations
effort to identify the microscopic mechanisms responsibleaboveT¢, as suggested by the recent transport and mag-
for both the CMR and the ferromagnetic/metal-insulatometization data discussed below? (2) Are the slow in-
(FM/MI) transition. These CMR effects involve strong homogeneous fluctuation rates observedLlia, A)MnO;
couplings among spin, charge, and lattice degrees of fregaerovskites also present in Lgbr ¢Mn,O; under similar
dom. An understanding of the competition between thesdoping conditions? Our muon spin rotatignSR) study
couplings is important for a microscopic understandinggives negative answers to both questions. The absence of
of a broad range of transition metal oxides, such as higlslow fluctuations belowl'- can be explained if the mag-
temperature superconductors (cuprates), ferroelectrigsetoelastic polarons in this layered (2D) material are sig-
(titanates), and charge-ordering compounds (nickelateshificantly larger than in the 3D perovskites.
as well as the CMR manganites. In La; 4Sn ¢Mn,O; the anisotropic resistivity falls

In the 3D perovskite CMR materials transport measuresharply below 90 K, which is a signature of a Ml transi-
ments [5] give unequivocal evidence for small-polarontion [11]. The low-field c-axis magnetization suggests
hopping above the 3D FM magnetic ordering temperatwo magnetic transitions, one near 80—90 K and a lower
ture T¢, while neutron scattering [6] and XAFS [7] ex- antiferromagnetic (AFM) transition below about 60 K.
periments show that small changes in the local structur€urthermore, the low-fieldib-plane magnetization rises
persist belowI'c. Muon spin relaxatiouSR) [8] and  with decreasing temperature below 300 K, with a plateau
neutron scattering [9] measurements have further demorpetween 250 and 90 K [11]. This suggests [11] that the
strated that the FM transition ifLa, A)MnO; is accom-  spin behavior in this system includes in-plane, short-range
panied by very slow [8,9] spatially inhomogeneous [8]2D FM correlations below about 300 K, a 3D FM transi-
fluctuations which are not characteristic of more convention near 90 K, and AFM along the axis below 60 K.
tional ferromagnets. These unusual spin dynamics in thRecent neutron scattering data [12] give a somewhat
perovskites are likely due to the formation mfagneto- more complicated picture, however, with AFib-plane
elastic polarons, which consist of local lattice distortions ordering below about 90 K, which decreases in intensity
surrounded by polarized spin clusters [4]. Characterizaand is accompanied by both FM- and AFM-type ordering
tion of magnetoelastic polarons is recognized to be a crualong thec axis below about 60 K.
cial step in the understanding of CMR phenomena. Zero-field uSR experiments on LaSr ¢Mn,0O; were

Dimensionality has been shown to be an important conearried out using the M20 surface-muon channel at
sideration in the behavior of transition metal oxides. ItisTRIUMF in a gas-flow cryostat between 2 and 325 K.
thus of great interest to compare similar measurements iBight single crystals were synthesized at JRCAT and
Lay—»,Sh +2:Mn,0;, which consists of quasi-2D MnO mounted in an array with their axis aligned within a few
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degrees and parallel to the incoming muon momentunsS,, || a exceeds the ratél/T;). for S, |lc by a factor
Data were taken with the muon spfy, parallel to thea  of about 2.5. The inset of Fig. 1 shows,(T)/2m

andc crystallographic directions by rotatirfy, . versusT for S, [[a. The temperature dependence of the
The observeq SR zero-field relaxation functio6,(tr)  “order parameter” is not smooth, probably because of the

is well described by the formula competing magnetic ground states mentioned above.
G.(1) = Aje~WT 4 Ay p=t/T> codw,t + ¢,). (1) Figure 2 shows the temperature dependence of the

) . ) . exponentK. At high temperaturek = 1, falling to
The first term describes dynamic relaxation due to temporal-() 5 pejow 70 K. The observed stretched-exponential
fluctuations of the local field; the second term describe%ehavior([( < 1) indicates that a distribution &, values
static relaxation due to a Lorentzian distribution of Larmorgets in near or slightly abov&..

