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Kagomé Lattice Antiferromagnet Stripped to Its Basics
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We study a model of the spinS ­ 1y2 Heisenberg antiferromagnet on a one-dimensional lattice with
the local symmetry of the two-dimensional Kagomé lattice. Using three complementary approaches,
it is shown that the low-energy spectrum can be described by two critical Ising models with different
velocities. One of these velocities is small, leading to a strongly localized Majorana fermion. These
excitations are singlet ones, whereas the triplet sector has a spectral gap. [S0031-9007(98)06935-X]

PACS numbers: 75.10.Jm, 75.40.Gb
nd
een
er

the
ach

he
the
m

ons

bra
The famous Kagomé lattice antiferromagnet still re
mains largely a mystery after a decade of extensive studi
This system exhibits both frustration and low coordinanc
and classically it has infinite continuous degeneracies. L
cal distortions allow it to explore its many ground state
with no cost in energy and lead to a very specific linear sp
wave spectrum with a whole branch of zero energy exc
tations [1]. In the quantum casesS ­ 1y2d, the system is
likely to be a spin liquid with a gap for the magnetic excita
tions [2]. For finite samples, the system has a huge numb
of singlet states below the first triplet [3] which is a rathe
unexpected feature for a two-dimensional quantum an
ferromagnet. Moreover, the analysis of the specific he
shows the existence of unusual low-lying excitations [4
The presence of these low-lying singlet excitations belo
the spin gap gives a picture of an intriguing spin liquid tha
deserves understanding from a general point of view.

In this paper, we shall study a one-dimensional mod
of spin S ­ 1y2 Heisenberg antiferromagnet on a lattic
presented on Fig. 1 which retains the local symmetry
the Kagomé net. Insight into the behavior of the two
dimensional Kagomé antiferromagnet might be gained
investigating this simplified system. In particular, th
one-dimensional model may help us to identify the slo
degrees of freedom of the problem.

According to the conventional wisdom the model w
study may be viewed as a version of a three-leg sp
ladder which in the low-energy limit one should expect t
fall into the universality class of theS ­ 1y2 Heisenberg
spin chain. The latter means that the low-lying excitation
(often called spinons) are represented by one gaple
bosonic mode (in the language of the theory of critica
phenomena this means that the central charge of the mo
is equal toC ­ 1 [5]). However, the frustration may
play its tricks and, as we shall see, a somewhat differe
scenario is realized. Namely, the bosonic mode decoup
into two modes of real (Majorana) fermions (C ­ 1y2
each) having different spectra.

The Hamiltonian for the model shown in Fig. 1 may b
written
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H ­
X

a­1,2

X
j

fJksSa,2j ? Sa,2j11 1 Sa,2j11 ? Sa,2j12d

1 J's2j1 1
2

? sSa,2j 1 Sa,2j11dg , (1)

where s2j1s1y2d are the “middle spins,” andSa,j are the
“rail spins,” the indexa taking two valuessa ­ 1, 2d, one
for each rail. All interactions are antiferromagnetic a
we shall also consider the case where interaction betw
spins belonging to the rails of the lattice is much strong
than the interactions with the middle spins:Jk ¿ J'.
Under this condition, one can describe the chains in
continuous approximation, representing the spins on e
chain as a sum of ferromagneticsMad and staggeredsnad
parts: Sa,j ! Masxd 1 s21djnasxd. It is crucial for
our analysis that the middle spins interact only with t
ferromagnetic part of the magnetization. The latter has
following remarkable property—it can be written as a su
of “currents” Ma ­ Ja 1 Ja, where the currents satisfy
the same commutation relations as bilinear combinati
of left- and right-moving Dirac fermions [6]:

Ja ­ R1
a,a

$sab

2
Ra,b , Ja ­ L1

a,a

$sab

2
La,b , (2)

where $s are the Pauli matrices. The corresponding alge
fSUs2d1g is called the levelk ­ 1 SU(2) Kac-Moody (KM)

FIG. 1. One-dimensional version of the Kagomé lattice.
© 1998 The American Physical Society
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algebra wherek refers to the number of species of spin
1y2 fermions (one in the given case). Now we notic
that the interaction includes the sum of two SUs2d1 spin
currentsJ ­ J1 1 J2 which, by definition, is a levelk ­
2 current. These currents have the same commutat
relations as currents of three Majorana fermions (t
explicit expression is given later) [7,8]. Since each Dira
fermion can be represented as a linear combination of t
Majorana (real) fermions, it is clear that only 3y2 of the
low-energy degrees of freedom of rails are involved
the interaction. Obviously the other decoupled degrees
freedom remain critical. Using the results of Ref. [8] w
can represent the continuous limit of the Hamiltonian (
as follows: H ­ Hs 1 Ht with

