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Kagomé Lattice Antiferromagnet Stripped to Its Basics
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We study a model of the spifi = 1/2 Heisenberg antiferromagnet on a one-dimensional lattice with
the local symmetry of the two-dimensional Kagomé lattice. Using three complementary approaches,
it is shown that the low-energy spectrum can be described by two critical Ising models with different
velocities. One of these velocities is small, leading to a strongly localized Majorana fermion. These
excitations are singlet ones, whereas the triplet sector has a spectral gap. [S0031-9007(98)06935-X]

PACS numbers: 75.10.Jm, 75.40.Gb

The famous Kagomé lattice antiferromagnet still re- H = Z Z[J”(Sa,zj “Sanj+1 + Sanj+1 * Sapj+2)
mains largely a mystery after a decade of extensive studies. a=12 j FJiSoet - (Suzs + Suaiet)] (1)
This system exhibits both frustration and low coordinance, 182+ 2] a2j+11s
and c_IaSS|_caIIy it has !nflnlte continuous degeneracies. LO\?\/hereszj+(1/2) are the “middle spins,” an8,; are the
cal distortions allow it to explore its many ground states.; spins,” the indexa taking two valuega = 1,2), one
with no costin energy and lead to a very specific linear spi, each rail. Al interactions are antiferromagnetic and

wave spectrum with a whole branch of zero energy exciyye shall also consider the case where interaction between

tations [1]. In the quantum cas§ = 1/2), the systemis  ging helonging to the rails of the lattice is much stronger
likely to be a spin liquid with a gap for the magnetic excita-han the interactions with the middle spinsly > J,.

tions [2]. For finite samples, the system has a huge numbgjqer this condition, one can describe the chains in the

of singlet states below the first triplet [3] which is a rather .ontinuous approximation, representing the spins on each

unexpected feature for a two-dimensional quantum antizpin as a sum of ferromagnetidl, ) and staggereth, )
ferromagnet. Moreover, the analysis of the specific he%arts: Sa; — M(x) + (_1)jna(x“)_ It is crucial fléJr

shows the existence of unusual low-lying excitations [4].qr analysis that the middle spins interact only with the
The presence of these low-lying singlet excitations beloweromagnetic part of the magnetization. The latter has the
the spin gap gives a picture of an intriguing spin liquid thatt,io\ing remarkable property—it can be written as a sum
deservgs understanding from a general point pf VIeW.  of scyrrents” M, = J, + J., Where the currents satisfy
In this paper, we shall study a one-dimensional modef,e same commutation relations as bilinear combinations

of spin S = 1/2 Heisenberg antiferromagnet on a lattice of left- and right-moving Dirac fermions [6]:
presented on Fig. 1 which retains the local symmetry of

the Kagomé net. Insight into the behavior of the two- J, =R" ‘TaBRaB’ J,=L" Tap Lig, (2
dimensional Kagomé antiferromagnet might be gained by “e 2 ' a2 T

investigating this simplified system. In particular, the heres are the Pauli matrices. The corresponding algebra

one-dimensional model may help us to identify the S|°W[SU(2)1]is called the levet = 1 SU(2) Kac-Moody (KM)
degrees of freedom of the problem.

According to the conventional wisdom the model we
study may be viewed as a version of a three-leg spin J||
ladder which in the low-energy limit one should expect to
fall into the universality class of th& = 1/2 Heisenberg
spin chain. The latter means that the low-lying excitations Ji
(often called spinons) are represented by one gapless
bosonic mode (in the language of the theory of critical
phenomena this means that the central charge of the model
is equal toC =1 [5]). However, the frustration may
play its tricks and, as we shall see, a somewhat different
scenario is realized. Namely, the bosonic mode decouples
into two modes of real (Majorana) fermiong & 1/2
each) having different spectra.

