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Isostatic Phase Transition and Instability in Stiff Granular Materials
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Structural rigidity concepts are used to understand the origin of instabilities in granular aggregates.
It is first demonstrated that the contact network of a noncohesive granular aggregate beraatlys
isostaticwhen ! = ke/f; > 1, wherek is the stiffnesse is the typical interparticle gap, ang, is
the typical stress induced by loads. Thus random packings of stiff particles are typically isostatic.
Furthermore isostaticity is responsible for the anomalously large susceptibility to perturbation observed
in granular aggregates. The load-stress response function of granular piteical (power-law
distributed) in the isostatic limit, which means that slight overloads will produce internal rearrangements.
[S0031-9007(98)06949-X]

PACS numbers: 61.43.Gt, 05.70.Jk, 46.10.+z

Photoelastic visualization experiments [1-3] showthe two corresponding particles. Because of linearity,
clearly defined stress-concentration paths in noncohesiv&ressesf;; on the bonds of this equivalent system can

granular materials under applied load. These often suffée decomposed ag; = /55" + 19! where f¥' are

sudden rearrangement on a global scale when the loaglf-stresses, angf{*! are load-dependent stresses. These
conditions are slightly changed, evidencing a degregast are linear in the applied load and do not change if
of susceptibility to perturbation not usually present inal| stiffnesses are rescaled. Self-stresses in turn do not
elastic materials. It is rather possible that this intrinsicdepend on the applied load, but are linear combinations
instability is responsible for much of the interesting of terms of the fornk;;e;; wherek;; are the stiffnesses of
phenomenology of granular materials [3,4]. Recently ahe bonds, ane;; their length mismatches. In a granular
number of phenomenological models [2,5-8] have beepile, length mismatches are due to interparticle gaps, and
put forward, which succeed to reproduce several aspectierefore will depend on the distribution of radii and on the
of stress propagation in granular systems, and the issugharacteristics of the packing. Furthermore, self-stresses
of instability has been addressed by noting that the loadean arise only withinoverconstrainedsubgraphs [9,10],
stress response function may take negative values [6]. [te., those with more contacts than strictly necessary to
is the purpose of this Letter to show that structural rigiditybe rigid. It is easy to see that a bounded overconstrained
concepts help us understand thegin of instability in  subgraph with nonzero self-stresses must have at least
granular materials, linking it to the topological propertiesone negative (traction) self-stress. It suffices to consider
of the system’s contact network. a joint belonging to the envelope of the overconstrained
Structural rigidity [9] studies the conditions that a cluster: since bonds can reach it from only one side of the
network of points connected by rotatable bars (reprefrontier, stresses of both signs are necessary in order for
senting central forces) has to fuffill in order to sustainthe joint to be equilibrated. Now rescale all stiffnesses ac-
applied loads. A network with too few bars flexiblg  cording tok — Ak. In doing so, self-stresses are rescaled
while if it has the minimum number required to be by A, but load-dependent stresses remain constant. Thus
rigid it is isostatic Networks with bars in excess of if self-stresses were nonzero, in the limit— « at least
minimal rigidity areoverconstrainedand are in general one bond of the network would have negativéal stress,
self-stressed Concepts from structural rigidity were first which is a contradiction. Therefore stiff granular piles
introduced in the study of granular media by Guyairal.  must either (a) have zero length mismatches or (b) have
[10], who stressed that granular systems are not emo overconstrained graphs at all. Condition (a) cannot
tirely equivalent to linear elastic networks since in thepe satisfied if the particles have random polydispersity,
former only compressive interparticle forces are posno matter how smallpr if the packing is disordered.
sible. We next show that this constraint has far-reaching’herefore there can be no overconstrained subgraphs in
consequences for the static behavior of stiff granulapolydisperse or disordered packings in the large-stiffness
aggregates. limit. In other words: The contact network of a granular
Consider ad-dimensional frictionless granular pile packing becomes isostatic when the stiffness is so large
in equilibrium under the action of external forcdg  that the typical self-stress, which is of order, would be
(gravitational, etc.) on its particles. Imagine building anmuch larger than the typical load-induced strés$11].
equivalent linear-elastic central-force network (tomtact The isostaticity condition above is perhaps simpler
networR, in which two sites are connected by a bond ifto understand when cast in the following terms: granu-
and only if there is a nonzero compression force betweetar packings will only fail to be isostatic if the applied
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compressive forces are strong enough to close interpartictact network will be isostatic. We enforce isostaticity in
gaps establishing redundant contacts. our model by letting each site be supported from below
Thus, real disordered packings will typically be iso- by only two out of its three neighbors. This gives three
static (interparticle gaps are large) unless its particles arpossible local configurations which are depicted in Fig. 1.
strongly deformed by the load. This explains why theBy appropriately choosing among these [15], random iso-
average coordination number of random sphere packingstatic networks with only compressive stresses are gener-
is usually close to 6 (see [10] and references thereinjated. In order to study the effect of a finite density
Isostaticity was also reported in numerical simulations ofof overconstraints (which would appear if the stiffness is

