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Isostatic Phase Transition and Instability in Stiff Granular Materials
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Structural rigidity concepts are used to understand the origin of instabilities in granular aggreg
It is first demonstrated that the contact network of a noncohesive granular aggregate becomesexactly
isostatic when I  keyfl ¿ 1, wherek is the stiffness,e is the typical interparticle gap, andfL is
the typical stress induced by loads. Thus random packings of stiff particles are typically isost
Furthermore isostaticity is responsible for the anomalously large susceptibility to perturbation obse
in granular aggregates. The load-stress response function of granular piles iscritical (power-law
distributed) in the isostatic limit, which means that slight overloads will produce internal rearrangeme
[S0031-9007(98)06949-X]
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Photoelastic visualization experiments [1–3] show
clearly defined stress-concentration paths in noncohes
granular materials under applied load. These often suff
sudden rearrangement on a global scale when the lo
conditions are slightly changed, evidencing a degre
of susceptibility to perturbation not usually present i
elastic materials. It is rather possible that this intrinsi
instability is responsible for much of the interesting
phenomenology of granular materials [3,4]. Recently
number of phenomenological models [2,5–8] have bee
put forward, which succeed to reproduce several aspe
of stress propagation in granular systems, and the iss
of instability has been addressed by noting that the loa
stress response function may take negative values [6].
is the purpose of this Letter to show that structural rigidit
concepts help us understand theorigin of instability in
granular materials, linking it to the topological propertie
of the system’s contact network.

Structural rigidity [9] studies the conditions that a
network of points connected by rotatable bars (repr
senting central forces) has to fulfill in order to sustai
applied loads. A network with too few bars isflexible,
while if it has the minimum number required to be
rigid it is isostatic. Networks with bars in excess of
minimal rigidity areoverconstrained, and are in general
self-stressed. Concepts from structural rigidity were first
introduced in the study of granular media by Guyonet al.
[10], who stressed that granular systems are not e
tirely equivalent to linear elastic networks since in th
former only compressive interparticle forces are po
sible. We next show that this constraint has far-reachin
consequences for the static behavior of stiff granul
aggregates.

Consider a d-dimensional frictionless granular pile
in equilibrium under the action of external forces$Fi

(gravitational, etc.) on its particles. Imagine building a
equivalent linear-elastic central-force network (thecontact
network), in which two sites are connected by a bond i
and only if there is a nonzero compression force betwe
0031-9007y98y81(8)y1634(4)$15.00
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the two corresponding particles. Because of linearit
stressesfij on the bonds of this equivalent system ca
be decomposed asfij  fself

ij 1 fload
ij where fself

ij are
self-stresses, andfload

ij are load-dependent stresses. The
last are linear in the applied load and do not change
all stiffnesses are rescaled. Self-stresses in turn do
depend on the applied load, but are linear combinatio
of terms of the formkijeij wherekij are the stiffnesses of
the bonds, andeij their length mismatches. In a granula
pile, length mismatches are due to interparticle gaps, a
therefore will depend on the distribution of radii and on th
characteristics of the packing. Furthermore, self-stres
can arise only withinoverconstrainedsubgraphs [9,10],
i.e., those with more contacts than strictly necessary
be rigid. It is easy to see that a bounded overconstrain
subgraph with nonzero self-stresses must have at le
one negative (traction) self-stress. It suffices to consid
a joint belonging to the envelope of the overconstrain
cluster: since bonds can reach it from only one side of t
frontier, stresses of both signs are necessary in order
the joint to be equilibrated. Now rescale all stiffnesses a
cording tok ! lk. In doing so, self-stresses are rescale
by l, but load-dependent stresses remain constant. T
if self-stresses were nonzero, in the limitl ! ` at least
one bond of the network would have negativetotal stress,
which is a contradiction. Therefore stiff granular pile
must either (a) have zero length mismatches or (b) ha
no overconstrained graphs at all. Condition (a) cann
be satisfied if the particles have random polydispersi
no matter how small,or if the packing is disordered.
Therefore there can be no overconstrained subgraphs
polydisperse or disordered packings in the large-stiffne
limit. In other words: The contact network of a granula
packing becomes isostatic when the stiffness is so la
that the typical self-stress, which is of orderke, would be
much larger than the typical load-induced stressfL [11].

The isostaticity condition above is perhaps simpl
to understand when cast in the following terms: gran
lar packings will only fail to be isostatic if the applied
© 1998 The American Physical Society
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compressive forces are strong enough to close interpart
gaps establishing redundant contacts.

Thus, real disordered packings will typically be iso
static (interparticle gaps are large) unless its particles
strongly deformed by the load. This explains why th
average coordination number of random sphere packin
is usually close to 6 (see [10] and references therei
Isostaticity was also reported in numerical simulations
rigid disks [12].