I I I I
2 2%+l 2(i+1) 20+1)+1

The Hamiltonian for the model shown in Fig. 1 may be
written FIG. 1. One-dimensional version of the Kagomé lattice.
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algebra wherek refers to the number of species of spin- where N andN, are the numbers of spins on the rails and
1/2 fermions (one in the given case). Now we noticein the middle, respectivelyM is the number of up spins
that the interaction includes the sum of two @Y spin (M = 2N + Ny/2 — S§%) ande,(x) = (x — in/2)/(x +
currents] = J; + J, which, by definition, is a levet =  in/2). The total energy takes the form

2 current. These currents have the same commutation

relations as currents of three Majorana fermions (the E = i Z In[ex(x, + 1/g)/ex(xa — 1/)].  (7)
explicit expression is given later) [7,8]. Since each Dirac 2i

fermion can be represented as a linear combination of two )
Majorana (real) fermions, it is clear that onlyZof the Following the standard procedures of the Bethe ansatz, we

low-energy degrees of freedom of rails are involved ind€rive the following system of integral equations for the
the interaction. Obviously the other decoupled degrees df€€ energy:

freedom remain critical. Using the results of Ref. [8] we

can represent the continuous limit of the Hamiltonian (1)  F = —NTf dx[s(x + 1/g) + s(x — 1/g)]

as follows: H = H, + H, with X In[1 + e=W/T]
H, = _% dx(rgdxro — looxlo), 3) — NoT f dx s(x)In[1 + eel(x)/T], (8)
Ho="7 | axlPe) + T with

€;(x) = Ts = In[1 + e @W/T][1 4 ¢&+1W/T]
— 6j2Acoshrx (9)

Here v ~ J) is the spin velocity which we shall later and lim,_... €,(x)/n = H, H being the magnetic field. In
put to unity and the coupllng. constant gs~ J . The  (9), one has\ ~ exp(—/g), s(x) = [2coshzx]~!, and
Majorana fermion(ry, ly) describes nhonmagnetic, gaplessthe convolution product is denoted by
excitation. It represents Ising degrees of freedom that At Jow temperaturesT < A, one has e(x) =
do not interact with the central spins and are associ=-A coshrx, €,;(x) = O(e 2/T). In this case the first
ated with a discret&; interchange symmetry between the term in the free energy (8) gives an exponentially small
surface chains. We shall study the Hamiltonian (4) uscontribution corresponding to excitations with a spectral
ing several alternative approaches. First, we shall studjap A and the last term giveE ~ —TN, In /2 showing
an integrable deformation of model (4). To make surehat each central spin contributes/to the ground state
that the exact solution reproduces the qualitative featuresntropy. A lesson we learn from the exact solution is
of the spectrum, we shall consider an anisotropic versiogat there are degrees of freedom presumably localized
of (4), bearing in mind that it may simplify in the limit of on central spins (and their number corresponds exactly to
strong anisotropy (the so-called Emery-Kivelson limit[9]). 3 single Majorana mode) which remain decoupled. One
Flna”y, a direct mean-field treatment of the lattice in themay Conjecture that since the magnetic modes are sepa-
isotropic limit will be performed. _ rated from the ground state by a gap, the soft modes will
Exact solution of a related modet-Since the currents remain soft even when one departs from the integrable
satisfying the levelk =2 SU(2) KM algebra can be point. Below we shall give more rigorous arguments to
represented as fermionic bilinears, the effective theorgypport this conjecture.
for the central spins corresponds to a special version The Emery-Kivelson limit—We shall now study a
of the two-channelk = 2) Kondo-lattice model where (1) version of the Hamiltonian (4), characterized by
“electrons” do not experience backscattering. A similargnisotropic interactions witly — gI,g1 where in the
model (with k = 1) was considered in Ref. [10]; the |imit of strong anisotropy, the low energy degrees of free-
result is that integrability is achieved if one adds andom can be identified. This approach has been fruitfully