rigid disks [12]. lowered), we furthermore letll three bondsbe present
Finally we note that an adimensional “isostaticity with probability O, at each site.

parameter” can be defined As= ke/f,, and thatl > 1 After building a disordered network in this way, a ran-

corresponds to the isostatic limit. domly chosen bond in the lowest layer is stretched, and

We now discuss the consequences of isostaticity fothe induced displacement field is measured. After aver-
the static behavior of a pile. It is possible to obtainaging over disorder, the stress distribution [15] is found to
useful insight from recent studies of the related problendecay exponentially for large stresses, in accordance with
of central-force rigidity percolation [13]. Rigid backbones previous work [2,17].
are found to be composed of large overconstrained clusters, The results for the susceptibilityD,(H,0,) =
isostaticallyconnected to each other bjtical bonds(also ¥ | 8y} are shown in Fig. 2a. Her8y; is the vertical
called red bonds). Cutting one critical bond is enough tajisplacement of sité due to a unitary bond stretching,
produce the collapse of the entire system, because each & measured on packings 8f= H X H particles. For
these is by definition essential for rigidity. In percolation 0, > 0, D, goes to afinite limit for large sizesH, but
backbones though, the number of such critical bonds igiverges with system size i, = 0. Measurements on
not extensive, but scales at as L'/” wherev is the isostatic packings of up téf = 2000 layers [15] show
correlation-length exponent [14]. Thus, if we perturbthat logD, = H; i.e., the divergence ab, is exponential
(cut or stretch) a randomly chosen bond in a percolationyith size when 0, = 0. Thus there is a surprising
backbone, most of the times the effect will be only localphase transitionat 0, = 0, where anomalously large
since no critical bond will be hit. The new element in susceptibility sets in.
stiff granular contact networks is the fact ttadlt contacts In order to understand how displacements propagate
are isostatic or critic; i.e., there ixtended isostaticity upwards, we measure the probability distributi®psy)
Thus we may expect stiff granular systems to have a large have a vertical displacementy, h layers above the
susceptibility to perturbation since cutting (stretching) aperturbation. Numerical results for isostatic systems with
bond will often produce a large part of the system tog = 2000 are shown in Fig. 2b. For large, P,(8y)
collapse (move). decays as a power law with ah-dependent cutoff:

Let us now quantify these ideas. We perturb thep,(5y) ~ h="|8y|~?, 6y < 8)(h). As seen in Fig. 2b,
system by introducing arnfinitesimal change 6/ in  §,,(h) grows exponentially with heighit. This produces
the length of a randomly chosen bond, and record théhe observed exponential divergence Bf. Similar
induced displacementx; suffered by particle centers in measurements were done on systems with a finite density
equilibrium. The system’s susceptibility to perturbation of overconstraints0,, in which case the distribution of
is then defined asD = > [6%;/81>. We propose displacements presents a height-independent bound [15].

to measureD(0,) as a function of the density), of The puzzling appearance of exponentially large dis-
overconstraint{excess contacts) randomly located on theplacements on isostatic piles can be explained as due to
network. Isostatic piles hav@, = 0. the existence of “lever configurations” or “pantographs,”

A simple one-dimensional model for the propagation ofwhich amplify displacements. Figure 3 shows an
perturbations can be analytically solved [15] for arbitraryexample of a pantograph with amplification factor 2.
values of the density0, of overconstraints. For any Given that this and similar mechanisms appear with
nonzeroO,, D as defined above takes a finite value, but
diverges a®);, '/ for 0, — 0. Therefore there is a phase
transition at the isostatic poid@, = 0.