Finally we note that an adimensional “isostaticit
parameter” can be defined asI  keyfL, and thatI ¿ 1
corresponds to the isostatic limit.

We now discuss the consequences of isostaticity
the static behavior of a pile. It is possible to obtai
useful insight from recent studies of the related proble
of central-force rigidity percolation [13]. Rigid backbone
are found to be composed of large overconstrained clust
isostaticallyconnected to each other bycritical bonds(also
called red bonds). Cutting one critical bond is enough
produce the collapse of the entire system, because eac
these is by definition essential for rigidity. In percolatio
backbones though, the number of such critical bonds
not extensive, but scales atpc as L1yn where n is the
correlation-length exponent [14]. Thus, if we pertur
(cut or stretch) a randomly chosen bond in a percolati
backbone, most of the times the effect will be only loc
since no critical bond will be hit. The new element i
stiff granular contact networks is the fact thatall contacts
are isostatic or critic; i.e., there isextended isostaticity.
Thus we may expect stiff granular systems to have a lar
susceptibility to perturbation since cutting (stretching)
bond will often produce a large part of the system
collapse (move).

Let us now quantify these ideas. We perturb th
system by introducing aninfinitesimal change dl in
the length of a randomly chosen bond, and record t
induced displacementd $xi suffered by particle centers in
equilibrium. The system’s susceptibility to perturbatio
is then defined asD 

PN
i1 jd $xiydlj2. We propose

to measureDsOyd as a function of the densityOy of
overconstraints(excess contacts) randomly located on th
network. Isostatic piles haveOy  0.

A simple one-dimensional model for the propagation
perturbations can be analytically solved [15] for arbitrar
values of the densityOy of overconstraints. For any
nonzeroOy, D as defined above takes a finite value, b
diverges asO21y2

y for Oy ! 0. Therefore there is a phase
transition at the isostatic pointOy  0.

We now analyze a two-dimensional system nume
cally. In the spirit of previously studied models [16]
we consider a triangular packing ofH layers height, with
one of its principal axes parallel to gravity, and made
disks with small random polydispersitydR and weight
W . Since dR is small, disk centers are approximatel
located on the sites of a regular triangular lattice. If th
stiffnessk is large enough (I  kdRyWH ¿ 1), the con-
icle
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tact network will be isostatic. We enforce isostaticity i
our model by letting each site be supported from belo
by only two out of its three neighbors. This gives thre
possible local configurations which are depicted in Fig.
By appropriately choosing among these [15], random is
static networks with only compressive stresses are gen
ated. In order to study the effect of a finite densityOy

of overconstraints (which would appear if the stiffness
lowered), we furthermore letall three bondsbe present
with probabilityOy at each site.

After building a disordered network in this way, a ran
domly chosen bond in the lowest layer is stretched, a
the induced displacement field is measured. After av
aging over disorder, the stress distribution [15] is found
decay exponentially for large stresses, in accordance w
previous work [2,17].

The results for the susceptibilityDysH, Oyd PN
i1 dy2

i are shown in Fig. 2a. Heredyi is the vertical
displacement of sitei due to a unitary bond stretching
as measured on packings ofN  H 3 H particles. For
Oy . 0, Dy goes to afinite limit for large sizesH, but
diverges with system size ifOy  0. Measurements on
isostatic packings of up toH  2000 layers [15] show
that logDy ~ H; i.e., the divergence ofDy is exponential
with size when Oy  0. Thus there is a surprising
phase transitionat Oy  0, where anomalously large
susceptibility sets in.

In order to understand how displacements propag
upwards, we measure the probability distributionPhsdyd
to have a vertical displacementdy, h layers above the
perturbation. Numerical results for isostatic systems wi
H  2000 are shown in Fig. 2b. For largeh, Phsdyd
decays as a power law with anh-dependent cutoff:
Phsdyd , h2rjdyj2u, dy , dMshd. As seen in Fig. 2b,
dMshd grows exponentially with heighth. This produces
the observed exponential divergence ofDy. Similar
measurements were done on systems with a finite den
of overconstraintsOy, in which case the distribution of
displacements presents a height-independent bound [1

The puzzling appearance of exponentially large di
placements on isostatic piles can be explained as due
the existence of “lever configurations” or “pantographs
which amplify displacements. Figure 3 shows a
example of a pantograph with amplification factor 2
Given that this and similar mechanisms appear wi