DY f dx 8(x — aj)s; - [J(x) + T (@)
J

additional interaction: applied in quantum impurity problems and gives a sim-
B - ple description of the two-channel Kondo model [9] and
Hex = H, + g/f dx J(x) - J(x), (5)  also of the Kondo lattice [11]. In particular, for the two-

o __channel Kondo problem, Emery and Kivelson identified
were the ratiog’/g is fixed. The Bethe ansatz equationsha residual zero point entropy stemming from a unique

for model (5) are derived in the same way as in Ref. [10}y5i0rana zero mode. To reformulate the Hamiltonian (4)
with the only difference that “conduction electrons” Nnow o¢ 5 fermionic theory similar to Kondo problems, we first

belong to the spin-1 representation of the SU(2) groupiniroduce three right- and left-moving Majorana fermions
The result is rp. 1,(b = 1,2,3) to use the fermionic representation of

M . —d . . . .

B N Noo N _ _ the SU(2) spin current:J* = —ie*“r,r./2 with a simi-
[eabxa + 1/8)ea(xa = 1/8)1 €1 (xa) zD] e2l¥a = Xp), lar relation for the left-moving current [7]. The next step
(6) in our solution is to combine the two Majorana fermions
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(r1,11) and (r, l;) to form a single Dirac spinofR, L) _Z[ 8l a (D), + 81 e 5Tl VT O
which in turn can be bosonized. Introducing a massless Hin 7 day 7

bosonic field® and its dual field®, one can write _ _ :
% (et\/—CI)/-e 177/413’]_ +oe zﬁ®,etﬂ/4r3’j)

o tin _ € . B
- V2 V2w LT = O] + H.c.] (11)
L= fﬁ’lz = Jze_ exd—iym(® + ©)], (10)

Following Emery and Kivelson, we absorb the phase
whereaqy is a short distance cutoff. The antlcommutatlonfactor ¢e=iVT9; into the spin operators by a unitary

relation betweerR and L is taken into account by the ;.o <formatior:
commutator: [O(y), ®(x)] = —if(y — x). The real

fermionic zero mode(e) is necessary to establish the SN

correct anticommutation relations with the third Majorana U=e S (12)
fermion (r3, 3). The interacting part of the Hamiltonian

(4) is then given by As a result the interaction becomes

(g —m) . g ;
5'ﬂm—>U5'ﬂmU*=;<—Tsj(axq’)j+ e e ey o). )

where we have replaced the combinations of spﬁz-l| 2 per central spin as found above in the integrable model.
operators and fermionic zero mode by local fermiamg  Away from the Toulouse poird g = g — 7 # 0), this
using the Jordan-Wigner transformation. We have alsonode will acquire a small dispersion and will contribute
absorbed a phase facter 1)/ in the definition ofaf. to the specific heat. Coming back to the original model,
At a special pointg = 7 (called the Toulouse point), adding the contribution of the singlet Majorana fermion
part of the interaction vanishes and the low-energy physicé-, o) which has decoupled from the interaction, the total
can be studied by a simple mean-field theory. Since theentral charge in the long-distance limitGs= 1. Let us
scaling dimensiord of the bosonic exponents in (13) is stress that the two Majorana modes, in the singlet sector,
pretty small(d = 1/4), we shall replace them by their contributing to the central charge are of differewiture.
averages and try to solve the problem self-consistentlyThe Majorana fieldr, /) describes a critical Ising model,
Introducing two Majorana fermion& ) associated with whereas¢, is a strongly localized Majorana fermion. In
the complex fermior: a = (&, + i&»)/+/2, we find that  contrast, the triplet sector has a small spectral gap. As
the effective action decouples into bosonic and fermioni@ result of this spectrum, the middle spins are disordered

parts in the mean field limit:Sy,z = Sg + Sg with and have short-ranged spin correlations.
The experience gained from the study of Kondo models
Sp = [ dx dr[ (9, ®) + )\cos(\/—db)} leads us to expect that the preceeding results obtained in
the Emery-Kivelson limit of the model will extend to the
S, — ] dr[ P 9.& isotropic point. To show this, we shall now develop a
4 Z £1j9:815 + 52” €2 mean-field theory directly at the isotropic limit keeping

track of the lattice structure more accurately than in the
previous approach.