precession frequencies and vanishesfor Tc. Here  pigure 3 shows the temperature dependence of the
1/T, a_nd 1/T, are the Qynam|c (spm-lattl_ce) and static amplitudeA, of the “dynamic” term in Eq. (1). Below
relaxation rates, respectively, and, = y,Bisthe muon 54,4t 80 KA, falls as the onset of spontaneous magnetic
precession frequency in the average static internal Beld  qer creates a nonzero precession amplitdge For
The amplltgr(]jzes of the two terms are givendly=coS 6 g || A, reaches a minimum near 70 K and then recovers
andA, = sin” 6, whered is the angle betweeS, andB.  neqjy its full amplitude below 50 K, whereas 8y, || a
In a system possessing a unique local-field correlation timg  continues to decrease down to 2 K. TherefoBe
7 one expects [13] exponential relaxatith = 1) if 7is  otates below about 80 K, making an angle of about 45
much less than the measurement time scale (here a fejin the ¢ axis(A; = A, = 1/2) near 75 K and returning
muon Ilfetlmes orl0 ,us) Values of the exponedt <1 53 angle of 20-30° at the lowest temperatures.
therefore give an empirical “stretched exponential” fit in - tha muon position can be inferred from the magnetic
the presence of anhomogeneoudistribution of relatively  gyrycture and the magnitude and directiorBait low tem-
fast dynamic relaxation rates. o peratures. We have considered two structures: alternating
Figure 1 showsl /7, in zero applied field. From our gy pijavers aligned along the axis [11] (structure #1),
measurements we denole as the temperature where anq the more complicated FM/AFM structure mentioned
1/T, peaks; thuslc = 77-81 K. For both muon Spin  apaye [12] (structure #2). SR experiments in a va-

directions the relaxation rate decreases smoothly anﬁety of oxides [14] have shown that the muon forms
gradually with increasing temperature above 110 K. At

all temperatures= T¢, the relaxation rate1/7;), for
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FIG. 2. Temperature dependence of the exporinof the
FIG. 1. Temperature dependence of the spin lattice relaxatiostretched-exponential dynamic relaxation function [first term
rate1/T; in La, 4Sr ¢Mn,O;. Top: (1/Ty). (S, llc). Bottom:  of Eq. (1)] in La4ShsMn,O;. Top:S, |l[c. Bottom:S, | a.
(1/T1)a (S.lla). Inset: Temperature dependence of the muon(Data are not plotted at the lowest temperaturesSipf a, be-
frequency w, /27 below T¢, determined from fits to time- causeK cannot be determined accurately when the fluctuating
differential w SR relaxation data. amplitude and the relaxation rate are small.)
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1.2 m™—m—™—mm only a single, full-amplitude exponential relaxation func-
10 I o o o ] tion. Second, slowing of would result in an appreciable
g & ° ¢ anomaly in the temperature dependencd &f;, as seen
0.8 -E! L La Sr Mn.O. 1 near 80 K; no such anomaly is observed between 250 and
06k o MTLeTRET 325 K (Fig. 1). These two results set an upper limit of
- 1 = S |l ] 0.001 g on any static field component arising from Mn
< 04} !;5 n . spin ordering between 100—-325 K.
%:) 02 i Even if there is no magnetic order abov®0 K, cor-
= L ] related in-plane spin fluctuations might arise in this tem-
£ lated in-pl in fl ' ight arise in thi
g* 0.0 —m—r~~t— ! ! L— perature range from the 2D nature of the system. We
< 1.29 i 5|0 i 1?0 i 1?0 . 290 i 2§0 i 300 therefore consider the anisotropy of the muon relaxation
on oy 1 rate noted above. Because the system is axially symmet-
-g 1.0 - > ' e ] ric, the relaxation rates are given by
g08r i (1/T1)a = D [8Bu(@F7a(q) + [8B.(q)P7.(q) (2a)
Q 4
= 0.6} S ||a - 4
F I m . and
04 L . )
-3 ] (1/T1)e = 2 ) [8Ba(@)7a(@), (2b)
02= 555 - q
0.0 e where 6 B.(q) are the fluctuating local-field-component
0 50 100 150 200 250 300 amplitudes in theib plane(a = a) and along the: axis
T(K) (e = ¢), q is the momentum of the associated excitation,
andr,(q) are the corresponding correlation times.
FIG. 3. Temperature dependence of the amplitdgeof the The relation [6B4(q))*  T[Ba(@) xa(a), where
“dynamic” term of Eq. (1) in LasSneMn,0;. Top: S, lle.  xa(q) is the static susceptibility for field in the
Bottom:S, [ a. a direction [17], together with Eq. (2) and the experi-