L S R

FIG. 1. Appropriately choosing among these three isosta
configurations for each site, only compressive stresses
produced on a triangular packing. FirstS is chosen with
probability 1y2. If S is not chosen then eitherR or L are,
depending on the sign of the horizontal force acting on the si
1635
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FIG. 2. (a) Total susceptibilityDy versus system height
H in layers, as numerically measured on two-dimension
triangular packings. The fraction of overconstraints (fractio
of sites supported by three lower neighbors) is as follow
0.00 (open circles), 0.01 (squares),0.02 (diamonds), 0.05
(triangles), and1.00 (full circles). (b) The probabilityPhsdyd
to have an induced vertical displacementdy, h layers above
the perturbation, as obtained in a numerically exact fashi
for the isostatic (Oy  0) triangular piles described in the
text. Results are shown forh  200, 400, 600, . . . , 2000. Only
positive values ofdy have been plotted here.

a finite density per layer, it is clear that the secon
moment ofPhsdyd will grow exponentially with system
height. Furthermore, it is easy to understand why th
amplification effect only exists in theisostatic limit:
Pantographs as the one in Fig. 3 are no longer effective
blocked by overconstraints, for example, if an addition
bond is added between siteA and the site below it. In
this case, a stretching of bondB would induce stresses in
the whole pantograph, and only a small displacement
siteA.

In order to formalize the relationship between thes
findings and the observed unstable behavior [1,2]
1636
al
n
s:

on

d

is

if
al

of

e
of

A

B

FIG. 3. The observed exponential growth of induced displac
ments is due to the existence of random “pantographs” as
one shown in this figure. Upon stretching bondB by an amount
d, siteA moves vertically by an amount2d. Conversely a uni-
tary weight atA produces a stress of magnitude 2 on bondB.
This is a consequence of the general equivalence between
duced displacements and the load-stress response function.

granular materials, we now demonstrate the equivalen
between induced displacements and the load-stress
sponse function [6] of the stretched bond. The ne
work’s total energy can be written asE 

PN
i1 Wiyi 1

1y2
P

b kbslb 2 l0
bd2 where the first term is the potentia

energy and the second one is a sum over all bonds and
counts for the elastic energy.lb are bond lengths in equi-
librium andl0

b their repose lengths. Upon infinitesimally
stretching bondb0, equilibrium requires that

P
i Wi

≠yi

≠lb0
1P

oy koysloy 2 l0
oyd ≠loy

≠lb0
 0, where the second sum goe

over bondsoy that belong to the sameoverconstrained
graph asb0 does. This is so since bonds not overco
strained with respect tob0 do not change their lengthsas
a result of stretchingb0. Since stressfb on bondb is
fb  kbsl0

b 2 lbd this may be rewritten asX
oy

foy

≠loy

≠lb0


X

i

Wi
≠yi

≠lb0

. (1)

If b0 does not belong to an overconstrained graph, t
left hand sum contains only bondb0 itself, therefore
fb 

P
i Wi

≠yi

≠lb
showing that, in the isostatic case (n

overconstrained graphs at all), the induced displacem
dy

sbd
i 

≠yi

≠lb
is equal to theresponse functionof stressfb

with respect to an overload on sitei.
Taking averages with respect to disorder we obta

kfbl 
P

i Wikdy
sbd
i l and since average stresses grow

H we must havekdy
sbd
i l , H21. We thus see that there

must be delicate cancellations inPsdyd, since its second
moment diverges as exphHj while its first moment goes
to zero with H. This shows thatdy (and therefore the
response function) takes exponentially large values
both signs[Psdyd is approximately symmetric]. Thus
a positive overload at sitei would often produce a
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(very large) negative stress on bondb, implying the
need for rearrangement since negative stresses are
allowed.

The existence of negative values for the respon
function was first discussed in relation with instability
in the context of a phenomenological vectorial mode
for stress propagation [6]. The results of the prese
work demonstrate that the response function takes e
ponentially large negative values, and the system is u
stable, because of the isostatic character of the cont
network.

To conclude, we have shown that granular packin
are exactly isostaticwhen I  keyfL is much larger
than one, which holds for typical disordered packing
and also for stiff enough regular packings with random
polydispersity.

For isostatic packings, the distribution of displacemen
induced by a perturbation is power law with an expo
nentially large cutoff. A susceptibility to perturbation
can be defined, which diverges upon increasingI. Thus,
an isostatic phase transition takes place in the limit
largeI.

Induced displacements were furthermore shown to
equivalent to the load-stress response function of t
perturbed bond. Our results for induced displacemen
thus mean that response functions take exponentia
large values, as well as positive and negative, in th
isostatic limit. This explains why stiff granular piles are
unstable. Any nonzero density of overconstraints destro
criticality, and therefore instabilities will not be presen
when the isostaticity parameterI is small. I can be
reduced by reducing the stiffness, the interparticle gap
or by increasing the load.
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