We now analyze a two-dimensional system numeri- :
cally. In the spirit of previously studied models [16], ) @/\ o
we consider a triangular packing &f layers height, with L S ¢ R
one of its principal axes parallel to gravity, and made of

disks with small random polydispersiyR and weight FIG. 1. Appropriately choosing among these three isostatic

W. Si SR | I disk i imatel configurations for each site, only compressive stresses are
- =lNce o 1S small, disk centers are approximately ,.oquced on a triangular packing. First is chosen with

located on the sites of a regular triangular lattice. If theprobability 1/2. If S is not chosen then eithek or L are,
stiffnessk is large enoughl(= k6R/WH > 1), the con-  depending on the sign of the horizontal force acting on the site.
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100 (a) . , , , FIG. 3. The observed exponential growth of induced displace-
0 20 40 60 80 100 ments is due to the existence of random “pantographs” as the
one shown in this figure. Upon stretching bakdby an amount
8, site A moves vertically by an amoudis. Conversely a uni-
0 tary weight atA produces a stress of magnitude 2 on badhd
10 This is a consequence of the general equivalence between in-
duced displacements and the load-stress response function.
=10
10
=20 granular materials, we now demonstrate the equivalence
10 between induced displacements and the load-stress re-
_ sponse function [6] of the stretched bond. The net-
10 30 work’s total energy can be written & = Zi’vzl Wy, +
1723, ky(ly — 12)2 where the first term is the potential
=40 energy and the second one is a sum over all bonds and ac-
10 I S ] counts for the elastic energyi,, are bond lengths in equi-
—s (b) Yy H2000 librium and/j their repose lengths. Upon infinitesimally
10 5 5 5 % 10 stretching bond’, equilibrium requires tha; W; ;3,—{, +
10 10 10 10 10 S v kov(ly — 19,) ‘;1,;; = 0, where the second sum goes

FIG. 2. (a) Total susceptibilityD, versus system height over bondsow that belong to the sameverconstrained

H in layers, as numerically measured on two-dimensiona@raph asb’ does. This is so since bonds not overcon-
triangular packings. The fraction of overconstraints (fractionstrained with respect t6’ do not change their lengthess

of sites supported by three lower neighbors) is as follows:a result of stretching’. Since stress, on bondb is
0.00 (open circles),0.01 (squares),0.02 (diamonds), 0.05 = 0 _ i i

(triangles), andl.00 (full circles). (b) The probabilityP; (5 y) fo = kol = 1) this may be rewritten as

to have an induced vertical displacemeht, i layers above lyy ay;

the perturbation, as obtained in a numerically exact fashion Zfov 3l = ZWi EY 1)

for the isostatic @, = 0) triangular piles described in the ov b! bt

teXt:.ReSUI'tS are;hﬂwn f“g: 20|0’408’ﬁ00~“’2000' Only It »’ does not belong to an overconstrained graph, the

positive values oby have been plotted here. left hand sum contains only bond’ itself, therefore
fo=>2;W %b showing that, in the isostatic case (no
overconstrained graphs at all), the induced displacement

a finite density per layer, it is clear that the second_ ) &y, . o th f ionf
moment of P, (8y) will grow exponentially with system 9Yi = ar, IS equal to thaesponse functionf stressf,

height. Furthermore, it is easy to understand why thidVith respect to an overload on sile .
amplification effect only exists in theésostatic limit Taking averaggf)s with respect to disorder we obtain
Pantographs as the one in Fig. 3 are no longer effective iif») = 2.; Wi(8y; ) and since average stresses grow as
blocked by overconstraints, for example, if an additionalH we must have{ayi(b)> ~ H™'. We thus see that there
bond is added between sife and the site below it. In  must be delicate cancellations ®#(éy), since its second
this case, a stretching of boflwould induce stresses in moment diverges as ey} while its first moment goes
the whole pantograph, and only a small displacement ofo zero withH. This shows thaty (and therefore the
site A. response function) takes exponentially large values of
In order to formalize the relationship between theseboth signs[P(8y) is approximately symmetric]. Thus
findings and the observed unstable behavior [1,2] of positive overload at sité would often produce a
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