mental anisotropy (1/T}), = 2.5(1/T)., imply that

Sq[Be@Pxe(@re(a) = 43 [Ba(@) P xa(@7a(q). The
a covalent bond with an oxygen atom such that thecalculated dipole fields for the candidate muon sites
w-oxygen distance i3.0 = 0.1 A. There are three in- show that (Bdgip)e < (Bgip)qs for a simple model of
equivalent oxygen sites: O(1) at (0,0,0), O(2) atspins fluctuating only in the:b plane. Then one needs
(0,0,0.2), and O(3) at (0/2,0.4), [15]. Taking the Zq)(c(q)TC(q) > 4Zq/\/a(q)7'a(q) to account for the
average Mn moment to be abaki7up (30% Mrt*) we  experimental results. This is very unlikely3t, x.(q) <
find two possible sites, one close to O(2) and a second, x.(q) (recall that y.(0) < x.(0) [11]), because
close to O(3), with dipolar fields34;, near the experi- large susceptibilities are generally associated with “soft”
mental value B = (840 = 40) G/up obtained from fluctuations (longr’s).
w,/2m measured at 2 K (inset of Fig. 1). The site near The relaxation data therefore require significarexis
O(2) yields Bgi, = 700-900 G/up for both magnetic spin fluctuations, in contradiction to the hypothesis of
structures, but only structure #2 yields the correct field di-dominant in-plane fluctuations. Furthermore, if the muon
rection. The site near O(3) is consistent with structure #2resides near the apical O(2) site, then the calculated dipole
with Bgi, = 600-800 G/ u; structure #1 produces fields fields account for essentially all of the anisotropy in
4-5 kOe/up near O(3) and is therefore ruled out by the 1/T, implying isotropic spin fluctuations. Thus, from
data. The O(2) position yields the measured anisotropyhe absence of any signature of spin ordering, and from
in 1/T, discussed below, and is also in good agreemerthe inferred out-of-plane spin fluctuations abdie, we
with the assigned muon site in 1@uQ, [16] which  find no evidence in the«SR results for 2D spin freezing
has a structure similar to that ¢ta, Sr)sMn,0;. The or predominantb-plane spin correlations between 90 and
low-temperature field can be explained By, alone; no 300 K.
transferred hyperfine field is required. We turn to the spin-lattice relaxation data for

A tendency for magnetic order is observable as a slowT = T, noting that previous uSR experiments in

ing of the mean spin correlation time wSR experiments Lays;Ca33MNn0O; [8] found a significant spatially inho-
are sensitive to this in two ways. First, ordering will pro- mogeneousuSR rate(K < 1) below T¢ = 274 K. In
duce a static field that results in muon precession or a conventional ferromagnets muon spin relaxation below
reduced dynamic amplitude (if the precession frequency i€ occurs via a two-magnon process, WitfT; inversely
too high or the static linewidth too broad for the precessiorproportional to the cube of the spin-wave stiffnés$18].
itself to be observed). This is also true for short-range orThus, no significant muon relaxation would have been
dering or glassy spin freezing, because the muon is a locaixpected belowl'¢c in Lay¢;Ca33MnO; because of the
probe. In the region between 150 and 325 K we observeelatively large valueD =~ 155 meV A% [8], contrary to
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observation. The slow and inhomogeneous spin dynamni-a; 4Sr; §Mn,0; also lacks the low-energy spin fluctua-

ics observed in Lg;Ca33MNn0O; can be interpreted [19] tions below T found in the perovskites and attributed

as the signature of small magnetoelastic polarons that ate the existence of small magnetoelastic polarons. This

localized near Ca atoms abo¥g, and which retain some suggests that the polaron size in (L& ¢Mn,0O; is

identity in the form of more extended but still relatively considerably larger than in the 3D perovskites, due to the

small FM clusters below'¢c. Slow inhomogeneous spin reduced dimensionality of the 2-layer material.
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