Direct mean-field approach-—The Hamiltonian (4) is
reformulated in terms of a fermionic model on the lattice:

) /\/187'/\/] - l/\/j+l/\/j - lAfZ/in| (14)

where y is a Majorana fermion express in terms of
the right- and leftmoving Majorana fieldgrs, [3):
x; = [l + (=1)r3;1/v/2.  The mean-field parame-

. , W .
ters are defined byx = —ig ((&,x)/Jma; and A = H, = iJy Z Xj+1Xj — Eg Z $2j+(1/2)
g {cog /7 ®))/./may. Solving the self-consistency J J
equations, we find that the bosonic fisldbecomes mas- (X2 X x2;] + [x2j+1 X X2j+1). (15)

sive with a gap of the ordes ~ ¢7°In'/5(1/¢% ap). In

the fermionic sector, the Majorana fermighn hybridizes  In the continuum limit, the rail ofy“ fermions will
with the Majorana fieldy, which in terms of the original contain left- and right-moving Majorana fermions
spins stems from the rails spins. The resulting excitatiortr,, /,;a = 1,2,3) of the SU(2) spin current: yj =
spectrum is reminiscent of the one found in Kondo lattices—/,(x) — (—1)/r,(x); with this identification, the Hamil-
[12] with a small gapA, ~ A%/Jy < A. Finally, there tonian (4) is then reproduced. The model (15) cor-
is still a singlet localized Majorana fermiogi; which  responds to local moments,;+1,,) interacting with a
decouples from the conduction sea at the Toulouse poinsea of three Majorana fermionigy/). To describe the
This mode gives a zero-point entropy of magnltLgdm middle spins we use the Majorana representation for spins
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S = 1/2 (see Ref. [12], and references therein): which for small times is proportional tb/|7|, as for the
i R two-channel Kondo problem.
Sn = 75 [¥n X ¥al, In conclusion, the version of the Kagomé lattice studied
in this paper can be reformulated as a fermionic theory
n =2k + EX ke Z, (16) similar to models of Kondo lattices. Its low-energy

. . o excitations are two spin-singlet Majorana modes with
where y; are local Majorana fermions satisfying the gifferent spectra: a critical Ising mode and a strongly
anticommutation relations{y;., v} = 8,,6”.  This  |ocalized Majorana fermion, whereas the triplet sector has
representation (16) reproduces the spin commutatiop small spectral gap. The physics of the localized low-
relations and giveS the correct value of the CaSimirenergy mode is similar to physics of the two-channel
operators; = 3/4. . Kondo model. This picture retains some properties of

A model very similar to (15) was analyzed in Ref. [13]. the Kagomé antiferromagnet with very soft singlet modes
Following this analysis we substitute (16) into (15) andand a gap for magnetic excitations. It is tempting
decouple the interaction with an auxiliary fieldliving o conjecture that the singlet degrees of freedom and
on the links connecting rails with middle spins. In thethe gapful magnetic excitation identified here might be
mean-field approximation the variabl&sare considered responsible for the additional structure seen in the specific
as static with their values determined self-consistently byheat of the Kagomé magnet at low temperature.
minimizing the free energy. We find that the minimum A M. Tsvelik acknowledges the kind hospitality of
is achieved when a unit cell contains two middle spinsgcole Normale Supérieure during his stay in Paris. The
(see Fig. 2) with eithet/y = V- =0,U- = £V, = A gythors thank P. Chandra, P. Coleman, B. @dpH.-U.

orU- =V, =0,Uy =xV_ = A, Everts, and Ch. Waldtmann for important discussions.
All branches of the spectrum are found to be gapful.
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