Hs ­ 2
iy

2

Z
dxsr0≠xr0 2 l0≠xl0d , (3)

Ht ­
py

2

Z
dxfJ2sxd 1 J2sxdg

1
X

j

g
Z

dx dsx 2 ajdsj ? fJsxd 1 Jsxdg . (4)

Here y , Jk is the spin velocity which we shall later
put to unity and the coupling constant isg , J'. The
Majorana fermionsr0, l0d describes nonmagnetic, gaples
excitation. It represents Ising degrees of freedom th
do not interact with the central spins and are asso
ated with a discreteZ2 interchange symmetry between th
surface chains. We shall study the Hamiltonian (4) u
ing several alternative approaches. First, we shall stu
an integrable deformation of model (4). To make su
that the exact solution reproduces the qualitative featu
of the spectrum, we shall consider an anisotropic vers
of (4), bearing in mind that it may simplify in the limit of
strong anisotropy (the so-called Emery-Kivelson limit [9]
Finally, a direct mean-field treatment of the lattice in th
isotropic limit will be performed.

Exact solution of a related model.—Since the currents
satisfying the levelk ­ 2 SU(2) KM algebra can be
represented as fermionic bilinears, the effective theo
for the central spins corresponds to a special vers
of the two-channelsk ­ 2d Kondo-lattice model where
“electrons” do not experience backscattering. A simil
model (with k ­ 1) was considered in Ref. [10]; the
result is that integrability is achieved if one adds a
additional interaction:

Hex ­ Ht 1 g0
Z

dx Jsxd ? Jsxd , (5)

were the ratiog0yg is fixed. The Bethe ansatz equation
for model (5) are derived in the same way as in Ref. [1
with the only difference that “conduction electrons” now
belong to the spin-1 representation of the SU(2) grou
The result is

fe2sxa 1 1ygde2sxa 2 1ygdgNe
N0
1 sxad ­

MY
b­1

e2sxa 2 xbd ,

(6)
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where 2N andN0 are the numbers of spins on the rails an
in the middle, respectively,M is the number of up spins
sM ­ 2N 1 N0y2 2 Szd andensxd ­ sx 2 iny2dysx 1

iny2d. The total energy takes the form

E ­
1
2i

X
a

lnfe2sxa 1 1ygdye2sxa 2 1ygdg . (7)

Following the standard procedures of the Bethe ansatz,
derive the following system of integral equations for th
free energy:

F ­ 2NT
Z

dxfssx 1 1ygd 1 ssx 2 1ygdg

3 lnf1 1 ee2sxdyT g

2 N0T
Z

dx ssxdlnf1 1 ee1sxdyT g , (8)

with

ejsxd ­ Ts p lnf1 1 eej21sxdyT g f1 1 eej11sxdyT g

2 dj,2 D coshpx (9)

and limn!` ensxdyn ­ H, H being the magnetic field. In
(9), one hasD , exps2pygd, ssxd ­ f2 coshpxg21, and
the convolution product is denoted byp.

At low temperatures T ø D, one has e2sxd ø
2D coshpx, e1sxd ­ Ose2DyT d. In this case the first
term in the free energy (8) gives an exponentially sma
contribution corresponding to excitations with a spectr
gapD and the last term givesF ø 2TN0 ln

p
2 showing

that each central spin contributes ln
p

2 to the ground state
entropy. A lesson we learn from the exact solution
that there are degrees of freedom presumably localiz
on central spins (and their number corresponds exactly
a single Majorana mode) which remain decoupled. O
may conjecture that since the magnetic modes are se
rated from the ground state by a gap, the soft modes w
remain soft even when one departs from the integrab
point. Below we shall give more rigorous arguments
support this conjecture.

The Emery-Kivelson limit.—We shall now study a
U(1) version of the Hamiltonian (4), characterized b
anisotropic interactions withg ! gk, g' where in the
limit of strong anisotropy, the low energy degrees of fre
dom can be identified. This approach has been fruitfu
applied in quantum impurity problems and gives a sim
ple description of the two-channel Kondo model [9] an
also of the Kondo lattice [11]. In particular, for the two
channel Kondo problem, Emery and Kivelson identifie
the residual zero point entropy stemming from a uniqu
Majorana zero mode. To reformulate the Hamiltonian (
as a fermionic theory similar to Kondo problems, we fir
introduce three right- and left-moving Majorana fermion
rb , lbsb ­ 1, 2, 3d to use the fermionic representation o
the SU(2)2 spin current:Ja ­ 2ieabcrbrcy2 with a simi-
lar relation for the left-moving current [7]. The next ste
in our solution is to combine the two Majorana fermion
1695
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e

sr1, l1d and sr2, l2d to form a single Dirac spinorsR, Ld
which in turn can be bosonized. Introducing a massle
bosonic fieldF and its dual fieldQ, one can write

R ­
r1 1 ir2p

2
­

e
p

2pa0
expfi

p
psF 2 Qdg ,

L ­
l1 1 il2p

2
­

e
p

2pa0
expf2i

p
psF 1 Qdg , (10)

wherea0 is a short distance cutoff. The anticommutatio
relation betweenR and L is taken into account by the
commutator: fQs yd, Fsxdg ­ 2ius y 2 xd. The real
fermionic zero modesed is necessary to establish the
correct anticommutation relations with the third Majoran
fermion sr3, l3d. The interacting part of the Hamiltonian
(4) is then given by
1696
ss

n

a

Hint ­
X

j

∑
2

gk
p

p
sz

j s≠xFdj 1
g'p
4pa0

ejs1
j ei

p
p Qj

3 sei
p

p Fj e2ipy4l3,j 1 e2i
p

p Fj eipy4r3,jd

1 H.c.

∏
. (11)

Following Emery and Kivelson, we absorb the phas
factor e6i

p
p Qj into the spin operators by a unitary

transformationU:

U ­ e
2i

p
p

P
j

Qjsz
j . (12)

As a result the interaction becomes
Hint ! UHintU
y ­

X
j

µ
2

sgk 2 pd
p

p
sz

j s≠xFdj 1
g'p
4pa0

a1
j

∑
ei

p
p Fj l3,j 1 s21dje2i

p
p Fj r3,j

∏
1 H.c.

∂
, (13)
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where we have replaced the combinations of spin-1y2
operators and fermionic zero mode by local fermionssajd
using the Jordan-Wigner transformation. We have al
absorbed a phase factors21dj in the definition ofa1

j .
At a special pointgk ­ p (called the Toulouse point),

part of the interaction vanishes and the low-energy phys
can be studied by a simple mean-field theory. Since t
scaling dimensiond of the bosonic exponents in (13) is
pretty small sd ­ 1y4d, we shall replace them by their
averages and try to solve the problem self-consisten
Introducing two Majorana fermionssj1,2d associated with
the complex fermiona: a ­ sj1 1 ij2dy

p
2, we find that

the effective action decouples into bosonic and fermion
parts in the mean field limit:SMF ­ SB 1 SF with

SB ­
Z

dx dt

∑
1
2

s≠mFd2 1 l coss
p

p Fd
∏

,

SF ­
X

j

Z
dt

∑
1
2

j1,j≠tj1,j 1
1
2

j2,j≠tj2,j

1
1
2

xj≠txj 2 ixj11xj 2 iDj2,jxj

∏
, (14)

where x is a Majorana fermion express in terms o
the right- and left-moving Majorana fieldssr3, l3d:
xj ­ fl3,j 1 s21djr3,jgy

p
2. The mean-field parame-

ters are defined byl ­ 2ig'kj2xly
p

pa0 and D ­
g'kcoss

p
p Fdly

p
pa0. Solving the self-consistency

equations, we find that the bosonic fieldF becomes mas-
sive with a gap of the orderD , g

4y3
' ln1y6s1yg2

'a0d. In
the fermionic sector, the Majorana fermionj2 hybridizes
with the Majorana fieldx, which in terms of the original
spins stems from the rails spins. The resulting excitati
spectrum is reminiscent of the one found in Kondo lattic
[12] with a small gapDg , D2yJk ø D. Finally, there
is still a singlet localized Majorana fermionj1 which
decouples from the conduction sea at the Toulouse po
This mode gives a zero-point entropy of magnitude1

2 ln
so

ics
he

ly.

ic

f

n
s

int.

2 per central spin as found above in the integrable mod
Away from the Toulouse pointsdgk ­ gk 2 p fi 0d, this
mode will acquire a small dispersion and will contribut
to the specific heat. Coming back to the original mode
adding the contribution of the singlet Majorana fermio
sr0, l0d which has decoupled from the interaction, the tot
central charge in the long-distance limit isC ­ 1. Let us
stress that the two Majorana modes, in the singlet sec
contributing to the central charge are of differentnature.
The Majorana fieldsr0, l0d describes a critical Ising model,
whereasj1 is a strongly localized Majorana fermion. In
contrast, the triplet sector has a small spectral gap.
a result of this spectrum, the middle spins are disorder
and have short-ranged spin correlations.

The experience gained from the study of Kondo mode
leads us to expect that the preceeding results obtained
the Emery-Kivelson limit of the model will extend to the
isotropic point. To show this, we shall now develop
mean-field theory directly at the isotropic limit keepin
track of the lattice structure more accurately than in th
previous approach.

Direct mean-field approach.—The Hamiltonian (4) is
reformulated in terms of a fermionic model on the lattice

Ht ­ iJk

X
j

xa
j11xa

j 2
ig
2

X
j

s2j1s1y2d

? sf $x2j 3 $x2jg 1 f $x2j11 3 $x2j11gd . (15)

In the continuum limit, the rail ofxa fermions will
contain left- and right-moving Majorana fermions
sra, la; a ­ 1, 2, 3d of the SU(2)2 spin current: x

a
j ­

2lasxd 2 s21djrasxd; with this identification, the Hamil-
tonian (4) is then reproduced. The model (15) co
responds to local momentsss2j11y2d interacting with a
sea of three Majorana fermionssxa

j d. To describe the
middle spins we use the Majorana representation for sp
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S ­ 1y2 (see Ref. [12], and references therein):

sn ­ 2
i
2

f $gn 3 $gng,

n ­ 2k 1
1
2

, k [ Z , (16)

where ga
n are local Majorana fermions satisfying the

anticommutation relationshga
n , gb

mj ­ dnmdab. This
representation (16) reproduces the spin commutati
relations and gives the correct value of the Casim
operator:s2

n ­ 3y4.
A model very similar to (15) was analyzed in Ref. [13]

Following this analysis we substitute (16) into (15) an
decouple the interaction with an auxiliary fieldV living
on the links connecting rails with middle spins. In th
mean-field approximation the variablesV are considered
as static with their values determined self-consistently b
minimizing the free energy. We find that the minimum
is achieved when a unit cell contains two middle spin
(see Fig. 2) with eitherU1 ­ V2 ­ 0, U2 ­ 6V1 ; D

or U2 ­ V1 ­ 0, U1 ­ 6V2 ; D.
All branches of the spectrum are found to be gapfu

The low-energy band is rather flat towards the edge
the Brillouin zone in agreement with the Emery-Kivelso
limit of the model in the triplet sector. However, as wa
demonstrated in Ref. [13], the localZ2 degeneracy of the
ground state generates a local real fermionic zero mo
g0 which is coupled to the three Majorana band fermion
with the Lagrangian:

L ­
X

j

∑
1
2

g0
j ≠tg0

j 1 g0g0
j x1

j x2
j x3

j

∏
. (17)

This singlet zero mode acquires a small dispersion wi
the bandwidthDg , D2yJk ø D. The total amount of
entropy accumulated in this band is12 ln 2 per central
spin and this degeneracy will be slightly lifted and
results in the coherent dispersion of this mode. Th
mode corresponds to the strongly localized Majoran
fermion found in the Emery-Kivelson limit. This field
will manifest itself in the spin-spin correlation functions
of the central spins since at low energies, they beha
like s , g0 $x. Because of the small dispersion of th
fermionic modeg0, correlation functions of middle spins
are strongly localized in space, but not in time where th
characteristic scale is,D21

g :

kksst, jdss0, jdll , K1sDgjtjd , (18)

FIG. 2. The unit cell in the mean-field approximation.
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which for small times is proportional to1yjtj, as for the
two-channel Kondo problem.

In conclusion, the version of the Kagomé lattice studie
in this paper can be reformulated as a fermionic theor
similar to models of Kondo lattices. Its low-energy
excitations are two spin-singlet Majorana modes with
different spectra: a critical Ising mode and a strongly
localized Majorana fermion, whereas the triplet sector ha
a small spectral gap. The physics of the localized low
energy mode is similar to physics of the two-channe
Kondo model. This picture retains some properties o
the Kagomé antiferromagnet with very soft singlet mode
and a gap for magnetic excitations. It is tempting
to conjecture that the singlet degrees of freedom an
the gapful magnetic excitation identified here might be
responsible for the additional structure seen in the specifi
heat of the Kagomé magnet at low temperature.
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